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ABSTRACT Physical Virtual Sports (PVS) utilize digital technologies for the analysis and evaluation of
sports performances. This research article addresses the challenge of detecting video-replay spoofing in PVS,
with a specific focus on a digital football sport aimed at assessing and improving a player’s football juggling
skills. In the context of the growing presence of digital coaches as well as PVS, accurate assessment of player
performance and identification of deceptive practices in these applications are paramount. The proliferation
of sophisticated technologies, such as deepfake algorithms and computer vision techniques, has facilitated
the manipulation of video replays, deceiving both viewers and officials. To tackle the challenges associated
with video-replay spoofing, this article introduces a meticulously curated dataset comprising 600 players
engaged in the digital football sport. Additionally, the dataset includes video-replay spoofing videos captured
on a wide range of display devices. A deep learning-based model is developed and trained on this dataset,
achieving an accuracy rate of approximately 95%. Generalization studies were also conducted to assess
the model’s ability to generalize to unseen scenarios and datasets. The ROC-AUC score highlighted the
model’s discriminative power across different threshold values, validating its effectiveness in distinguishing
between genuine and spoofed video replays. The results demonstrate that our trained model exhibited
consistent performance across multiple public face biometric spoofing datasets, underscoring its robustness
against sophisticated video-replay attacks in various domains. Additionally, ablation studies were carried
out by systematically removing or modifying the model’s backbone architectures to analyze their effects
on detection accuracy and reliability. Furthermore, computational complexity analysis was presented to
evaluate the model’s efficiency in terms of time and space requirements. The findings underscore the
scientific significance and relevance of video replay spoof detection in PVS. By presenting a novel dataset
(https://www.fiteq.org/research) and employing an advanced deep learning approach, this article contributes
to the scientific community’s understanding and progress in combating fraudulent practices, ultimately
preserving the integrity and fairness of digital sports applications.

INDEX TERMS Active virtual sports, computer vision, dataset, deepfake detection, deep learning, deceptive
practices, digital sports applications, fraudulent practices, integrity, video-replay spoofing.

I. INTRODUCTION
In today’s diverse world of games, the lines between physical
and digital games are getting fuzzy. The Olympic Virtual
Series (OVS) signifies this trend, with the International

The associate editor coordinating the review of this manuscript and
approving it for publication was Xinfeng Zhang.

Olympic Committee (IOC) acknowledging ‘‘virtual games’’
at the 9th Olympic Summit [1]. These games exist in two
forms: physical and non-physical. Physical virtual games
involve players performing physical activities while their data
is digitally encoded, such as in Just Dance and indoor cycling.
Conversely, non-physical virtual games resemble traditional
computer games.
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FIGURE 1. Illustration of a phyigital football game scenario in the Sqiller
smartphone application: On the left, an expert player like Ronaldinho
demonstrates the soccer trick, while on the right, a player is attempting to
perform the shown trick. The performance evaluation uses advanced
computer vision and deep learning-based techniques.

Currently, physical virtual games in OVS necessitate play-
ers’ physical presence, posing logistical challenges for global
participation. However, advancements in technology make
the global virtualization of gaming experiences increasingly
feasible. We term these games ‘‘phygital games,’’ where
remote player participation is facilitated. Phygital games
offer more than convenience; they serve as a solution
during challenging times like the COVID-19 pandemic,
enabling sportsmanship despite physical barriers. By lever-
aging motion tracking and other technologies, phygital
games provide detailed insights into athletes’ movements,
techniques, and performance, fostering deeper understanding
and objective evaluation.

One example of phygital gaming is Sqiller, a smart-
phone application for football enthusiasts [2]. Users receive
instructions for executing soccer tricks through videos
featuring expert players like Ronaldinho. The app uses
the smartphone’s camera, advanced computer vision, and
deep learning techniques to monitor and evaluate users’
performances compared to the experts’.

The significance of phygital games extends beyond
beyond leisure, permeating competitive arenas where global
athletes engage in virtual events, enabled by digital tech-
nologies for remote competition. Ensuring the integrity of
virtual competitions is paramount as phygital games gain
traction. Imagine a player’s remarkable performance, not
from dedication, but shrewd video editing. This digital
deception parallels concerns with performance-enhancing
drugs, prompting contemplation of a digital equivalent of the
World Anti-Doping Agency (WADA) to safeguard fairness.
Video-replay spoofing, manipulating video data to deceive
viewers, officials, or systems during digital analysis, poses a

significant challenge. Advanced digital tools make creating
convincing manipulated videos effortless, raising concerns
about fairness in phygital games (see Figure 2).

Traditional and deep-learning based video analysis meth-
ods also face limitations in phygital gaming scenarios.
Techniques like frame-by-frame analysis struggle with subtle
alterations or irregularities introduced in video replays,
compounded by the dynamic nature of phygital games with
evolving environments and player movements.

The specific contributions from the current work to spoof
detection for phygital games are:

• A lightweight, deep learning architecture tailored for
phygital sports, achieving about 95% accuracy rate
on our dataset. Unlike conventional methods for
video-replay spoof detection in Human Activity Recog-
nition (HAR) applications, our method adopts a one-step
approach for spoof detection, eliminating the need to
extract specific user-related facial information as an
initial step for classification.

• An efficient strategy to systematically integrate the
proposed deep learning network into video capture and
live video streams, enabling detection of video replay
spoof attacks within phygital games. This novel strategy
is designed to seamlessly integrate with the gaming logic
responsible for evaluating game performance, enabling
real-time execution and eliminating latency concerns,
offering a practical and immediate solution for detecting
video replay spoof attacks in real-time within phygital
games

• A diverse and comprehensive database, comprising real
and spoof videos captured from 600 different athletes
across various geographical locations, under different
lighting conditions, and in varied environments. Our
dataset is uniquely diverse, incorporating various cap-
turing and replaying devices, and notably, it explicitly
includes videos featuring display bezels. This inclusion
addresses a gap in existing video-replay datasets,
enhancing the comprehensiveness and applicability of
our model in phygital sports scenarios.

• Additional evaluation of the performance of the pro-
posed approach within face biometric recognition appli-
cations, assessing its effectiveness beyond the context of
phygital games for broader applicability.

The remaining sections of the paper are structured as
follows: Section II discusses related work, providing an
overview of existing research in the field. Section III presents
detailed information on our dataset, along with comparisons
to other datasets relevant to video-replay spoof detection.
In Section IV, we elaborate on the proposed approaches,
including the training methodology employed. Section V
presents the findings of our experiments with various
deep learning architectures. Within this section, we also
examine the generalization potential of our approach and
conduct computational complexity analysis. Furthermore,
we outline the limitations of our approach. Finally, Section VI
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FIGURE 2. Detection of ball juggling events in a hybrid physical-digital (phygital) football game environment–On the left, a legitimate user
actively engages in the phygital football game, subject to analysis by a smartphone application equipped with an integrated digital camera. This
application utilizes AI-based motion analysis to assess performance. On the right, a potential malicious user attempts to mimic the phygital
gaming experience by presenting a prerecorded video replay on a digital screen, as opposed to actively participating in the physical drill’.

summarizes the key findings of the study and outlines
potential avenues for future research.

II. RELATED WORK
In the domain of detecting replay attacks from visual
data, a wide array of techniques has been developed and
explored. However, a predominant focus lies in spoofing
detection within biometric recognition applications, particu-
larly involving facial image analysis. These approaches are
typically tailored for scenarios where users are positioned
close to the camera and are directly facing it.

However, when it comes to the context of phygital
games, the dynamics of spoof detection change significantly.
In phygital games, athletes are often located at a distance from
the camera, and their gazemay not always be directed towards
it. As a result, the conventional spoof detection methods that
rely on facial image analysis may not be directly applicable
to these settings.

