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Abstract: In information transfer, the dissipation of a signal is of crucial importance. The feasibility of
reconstructing the distorted signal depends on the related permanent loss. Therefore, understanding
the quantized dissipative transversal mechanical waves might result in deep insights. In particular,
it may be valid on the nanoscale in the case of signal distortion, loss, or even restoration. Based
on the description of the damped quantum oscillator, we generalize the canonical quantization
procedure for the case of the transversal waves. Then, we deduce the related damped wave equation
and the state function. We point out the two possible solutions of the propagating-damping wave
equation. One involves the well-known Gaussian spreading solution superposed with the damping
oscillation, in which the loss of information is complete. The other is the Airy function solution, which
is non-spreading–propagating, so the information loss is only due to oscillation damping. However,
the structure of the wave shape remains unchanged for the latter. Consequently, this fact may allow
signal reconstruction, resulting in the capability of restoring the lost information.
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1. Introduction

Quantum-based signal propagation is the focus of information transfer today. The
correct and rigorous description of signal loss due to dissipation or