Despite the growing interest in phygital games and the
increasing popularity of phygital games, there remains
a gap in the research concerning spoof detection from
videos within this specific context. The lack of extensive
work exploring the challenges posed by phygital gaming
settings calls for a dedicated investigation to address the
unique aspects of video replay spoof detection in phygital
games.

In the following section, we provide an overview of related
works that have been developed to tackle video replay
spoof detection, considering both the existing techniques
in biometric recognition and other relevant studies. The
examination of these works aims to shed light on the
advancements made in this domain and identify potential
strategies that can be adapted to suit the specific challenges
posed by phygital games.

A. TEXTURE CUE-BASED METHODS
Throughout the literature, texture cue-based methods are
extensively utilized in biometric spoof detection applications
for detecting face presentation attacks [3]. These methods
leverage texture properties to discern between genuine faces
and manipulated data, effectively detecting various known
attacks, including photo-based, video replay, and 3D mask
attacks [3], [4]. In 2010, Tan et al. proposed an early static
texture-based method [4] that employed Lambertian models
to represent the reflectivities of genuine (alive) faces and
face-printed photos. They used the Difference of Gaussian
(DoG) filtering technique to derive latent samples [5]. The
underlying concept was that a face-printed photo tends to
exhibit more distortion than an image of a genuine face, as it
undergoes two captures and one print, while genuine faces
are only captured once by the biometric system [4]. The
method showed promising results with classifiers like Sparse
Nonlinear Logistic Regression (SNLR) and Support Vector
Machines (SVMs).

In their study, Smith et al. [6] introduced an innovative
approach to counterattacks on face recognition systems. Their
method involved analyzing the colour reflected from the
user’s face as displayed on mobile devices. By examining
the presence or absence of these reflections, the algorithm
can determine whether the images were captured in real
time. Notably, the detection of presentation attacks is
achieved using straightforward RGB images. To address
sensitivity to illumination variations and partial occlusion,
Zuiderveld proposed Contrast-Limited Adaptive Histogram
Equalization (CLAHE) [7] for image pre-processing [8].
They demonstrated that CLAHE outperformed simple his-
togram equalization, effectively enhancing the method’s
performance. Following a similar approach, Bai et al.
analyzed micro-textures using Bidirectional Reflectance
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Distribution Functions (BRDF) [9]. They extracted the
normalized specular component, referred to as the specular
ratio image, and computed its gradient histogram, known as
the specular gradient histogram. These histograms exhibited
distinct shapes for genuine faces and printed photos, enabling
the training of a Support Vector Machine (SVM) for face
presentation attack detection [9].

Local Binary Pattern (LBP) has also beenwidely employed
as a hand-crafted texture feature in various face analysis-
related problems [10]. In 2011, Määttä et al. proposed apply-
ing multi-scale LBP to Face Presentation Attack Detection
(PAD) [10]. Unlike previous static texture-based approaches,
LBP-based methods do not rely on any physical model;
instead, they assume that the differences in surface properties
and light reflection between genuine faces and planar attacks
can be captured by the LBP features. Määttä et al. utilized
different LBP configurations, obtaining histograms that were
later concatenated to form a global micro-texture feature.
This feature was then fed to a non-linear (RBF) SVM
classifier for face presentation attack detection [10].
In 2012, Määttä et al. extended their work by incorporating

Gabor wavelets and Histogram of Oriented Gradients (HOG)
into their framework [11]. These features aimed to capture
both facial macroscopic information and facial edges or
gradient structures, respectively. The authors used a fast
linear SVM and employed late fusion between the outputs of
the three SVMs to generate the final decision [11]. Inspired
by the context surrounding the face, Yang et al. and Bai et al.
proposed using the upper-body region to detect spoofing
attacks [9], [12]. Yang et al. employed a 1.6× enlarged face
region (H-Face) and segmented canonical facial regions to
extract texture features from different components of the
face. This approach utilized Local Binary Pattern (LBP),
Histogram of Oriented Gradients (HOG), and Local Phase
Quantization (LPQ) to capture texture information from
facial regions. The features were then fed into an SVM for
face PAD. Similarly, Bai et al. used the upper-body region and
applied HOG to capture continuous edges of the presentation
attack instrument (PAI). A linear SVM was utilized for
detecting photo or video replay attacks [9], [12].
In 2013, Kose and Dugelay presented a static texture-based

approach for 3D mask attack detection using LBP fea-
tures [13]. Although 3D mask PADs were less studied due
to the scarcity of public mask attack databases at that time,
the LBP-based method effectively detected 3D mask attacks
using the texture (original) image. They later enhanced this
method by fusing LBP features from both texture and depth
images, improving its detection capability [14]. In the same
year, Galbally et al. introduced face PAD methods based on
Image Quality Assessment (IQA), assuming that spoofing
images captured in photos or video replays would exhibit
different qualities than genuine samples [15], [16]. These
IQA-based methods assessed image quality using various
measures, such as sharpness, color and luminance levels,
and structural distortions. The image quality scores were
combined and fed into classifiers, such as Linear Discrim-

inant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA), for face presentation attack detection. The major
advantage of the IQA-based methods was their non-reliance
on priori face or body region detection, making them ‘‘multi-
biometric’’ methods applicable to iris or fingerprint-based
liveness detection. However, their performance was limited
compared to other texture-based methods, and they were not
designed to detect 3D mask attacks [15], [16].

In 2015, Boulkenafet et al. proposed extracting LBP
features in HSV or YCbCr color spaces, leveraging subtle dif-
ferences between genuine faces and presentation attacks [17],
[18]. By simply changing the color space used, their
LBP-based method achieved state-of-the-art performance
compared to more complex methods based on Component
Dependent Descriptor (CDD) [12] and even emerging deep
Convolutional Neural Networks (CNNs) [19]. This work
highlighted the significance of utilizing diverse color spaces
for face PAD [17], [18].

B. DEEP LEARNING-BASED METHODS
Deep learning-based methods have also been explored to
automatically learn texture features for face PAD. Deep learn-
ing techniques have found extensive application in various
biometric authentication systems and face presentation attack
detection [12] as well as in other various disciplines such
as Natural Language Processing (NLP), autonomous driving
and medical imaging and so on. These methods involve
training deep networks using diverse patterns and leveraging
the learned features to identify similar patterns within the
dataset. Notably, deep learning excels in both supervised
and unsupervised tasks, enabling efficient classification
and clustering of data without the need for class labels.
Yang et al. demonstrated the potential of using CNNs for
PAD [19]. They applied a one-path AlexNet to learn texture
features that effectively discriminate between genuine and
presentation attack images. The method involved replacing
the usual output of AlexNet with a Support Vector Machine
(SVM) featuring binary classes. The approach outperformed
existing methods when the input image was enlarged,
highlighting the importance of context information from the
background in face PAD. Following this breakthrough, more
CNN-based methods were developed for face PAD [20], [21].
Patel et al. [20] proposed an end-to-end framework based
on CaffeNet (a one-path AlexNet variant), utilizing a voting
fusion strategy to achieve state-of-the-art performance for
photo and video replay attack detection. Similarly, Li et
al. utilized VGG-Face for face PAD, leveraging features
from different layers of the CNN to improve performance.
Their method demonstrated state-of-the-art results in both
intra-dataset and cross-dataset scenarios [21]. Since then,
numerous architectures have been devised for detecting photo
and video replay attacks [22] [23].

In 2017, Arashloo et al. [24] introduced a novel approach
to address the challenge of detecting unseen attacks in the
context of anomaly detection. They formulated the problem
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as a one-class classification task, considering real faces as
the positive class and training a one-class SVM [25] to
distinguish them. Similarly, in 2018, Nikisins et al. [26]
employed one-class Gaussian Mixed Models (GMM) to
model the distribution of genuine faces, enabling them to
detect previously unseen attacks. Unlike the approach in [24],
Nikisins et al. aggregated three publicly available datasets for
training their model.

While the abovementioned methods solely used samples
of genuine faces to train one-class classifiers, it is worth
noting that known spoof attacks can also provide valuable
insights for detecting novel and previously unseen attacks.
To address this aspect, Liu et al. [27] proposed a CNN-based
Deep Tree Network (DTN) in 2019, focusing on analyzing
13 attack types that encompass both impersonation and
obfuscation attacks. Initially, the known presentation attacks
(PAs) were clustered into eight semantic sub-groups using
unsupervised tree learning, serving as the eight leaf nodes
of the DTN. A Tree Routing Unit (TRU) was then learned
to guide known presentation attacks to the appropriate tree
leaf (i.e., sub-group) based on the features learned by the
tree nodes (i.e., Convolutional Residual Unit (CRU)). Within
each leaf node, a Supervised Feature Learning (SFL) module
was employed, consisting of a binary classifier and a mask
estimator, aiming to discriminate between different spoofing
attacks. The mask estimation procedure is analogous to the
depth map estimation, as previously presented by the same
authors in [28]. Consequently, by utilizing the estimatedmask
and the score from a binary softmax classifier, unseen attacks
can be effectively discriminated.

Jourabloo et al. proposed a GAN-based method, De-Spoof
Net (DS Net), for estimating noise in spoof face images [29].
By assuming that the noise of a genuine image is zero, the
method detected spoof images by thresholding the estimated
noise. DS Net used different losses to model various noise
patterns, achieving superior performance compared to other
state-of-the-art deep face PAD methods [29]. Additionally,
George et al. proposed Deep Pixelwise Binary Supervision
(DeepPixBiS), based on DenseNet, which utilized pixel-wise
binary cross-entropy loss along with binary cross-entropy
loss for the final output. By forcing the network to learn
patch-wise features, DeepPixBiS demonstrated promising
performance for both photo and video replay attacks [30].

Image depth information plays a pivotal role in assessing
the authenticity of a face, as real faces in the physical
world possess three-dimensional structures, whereas faces
captured in photographs or displayed on screens are two-
dimensional. Even when the face presented in a photograph
appears unnatural, the depth map exhibits discrepancies from
that of a genuine face. Leveraging this insight, Atoum et al.
pioneered the use of face depth maps for discriminating face
spoofing attacks. In their study, a novel two-channel CNN-
based face anti-spoofing method was proposed [31].

ResNet stands out as one of the most prevalent CNN
architectures utilized in face anti-spoofing, capable of acquir-
ing robust feature representations from facial images [22].

However, the manual design of neural networks remains
a daunting task. Consequently, there has been a recent
shift towards the automatic design of neural networks [32].
Regrettably, many of these methods rely on computationally
expensive models, rendering them unsuitable for real-time
Face Anti-Spoofing (FAS applications. In [33], Benlamoudi
et al. presented an approach based on background subtraction
and used pre-trained ResNet-50 [34] CNN architecture to
learn features related to genuine and spoof faces. Their
approach is based on the assumption that the capturing
camera is always static.

Addressing the challenge of computational complexity has
been a focal point in numerous studies, leading to the devel-
opment of efficient and lightweight architectures for various
computer vision tasks. One common approach involves the
quantization of weights and/or activations of a base CNN
model into lower-bit representations [35], or the pruning
of unimportant filters based on floating-point operations per
second (FLOPs) [36]. Alternatively, some methods entail
the direct crafting of more efficient mobile architectures. For
instance, MobileNet [37] heavily employs depthwise sep-
arable convolution to minimize computation density, while
ShuffleNets [38] [39] utilize low-cost group convolution
and channel shuffling. More recently, MobileNetV2 [40]
has set a new benchmark for lightweight models in image
classification by introducing inverted residuals and linear
bottlenecks. Nevertheless, the design of hand-crafted models
demands considerable human effort due to the potentially vast
design space.

Several of the aforementioned lightweight mobile architec-
tures have undergone modifications to enhance their discrim-
inative and generalization capabilities for face recognition
purposes [41], [42], and [43]. These specific models have
been investigated across different face recognition scenarios,
including image and video face recognition [44] and masked
face recognition [45]. However, few works explore the
potential of lightweight CNNs for video replay spoofing
detection as a means of balancing accuracy performance with
efficiency in real-world scenarios.

C. LITERATURE OVERVIEW AND THE RESEARCH GAP
As discussed in previous subsections, there are several
approaches proposed in the literature for video-replay
spoofing detection. Many of these methods rely on face
detection as a preliminary step to localize facial information
in the image before classification. However, it is crucial to
acknowledge the drawbacks of face detection algorithms,
as any failure in this step can lead to erroneous classification
results. Moreover, conventional face detection algorithms are
tailored for images containing only the faces of users, raising
doubts about their adaptability to phygital game scenarios
where images encompass diverse visual contexts with various
foregrounds and backgrounds.

One significant visual phenomenon affecting phygital
gaming images is the moiré effect, resulting from spatial
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interference between the pixel grids of camera sensors and
device screens [46]. The moiré effect is a visual phenomenon
that occurs when two repetitive patterns or grids overlap,
creating a new, often unexpected pattern. In the context of
phygital gaming, the moiré effect typically arises from the
interaction between the pixel grid of a camera sensor and the
pixel grid of a device screen.

When a camera captures an image of a digital display, such
as a smartphone or computer monitor, the pixel grid of the
display may interfere with the pixel grid of the camera sensor.
This interference can manifest as a moiré pattern, which
appears as irregular, wavy lines or patterns superimposed on
the image. These patterns can distort the original image and
introduce visual artifacts. The moiré effect is highly sensitive
to factors such as the relative alignment and spacing of the
two grids, the resolution of the camera sensor and display, and
the viewing angles [47]. Variations in these factors can lead
to changes in the appearance of the moiré pattern, making it
challenging to predict and mitigate.

Consequently, intricate moiré patterns manifest across
different frequency bands of images with diverse colours,
shapes, and intensities. Studies have also indicated that moiré
pattern colours, especially brightness, exhibit slight discrep-
ancies depending on the displayed background, rendering
them non-robust [48], [49]. These factors emphasize the
necessity for distinct approaches tailored specifically for
spoof detection in phygital games, distinct from conventional
methods employed in face biometric recognition.

One noteworthy endeavour in the literature towards
addressing spoof detection in phygital games is by Huszár
and Adhikarla [50]. They introduced a deep-learning-based
approach capable of real-time parallel operation with HAR
for presentation attack detection in videos. However, their
approach also entails extracting facial information from
images as an initial step for classification. In this paper,
we present the first study applying deep-learning techniques
for spoof detection in phygital games. Our primary contribu-
tion includes the introduction of a novel dataset comprising
videos of users juggling footballs, supplemented by addi-
tional videos of replay attacks recorded on multiple monitors
using various smartphone cameras. The design of our dataset
is aimed at addressing the limitations of existing datasets for
replay detection, particularly in phygital games, which are
often constrained in terms of size and diversity. To the best
of our knowledge, our dataset stands as the largest and most
diverse collection for liveliness detection in phygital games.

To demonstrate the potential of our dataset, we develop
a deep learning approach based on the EfficientNet [51]
architecture for liveliness detection in phygital games.
Our results showcase the effectiveness of the proposed
approach, achieving high accuracy on the presented dataset.
Additionally, we conduct an ablation study to evaluate the
diversity and robustness of our dataset.

Our work significantly contributes to research endeavors
aimed at enhancing the security and integrity of phygital
games. The proposed dataset and deep learning approach

serve as valuable resources for researchers and practitioners
in developing more effective replay attack detection systems,
thus fostering a safer phygital gaming environments.

III. OVERVIEW OF DATABASES FOR VIDEO-REPLAY
ATTACK DETECTION
Currently, a notable research gap exists in the availabil-
ity of public datasets specifically tailored for detecting
video-replay attacks in the context of phygital games.
However, datasets designed for face presentation attack
detection in biometric recognition applications, such as face
detection, are accessible and offer diverse attack scenarios,
encompassing static 2D photo attacks, paper masking attacks,
and 3D rigid and silicon mask attacks. Although these
datasets may not directly align with the unique challenges
of phygital games, where the focus is on assessing video
genuineness rather than identifying individual players, they
can still be valuable for training and validating deep learning
models for video-replay attack detection in general. Some
portions of the face presentation attack detection datasets that
include video-replay attacks could be adapted and relevant
for phygital gaming applications. In Table 1, we provide a
comprehensive list of pertinent datasets containing video-
replay attacks, sourced from the field of biometric face
recognition.

It is evident from 1 that the variety of devices utilized for
capturing and presenting videos to simulate replay attacks is
notably scarce in the literature. Moreover, specific datasets,
such as the one introduced by George et al. [59], feature
cropped and resized videos focusing solely on facial informa-
tion, which deviates from the patterns observed during actual
replay video capture on a monitor. Consequently, models
trained on such data may struggle to generalize to unseen
scenarios. An effective deep-learning model for video-replay
attack detection in phygital games necessitates a diverse set of
samples recorded from multiple monitors and using various
cameras. The lack of publicly available datasets addressing
these requirements highlights a significant gap in developing
efficient deep-learning approaches for video-replay attack
detection.

To address the limitations in the literature and enable
experimentation with video-replay attack detection in the
context of phygital games, we have curated a new dataset
comprising 600 participants engaged in football juggling
sessions. During each session, participants performed simple
football juggling tasks while being recorded by multiple
cameras, including both IOS and Android smartphones. The
dataset encompasses a diverse range of subjects, spanning
different ethnicities (Asian, African, and Caucasian), ages
(children and adults), and genders (male and female). The
recording sessions were conducted under various environ-
mental and lighting conditions, encompassing both indoor
and outdoor settings, as well as different times of day,
including daytime and nighttime conditions.

Moiré effects, that occur while capturing the video replay
on a device screen using any given camera, have been
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TABLE 1. A compilation of publicly available datasets in the literature that include examples of video-replay attacks. For the samples marked with an
asterisk, the reported number of samples encompasses print and 2D photo attacks, and the number of samples containing video-replay attacks is notably
smaller than the total count.

FIGURE 3. Illustration of Video-Replay Spoofing Scenarios in a phygital
football game. The left side demonstrates a video replay attack when the
camera is positioned close to the device screen, resulting in visible Moiré
interference patterns. On the right side, the camera moves away from the
device screen such that the device screen bezels are visible, causing
reduced severity of the Moiré interference patterns. These scenarios
showcase the challenges in spoof detection in the presence of visible
device screen bezels.

recognized as highly sensitive to various factors, particularly
variations in camera pose and the distance between the
camera and the device screen [46]. In our context of phygital
games, such effects can significantly impact the integrity
of liveliness detection. Figure 3 illustrates this phenomenon
with two cases of video replay spoofing in Sqiller, a phygital
gaming environment centred around football juggling.

Sqiller’s functionality relies on detecting and tracking the
trajectory of the football and the body coordinates of the
athlete to assess their performance. When malicious users
attempt to spoof Sqiller, they often aim to mimic the real
gaming environment by staying in proximity to the device
screen, ensuring the visibility of both the player and the
football. As a result, the camera’s distance from the screen
plays a crucial role in determining the severity of Moiré
interference patterns, as depicted in Figure 3.

In the left side of Figure 3, when the camera is close
to the device screen, Moiré interference patterns become
more pronounced. Conversely, on the right side, when the
camera is moved further away from the screen, the severity
of Moiré patterns diminishes (the extent to which the
severity diminishes depends on the device screen resolution).
However, gaming logic establishes an upper limit on how
far the camera can be positioned from the device screen
to maintain effective gameplay. Our observations with
Sqiller indicate that gaming logic still functions when the
device screen bezels are visible, as shown on the right
side of Figure 3. This poses a challenging problem for
spoof detection, as the frequencies of interference patterns
may not always align with realizable scenarios. Moreover,
detecting spoofing attempts when the device screen bezels
are visible has received limited attention in face biometric
spoof detection literature [62]. Traditional cross-entropy loss
may not be effective in training deep learning models for
such scenarios, as networks can inadvertently learn arbitrary
patterns, such as screen bezels, instead of essential spoof
patterns [28]. This can lead to reduced detection accuracy
while detecting video replay spoofing. To address this
issue, we dedicate a new class of videos that also contain
video-replay spoofs with device screen bezels visible.

To this end, we introduce our novel dataset comprising
900 genuine videos of 600 users engaging in football
juggling tasks, accompanied by 900 video-replay attack
videos where no device screen bezels are visible, and an
additional 900 video-replay attack videos where device
screen bezels are visible. The replay dataset is created
using 7 distinct capture devices and 17 replay devices
in 18 sessions, with each session containing 50 videos.
To maintain dataset balance, each genuine video is uniquely
employedwhen generating replay-attack videos. The creation
process involves displaying the videos on diverse monitors,
encompassing smartphone screens to wide-screen televisions
while recording the resulting videos through various IOS
and Android cameras. On average, the captured videos have
a duration of approximately 3 seconds. A visual depiction
of select samples from the dataset is provided in Figure 4.
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FIGURE 4. Sample frames from our Sqiller-Spoof dataset for video-replay
attack detection in phygital games. The top row displays genuine videos,
the middle row displays simulated video-replay attacks captured using
various monitors and cameras and the bottom row displays simulated
video-replay attacks when the device screen bezels are visible. The faces
of users have been masked to preserve their privacy.

The introduction of this comprehensive dataset is anticipated
to substantially advance the field of deep-learning models
designed for discerning video-replay attacks within phygital
games environments.

IV. VIDEO-REPLAY SPOOFING DETECTION IN PHYGITAL
GAMES
In recent years, deep Convolutional Neural Networks (CNNs)
have emerged as a promising approach for detecting video-
replay attacks, surpassing traditional statistical methods in
performance [63], [64]. However, a common challenge faced
in training CNNs is the scarcity of available data, which
can hinder their training from scratch. To overcome this
limitation, most CNN-based video-replay attack detection
methods adopt a two-step approach. Initially, a CNN is
trained end-to-end on image recognition tasks using publicly
available datasets like ImageNet [65]. Subsequently, the
CNN is fine-tuned using specialized video-replay attack
datasets to discern between genuine and attack presentations.
This fine-tuning process involves leveraging the outputs
of intermediate layers from the pre-trained CNN and
constructing additional layers and a classifier to enhance
detection performance.

For our video replay attack detection in phygital games,
we employed the pre-trained EfficientNet [51] architecture.
The selection of EfficientNet was guided by several factors.
Firstly, EfficientNet is a well-designed architecture that

strikes a balance between model size and performance,
making it particularly suitable for real-time applications.
By employing depth, width, and resolution scaling, Effi-
cientNet achieves state-of-the-art performancewhile utilizing
fewer parameters compared to popular alternatives such as
ResNet [34] or VGGNet [66]. This is especially advantageous
for replay-attack detection in phygital games, as the model
can efficiently run in real-time even on low-powered devices.
Secondly, EfficientNet has demonstrated impressive results
on various computer vision tasks, including image classifica-
tion, object detection, and segmentation. This suggests that
the architecture may effectively capture relevant features and
patterns present in our juggling football videos, contributing
to successful video-replay attack detection. Additionally,
as EfficientNet has been trained on a vast dataset like
ImageNet, it has acquired rich and generalizable features that
can be fine-tuned to our specific problem of video replay
attack detection.

In this study, we adapted the EfficientNet-B0 architecture,
originally designed for image classification on ImageNet, for
video-replay attack detection. To accomplish this, we tailored
the final classification head to produce three logits corre-
sponding to three specific classes. The system architecture
is illustrated in Figure 5.

During the training phase, we assigned ground truth labels
of 0 to genuine samples, 1 to replay attack samples, and
2 to replay attack samples with visible display bezels. Our
system closely follows the design of the EfficientNet-B0
network, employing an input image resolution of 224 ×
224. To construct the training dataset, we pre-processed the
training videos to extract 32 video frames, uniformly sampled
in the temporal domain, ensuring consistent representation
regardless of video duration. From each frame obtained
from genuine and spoofed videos, we extracted 15 non-
overlapping cropped patches, each sized 224 × 224, for
training purposes. For temporal frames extracted from
spoofed videos containing display bezels, we uniformly
sampled 15 patches in the spatial domain, originally of
resolution 720 × 720, which were then resized to the target
resolution of 224×224. This selection of large-sized patches
aimed to capture global contextual information relevant to the
presence and characteristics of bezels.

Our curated training dataset comprises a substantial
number of approximately 1.3 million samples, covering
the instances from all three classes. Prior to commencing
each training session, we transformed the pixel value range
of the extracted frames to fall within the [0, 1] interval,
yielding floating-point images. Furthermore, we normalized
the video frames using mean and standard deviation to ensure
consistency in the training process.

A. LEARNING AND OPTIMIZATION
During the learning phase, we applied data augmentation
techniques to our training samples, including random hor-
izontal flipping, Gaussian blurring, and random sharpness
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FIGURE 5. The system architecture illustrating the adapted EfficientNet-B0 model for video-replay
attack detection. Specific alterations to the final classification head ensure the generation of three
logits corresponding to the classes: ‘Genuine,’ ’Replay Attack,’ and ‘Replay Attack with Display
Bezels Visible’.

TABLE 2. In our system, we have 4011391 parameters that are involved in
the combination of the trimmed EfficientNet-B0 model and the replaced
final classification head. Since the parameters of the trimmed
EfficientNet-B0 model are also optimized during training, all
4011391 parameters are trainable.

adjustment. These augmentations were incorporated to
achieve a more comprehensive representation of our train-
ing dataset. We performed weight updates on all layers
during training, including the feature extraction layers. The
optimization process employed the Adam optimizer with a
learning rate of 0.0001, while the Cross-Entropy loss function
was used to guide the learning process.

The training procedure spanned 10 epochs, during
which the modified network encompassed approximately
4.0 million parameters (as indicated in Table 2). This
parameter count facilitated the effective updating of all
network parameters through back-propagation, enhancing the
training process. For convenience and easy reference, all
hyperparameters employed in our study are listed in Table 3.

To ensure consistency, within each training batch, we con-
catenated training data from all three classes, resulting in an
effective batch size of 48 samples. This approach enabled
efficient utilization of available training data during the
optimization process.

V. RESULTS AND DISCUSSION
A. EXPERIMENTING WITH OUR SQILLER-SPOOF
DATABASE
To ensure a robust evaluation of our proposed data set using
our deep learning-based approach, we performed a rigorous
5-fold cross-validation study. This cross-validation approach

TABLE 3. List of hyperparameters and their corresponding values used in
our trainings.

guarantees an extensive assessment of the model and
mitigates any potential overfitting issues arising from specific
training and testing data splits. Specifically, we partitioned
the data set into 5 systematic and non-overlapping splits, each
containing 80% of samples for training and 20% for testing,
for comprehensive evaluation. Our findings from the 5-fold
cross-validation study are presented in Table 4 utilizing a
selection of metrics frequently employed in the assessment
of biometric presentation attacks: the Attack Presentation
Classification Error Rate (APCER), Bona fide Presentation
Classification Error Rate (BPCER), and the Half-Total Error
Rate (HTER) as outlined in ISO standards [67]. Analogous
to the False Acceptance Rate (FAR) and False Rejection
Rate (FRR), APCER and BPCER quantify the model’s
effectiveness. Hence, diminished values of APCER, BPCER,
and subsequently HTER signify enhanced performance of the
model. Additionally, we present the performance assessment
using accuracy [68], rated on a scale from 0 to 1, where a
value closer to 1 indicates superior performance. The results
from our cross-validation studies highlight the consistency of
our dataset and the effectiveness of our approach leveraging
the EfficientNet B0 architecture for video replay attack
detection.

To further examine the feature set learned by our model
using the sqiller-spoof database, we visualized the learned
features of our model utilizing t-SNE [69], dimensional-
ity reduction technique. Specifically, we used the trained
models from five cross-validation folds and performed
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TABLE 4. The table presents the evaluation results of the modified
EfficientNet-B0 architecture on the presented dataset using a five-fold
cross-validation study. The evaluation is carried out using various popular
quality metrics in the field of video replay attack detection. The results in
the table demonstrate the effectiveness of the proposed method for
detecting video replay attacks in the evaluated dataset.

feature visualization using the testing set. To accomplish
this, we collected features before the last fully connected
layer of the trained model using the testing dataset. These
features represent the high-dimensional feature space of the
detections in the testing set. In other words, such visualization
provides a visual representation of the distribution of the
testing set in the feature space according to the learned
patterns from the training set. Figure 6 shows this feature
visualization for a random set containing 250 test samples
for each class in all the five cross-validation folds in order
from left to right. In Figure 6, the colours of the points
represent the corresponding labels of the images - 0 refers
to genuine samples (blue), 1 refers to replay attack samples
(green), and 2 refers to replay attack samples with visible
display bezels (red). The t-SNE algorithm was used to
reduce the dimensionality of the data, resulting in two
dimensions that were constructed in a way that preserves
the pairwise similarity of the high-dimensional features as
much as possible. The resulting scatter plot allows for the
identification and understanding of patterns in the data,
as well as the potential identification of outliers where a
trained model misclassifies any test samples.

Our results showed a natural clustering of the points,
indicating that the model was able to effectively capture the
relevant features and patterns in the data. However, it is
also noticeable that there are potential outliers where the
trained model misclassified the samples in all five folds. The
observed outcomes in Figure 6 illustrate a significant degree
of class overlap between class 1 and class 2. This outcome
was anticipated given the commonality of replay-attack
samples within these classes. However, it is worth noting that
class 2 samples are captured at a slight distance from the
device display, revealing the bezels that attenuate the strength
of the Moiré effect. Furthermore, the discernible disparity
between classes 0 and 1 underscores the effectiveness of
our dataset in encompassing distinct samples that accurately
differentiate genuine instances from video-replay attacks.

B. BACKBONE ADAPTATION: LEVERAGING ESTABLISHED
ARCHITECTURES FOR REPLAY ATTACK DETECTION IN
FACE RECOGNITION SYSTEMS
Efforts have been made in the past, as documented in the
related works section, to address a similar issue: video-replay

TABLE 5. Details of training and testing datasets for architecture
implementation.

spoof detection in face biometric recognition. Many success-
ful methods, rooted in deep learning, have adopted various
lightweight architectures [70], such as MobileNetV2 [40]
and ShuffleNetv2 [39], for both training and inference tasks.
To assess whether retraining the face detection replay attack
detection framework on the dataset proposed in this work can
yield similar performance, we also trained these lightweight
architectures on our dataset. Specifically, we utilized pre-
trained models of these lightweight architectures trained on
ImageNet [65] to ensure consistency in our comparisonswith
EfficientNet-B0, which is also trained on the same dataset.
Our findings are presented in Table 6.

For this and subsequent experiments, we use the data split
from our first cross-validation fold. Specifically, we consider
80% of samples for training and 20% for testing. We have
selected 80% of samples from each of the 18 sessions (data
from 40 videos in a session) for training, and 20% of samples
from each session (data from 10 videos in a session) for
testing. Table 5 provides details of the training and testing
datasets used for architecture implementation.

According to our testing results, our approach employing
the Efficient-B0 backbone achieved approximately 1%higher
accuracy than the aforementioned lightweight architec-
tures. It is noteworthy that a 1% improvement may seem
insignificant, especially considering that these lightweight
architectures have relatively fewer model parameters, which
may not always lead to faster inference speeds but certainly
require fewer computing resources. Hence, our results
suggest that in resource-constrained scenarios, lightweight
architectures, such as those considered in this experiment, can
be suitable for efficient deployment. It’s important to high-
light that EfficientNet-B0, while efficient, does not impose
significantly higher computational demands compared to
larger architectures such as ResNet50 [34]. Therefore, when
deploying an architecture for video-replay spoof detection in
phygital games, careful consideration of system requirements
is crucial. Notably, our experimental results on our dataset
align with the observations made by Martínez-Díaz et al.
[70], indicating that lighter-weight architectures do not result
in a higher drop in accuracy.

Given that our dataset is pioneering in the field of
video-replay spoofing detection within phygital games,
a direct comparison of our model’s performance with other
deep learning-based methods is infeasible. To investigate the
effectiveness of our approach, we turn to recent baseline
techniques for spoofing detection, as the current literature
does not encompass data-driven methodologies for detecting
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FIGURE 6. t-SNE visualization of the learned features from a video replay attack detection model. Each point represents a testing sample and the
colours indicate the corresponding label (genuine, replay attack and replay attack with visible display bezels). The plot shows the natural clustering of
the points that can be used to identify and understand patterns in the data.

TABLE 6. The table presents the results of evaluating our proposed approach against other light-weight and baseline spoofing detection methods using
APCER, BPCER, and HTER metrics on the proposed dataset for video-replay spoof detection in phygital games. The lower values of these metrics indicate
superior performance.

video-replay attacks where users have the autonomy to select
their positions during physical activities.

In this experimentation, we further investigate two
descriptors - LBP histograms and HOG features - both
of which have been documented as prospective feature
descriptors for spoofing detection using facial image data (as
referenced in the related works section). The outcomes of
this comparative study are showcased in Table 6, affirming
our approach’s superiority over the baseline alternatives
in spoofing detection. For the comparison involving LBP
histograms, we employ an SVM trained through the scikit-
learn toolkit, with the descriptor calculations adhering to a
radius of R = 1 and a number of points P = 8, as elaborated
in [73]. For the comparison involving HOG descriptors,
we initiate by extracting HOG descriptors from the training
images using the following parameters: orientations - 9,
pixels per cell - (8, 8), and cells per block - (2, 2). Given
memory constraints, here, we adopt a stochastic gradient
descent (SGD) learning strategy with multiple batches.

The comparison is conducted on our first cross-validation
fold, utilizing both training and testing samples. Table 6
illustrates the outcomes of the baseline techniques from the
literature alongside our approach based on the EfficientNet-
B0 architecture. The experimental results distinctly under-
score our approach’s substantial performance gain over the
baseline methods. Our findings align with the conclusions
drawn in [74], accentuating that strategies employing low
or medium-level texture descriptors coupled with simple
classifiers for spoofing detection do not fare well under
cross-dataset evaluation protocols.

C. EXPLORING GENERALIZATION: EXPERIMENTS WITH
FACE BIOMETRIC SPOOFING DATASETS TO ASSESS
MODEL PERFORMANCE
In order to assess the generalizability of our model, which
has been trained on the sqiller-spoof dataset, across diverse

domains of video-based spoofing detection, we conducted
a series of experiments utilizing various publicly available
datasets commonly employed for spoof detection within
facial recognition systems. These datasets include ROSE-
Youtu [58], CASIA-FASD [53], Replay-Attack [52], Replay-
Mobile [56], SiW [28], SiW-Mv2 [27], andOULU-NPU [57].

Our experimentation methodology involved applying the
model trained on the sqiller-spoof dataset to these distinct
datasets for the purpose of generalization analysis. Notably,
it is highlighted by Yang et al. [48] that Moiré patterns lack
resilience when confronted with background variations and
furthermore, visual dissimilarities exist between perceptually
varying settings such as phygital games and facial biometric
recognition contexts. The majority of facial biometric spoof
datasets encompass not only video replay attacks, but also
encompass a range of other attack modalities, including
2D photo attacks, paper masking attacks, and 3D rigid
silicone mask attacks. For each aforementioned dataset,
we specifically focused on the designated testing subset as
provided by the original dataset authors. Among the testing
video samples, we only consider those instances associated
with video replay-based spoofing attacks. By exclusively
focusing on video replay attack instances within the chosen
datasets, it’s essential to recognize that our results cannot be
readily compared to methodologies encompassing broader
attack types. Traditional approaches often incorporate a
wider array of attack modalities in their training and
validation processes, necessitating careful consideration of
this discrepancy when interpreting our experimental findings.

1) VIDEO LEVEL PREDICTION
Our trained efficientNet-b0 model generates image-level
predictions. To extend these predictions to the video clip
level, we devised a strategy for aggregating frame-level
predictions within a video, enabling the classification of the
video as either genuine or an attack. Notably, the publicly
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available datasets for spoofing detection in face biometric
recognition applications lack the explicit class ‘‘replay attack
with visible bezels.’’ Within the samples of replay attacks,
videos occasionally feature visible display bezels.

For video-level inference, we adopt a two-step approach.
Initially, we assess the presence of display bezels across
multiple frames. If these bezels are detected in the majority
of considered frames, the video is promptly classified as
containing a video replay attack. In the absence of detected
bezels, we proceed to evaluate the presence of learned
moiré patterns across multiple frames. Should these patterns
manifest in over 50% of frames, we classify the video as an
attack; otherwise, it’s deemed genuine.

Our process begins with the extraction of 32 candidate
frames from a given video, uniformly sampled across
the temporal domain. Through cropping and/or resizing,
we prepare a batch of 32 images at a resolution of 224 ×
224 as input to the model, resulting in 32 predictions (refer
to Figure 7). For bezel detection, predictions from the initial
8 frames are used; if more than 4 frames are identified with
bezels, the video is classified as an attack.

To accomplish this, we extract the 8 largest square-shaped
patches possible from the first 8 frames. These patches adapt
to the frame’s dimensions (height x height if width < height;
otherwise, width x width). This process, shown in the upper
right of Figure 7, utilizes a sliding window approach to
ensure comprehensive spatial coverage. These substantial
patches encapsulate global contextual cues, facilitating bezel
detection.

Subsequently, we employ predictions from the remaining
24 frames to detect the presence ofMoiré patterns. To achieve
this, the central regions of these frames are cropped into
224 × 224 segments (as depicted in the bottom three rows
on the right side of Figure 7), yielding 24 local predictions.
A video is categorized as an attack if more than 12 of these
local predictions indicate the presence of Moiré patterns;
otherwise, it’s classified as genuine. The pseudo-code for the
described method is provided in Algorithm 1.

We report the generalization ability of our model using the
same performancemetrics as in cross-validation experiments.
Table 7 presents the performance evaluation of our model
across the considered datasets. For each dataset, we furnish
details encompassing the testing set’s sample count, pixel-
based video resolutions embedded within each dataset, and
the temporal duration of the videos. The outcomes indicate
commendable model performance on the majority of face
biometric recognition datasets, notably excelling in cases
where the video resolution closely aligns with that of our
training videos.

A clear trend appears in the results: the Replay-Mobile
dataset [56] exclusively features videos at a resolution
of 720 × 1280 pixels, closely resembling our training
video resolution. As anticipated, our model attains peak
performance on this dataset. ROSE-Youtu [58], CASIA-
FASD [53], and SiW-Mv2 [27] datasets also encompass
a subset of videos at 720 × 1280 resolution, where our

Algorithm 1 Video Analysis and Prediction
Input : video
Output: Result

(1) Initialize indices← Get32UniformTemporalIndices(video);
(2) Initialize bezelCount ← 0;
(3) for i← 1 to 8 do
(4) frame← ExtractFrame(video, indices(i));
(5) prediction←ModelPredict(frame);
(6) if prediction indicates presence of bezels then
(7) bezelCount ← bezelCount + 1;

(8) if bezelCount > 4 then
(9) return "Attack";

(10) Initialize moireCount ← 0;
(11) for i← 9 to 32 do
(12) frame← ExtractFrame(video, indices(i));
(13) prediction←ModelPredict(frame);
(14) if prediction indicates presence of Moiré patterns then
(15) moireCount ← moireCount + 1;

(16) if moireCount > 12 then
(17) return ‘‘Attack’’;

(18) else
(19) return ‘‘Genuine’’;

model achieves a substantial accuracy of approximately 0.9.
Conversely, the Replay-Attack dataset [52], characterized
by 320 × 240 resolution videos, falls below our training
video resolution, leading to sub-optimal generalization and
performance.

The OULU-NPU dataset [57] contains videos in full
HD, and our model’s generalization to this dataset remains
unsatisfactory. On the other hand, the SiW dataset [28],
also with full HD videos, shows better model performance.
The difference lies in visible display bezels in SiW’s testing
videos, which prevents ourmethod from progressing toMoiré
pattern detection.

These results align with Yang et al.’s observations [48],
emphasizing Moiré pattern sensitivity to scales and resolu-
tions. Our generalization study outcomes reinforce the value
of our dataset, affirming its capacity to effectively train
our model in acquiring meaningful detection features. Our
findings also proove that our model has genuinely acquired
relevant attributes instead of random characteristics, thus
strengthening the validity of our approach. Furthermore,
the classification error rates, APCER and BPCER provide
another insightful observation in our results. It is evident
that, in most instances, our model consistently demonstrates
lower error rates in predicting genuine cases, as evidenced
by BPCER scores being notably lower than APCER scores.
This consistency holds across various video resolutions.
This phenomenon is of paramount significance due to the
inherent risk associated with misclassifying a genuine video
as a spoof video. Ensuring that such misclassifications are
minimized is crucial to upholding the integrity of applications
like phygital games, where accurate classification holds
substantial implications.
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FIGURE 7. Thirty-two frames are selected for video-level prediction. The left side displays a video frame extracted from a sample testing video within
our dataset, while the right side showcases the 32 extracted patches from these sampled frames. These patches encompass both global and local cues,
contributing to precise video-level predictions.

TABLE 7. Performance of our model on face biometric recognition spoofing datasets using various metrics. The table also presents sample counts, video
resolutions, and duration for each dataset, providing insights into our model’s effectiveness across various scenarios.

TABLE 8. Accuracy (%) comparison of lightweight architectures (MobileNetV2, ShuffleNet V2) and EfficientNet-B0 on publicly available datasets for face
biometric spoof detection..

D. ABLATION STUDY
We also conducted ablation studies to assess the gen-
eralization capabilities of the lightweight architectures,
MobileNetV2 and ShuffleNet V2, to unseen attacks. Specif-
ically, we trained these lightweight architectures on our
training dataset and evaluated their performance on publicly
available datasets for face biometric spoof detection, as out-
lined in Table 7. The results of this ablation study, measured

in terms of accuracy (%) andHalf Total Error Rate (%HTER),
are presented in Tables 8 and 9 respectively.

Our findings indicate that our approach utilizing the
EfficientNet-B0 backbone consistently outperformed the
lightweight architectures. Contrary to the observations made
by Martínez-Díaz et al. [70], our results demonstrate that,
for most datasets, our approach significantly surpasses the
performance of considered lightweight architectures. Specif-
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TABLE 9. Half Total Error Rate (%HTER) comparison of lightweight architectures (MobileNetV2, ShuffleNet V2) and EfficientNet-B0 on publicly available
datasets for face biometric spoof detection..

TABLE 10. Performance comparison of architectures and baseline
methods on the dataset proposed by Huszár and Adhikarla [50] within
the phygital sports domain, using metrics including APCER, BPCER, and
HTER.

ically, our results suggest that lightweight architectures, par-
ticularly those examined in our experiment, do not generalize
well to unseen attacks. Conversely, our approach based on the
EfficientNet-B0 architecture exhibits robust generalization to
various unseen scenarios. Here, we emphasize that Martínez-
Díaz et al. [70] conducted their study across multiple spoof
attacks, including print, paper, replay, and 3D mask attacks.
In contrast, our experiments specifically focused on video-
replay attacks. This distinction in the nature of attacks
considered underscores the importance of tailoring detection
methodologies to the specific threat landscape encountered in
different contexts.

For further exploration of the performance of the consid-
ered architectures in our experiment, we also computed and
presented confusion matrices and Precision-Recall curves
for various architectures across different datasets used for
generalization experiments. The confusion matrices for Shuf-
fleNet V2, MobileNetV2, and EfficientNet-B0 across various
datasets are depicted in Figures 8, 9, and 10 respectively.

From the confusion matrices, it is evident that our
trained model based on EfficientNet-B0 produced fewer false
negatives (genuine videos classified as attacks) and false
positives (attack videos classified as genuine).

The Precision-Recall curves for ShuffleNet V2,
MobileNetV2, and EfficientNet-B0 are presented in Fig-
ures 11, 12, and 13 respectively, illustrating the trade-off
between precision and recall at different classification thresh-
olds for various datasets. A higher Precision-Recall curve
signifies better classifier performance. Each Precision-Recall
curve plot also includes the Area Under Curve (AUC) value.
A high AUC value indicates that the classifier effectively
identifies genuine videos (high precision) and captures as

many of them as possible (high recall), which is crucial for
accurately detecting video-replay spoof attacks.

The AUC values demonstrate that akin to accuracy per-
centage, our approach based on EfficientNet-B0 consistently
exhibited superior performance across various public datasets
for face biometric spoof detection.

We conducted further investigation into the performance
of these architectures using a dataset proposed by Huszár and
Adhikarla [50] within the same phygital sports domain. The
results are detailed in Table 10. Additionally, we present the
performance of other baseline methods previously introduced
for comparison on this dataset. Following the metrics
employed in the study by Huszár and Adhikarla [50],
we present the results using the metrics: APCER, BPCER,
and HTER.

Our experiments with this dataset reveal that MobileNet
V2 demonstrated superior generalization abilities compared
to other architectures and baseline methods utilized in the
comparison. It’s important to note that we provide these
results for the sake of completeness. However, it’s crucial to
emphasize that there are only 7 videos available for testing
in this dataset. Such a small testing set may not adequately
represent the diversity and complexity of real-world data that
a model encounters. Consequently, the performance metrics
obtained on the testing setmay not accurately reflect howwell
the models generalize to unseen data.

With a small testing set, there is diminished statistical
confidence in the performance metrics derived from eval-
uating the models. This can impede the ability to draw
meaningful conclusions about the effectiveness of these
model and the significance of any observed differences
in performance between different models or parameter
settings.

E. IMPLEMENTATION AND PERFORMANCE
We developed a lightweight, independent spoof detection
system tailored for phygital games by utilising the NVIDIA
DeepStream SDK [77]. Our model was constructed using the
pytorch deep learning library [78], involving training on our
dataset. Subsequently, the trained model underwent conver-
sion into a suitable format that facilitates seamless integration
and execution within the DeepStream environment. In this
self-contained framework, video-level predictions followed
the procedure outlined in Algorithm 1. Specifically, 32 image
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FIGURE 8. Confusion matrix illustrating the performance of ShuffleNet V2 across various datasets used for generalization experiments. The matrix
provides a visual representation of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) classifications, indicating the model’s
ability to distinguish between genuine and attack videos.

FIGURE 9. Confusion matrix displaying the performance of MobileNetV2 across different datasets used for generalization experiments. The matrix
delineates the model’s classification accuracy in terms of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) instances,
shedding light on its efficacy in identifying genuine and attack videos.

FIGURE 10. Confusion matrix demonstrating the performance of EfficientNet-B0 across a variety of datasets utilized for generalization experiments. The
matrix showcases the model’s classification accuracy, including true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
classifications, elucidating its ability to discern genuine videos from attacks.

patches were extracted from input videos and batched as
inputs for our model. The deployment environment consisted
of an Ubuntu Linux operating system, an Intel Xeon CPU,
and a Nvidia Tesla T4 GPU augmented with the CUDA
toolbox for PyTorch model training. Our findings reveal
that, on average, our system requires approximately 40ms
for processing a batch of 32 image patches, showcasing its
commendable efficiency.

When presented with a video clip depicting a session
of a phygital game, we suggest deploying our standalone
spoof detection system once at the conclusion of a per-
formance, concurrently with the execution of game logic.
This approach serves to promptly identify any potential
instances of spoofing attacks within the captured video
footage.

1) COMPARATIVE ANALYSIS OF COMPUTATIONAL
COMPLEXITY
To compare the computational complexity of our approach
with other lightweight models, we conducted a detailed
analysis of the Floating Point Operations Per Second
(FLOPs) and model parameters. As depicted in Table 11, it’s
evident that our approach utilizing EfficientNet-B0 exhibits
a higher number of model parameters and involves more
operations, consequently resulting in lower inference time.
In contrast, ShuffleNetv2 boasts the fewest parameters and
requires fewer floating point operations, leading to faster
inference speeds.

TABLE 11. Comparison of computational complexity metrics including
Floating Point Operations Per Second (FLOPs) and model parameters for
EfficientNet-B0, MobileNetV2, and ShuffleNetV2 architectures,
showcasing their respective inference speeds and computational
demands.

F. DISCUSSION
In this section, we delve into the comparative performance
and computational characteristics of three lightweight archi-
tectures - EfficientNet-B0, MobileNetV2, and ShuffleNetV2,
in the context of video-replay spoof detection using our
Sqiller-Spoof dataset. Upon training and testing on our
dataset, we observed that all models demonstrated relatively
comparable performance in terms of both accuracy and
HTER. However, our investigation into their generalization
capabilities revealed a notable disparity. Our approach
leveraging EfficientNet-B0 exhibited superior generalization
abilities, while the method based on ShuffleNetV2 demon-
strated the poorest performance in this regard.

Furthermore, our assessment of the computational com-
plexity of these models provided valuable insights. Shuf-
fleNetV2 showcased fewer floating point operations, result-
ing in higher inference speeds. Conversely, EfficientNet-B0
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FIGURE 11. Precision-Recall curve depicting the performance of ShuffleNet V2 across different datasets employed for generalization experiments.
The curve illustrates the trade-off between precision and recall at various classification thresholds, providing insights into the model’s ability to
accurately identify genuine videos while minimizing misclassifications.

FIGURE 12. Precision-Recall curve showcasing the performance of MobileNetV2 across a range of datasets utilized for generalization experiments.
The curve delineates the relationship between precision and recall at different classification thresholds, offering insights into the model’s
effectiveness in accurately detecting genuine videos amidst potential attacks.

incurred more floating point operations, leading to the least
efficient inference speed among the three models.

These findings underscore the trade-offs inherent in
selecting a suitable architecture. While lightweight archi-
tectures like ShuffleNetV2 offer computational efficiency
and adaptability to specific domains, they may encounter
challenges with overfitting and a lack of generalization
to unseen scenarios. On the other hand, slightly larger
architectures such as EfficientNet-B0 may introduce higher
computational complexity but demonstrate superior perfor-
mance in handling diverse and unseen scenarios.

Ultimately, the choice of model for a given application
hinges on considerations related to hardware and software

resources, as well as the specific requirements and constraints
of the target deployment environment.

The proposed approach based on EfficientNet-B0 for video
replay spoof detection in phygital games holds significant
industrial relevance due to its combination of accuracy,
efficiency, and adaptability. Firstly, EfficientNet-B0’s ability
to achieve high accuracy in detecting video replay spoof
attacks enhances the security and integrity of phygital gaming
environments. By accurately distinguishing between genuine
player actions and fraudulent attempts, the approach ensures a
fair and authentic gaming experience for users, mitigating the
risk of cheating or manipulation. Secondly, the efficiency of
EfficientNet-B0makes it suitable for real-time deployment in
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FIGURE 13. Precision-Recall curve presenting the performance of EfficientNet-B0 across diverse datasets employed for generalization experiments.
The curve highlights the balance between precision and recall at varying classification thresholds, providing an indication of the model’s ability to
precisely identify genuine videos while minimizing false positives and false negatives.

FIGURE 14. Illustrative instances where model limitations arise: Left - Glasses causing misclassification due to reflections.
Middle - Reflections on device screens challenging classification. Right - Misinterpreting wooden beams as display bezels.
These insights emphasize the need for context-specific model adjustments.

industrial applications. Its optimized architecture minimizes
computational resources while maintaining robust perfor-
mance, enabling seamless integration into existing phygital
gaming systems without imposing significant overhead on
hardware or infrastructure.

Moreover, the adaptability of EfficientNet-B0 allows
for scalability and customization to accommodate diverse
gaming scenarios and environments. Whether deployed in
mobile applications or embeddedwithin gaming consoles, the

approach can be tailored to meet the specific requirements
and constraints of different platforms and use cases.

Overall, the industrial significance of the proposed
approach lies in its ability to enhance the security, fairness,
and user experience of phygital gameswhile offering efficient
and adaptable solutions that align with the demands of
modern gaming ecosystems. As the gaming industry contin-
ues to evolve and innovate, leveraging advanced techniques
like EfficientNet-B0 for video replay spoof detection is
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paramount to staying ahead of emerging threats and ensuring
the integrity of gaming experiences.

G. LIMITATIONS
While our model demonstrated excellent performance in
detecting video replay attacks during cross-validation studies,
our subsequent exploration into generalization on face
biometric recognition datasets revealed certain limitations.
In cases where a real user wearing glasses is positioned close
to the camera, our model occasionally misclassifies videos as
attacks due to the presence of specular surfaces like glasses,
which can reflect light and cause confusion (see Figure 14
(left)). However, it’s important to note that these issues
might have limited impact in the context of phygital games.
This is because the game’s rules dictate player positions
and visibility requirements, ensuring our model’s accuracy is
maintained.

Similarly, our model might encounter challenges with
videos where the device screen reflects external light,
as depicted in Figure 14 (middle). Yet, this scenario is less
relevant in the phygital games setting where gameplay logic
itself might prevent these situations.

Another limitation arises when our model misinterprets
wooden beams in the background as display bezels, classi-
fying genuine videos as replay attacks, as shown in Figure 14
(right). Addressing this limitation might involve diverse
training strategies. Furthermore, the accuracy values for the
‘‘attack with visible display bezels’’ class (Table 4) suggest
potential overfitting concerns. To tackle this, exploring varied
interpretations of display bezels during model training could
be beneficial.

VI. CONCLUSION AND FUTURE WORK
Our effort to address video-replay spoofing detection in
the context of phygital games has yielded valuable insights
and practical solutions. By designing a specific dataset
for this environment and employing a sophisticated model,
we achieved impressive accuracy in spotting video replay
attacks. Our study’s focus on the distinct challenges of
game settings, such as different camera angles, player
interactions, and varying conditions, showcases a thorough
security approach. Our innovative video-level prediction
method, based on detailed frame analysis and Moiré pattern
detection, has effectively distinguished genuine actions from
fraudulent ones. Moreover, the model’s resilience to different
lighting and player positions makes it well-suited for real-
world phygital gaming scenarios.

Nonetheless, we’ve identified certain limitations, espe-
cially with reflective surfaces, device screen reflections, and
certain visual features. These insights guide us to consider
specific enhancements for improved real-world performance.
Importantly, our method performs well on datasets sharing
the same video resolution as our training videos. However,
adapting to different resolutions may require creating new
datasets in the future. Our work advances security in the
evolving domain of phygital games while providing valuable

lessons about balancing technology and physical experience.
As this field progresses, our contributions promise safer,
more secure, and more engaging experiences, bridging the
gap between the digital and physical worlds.
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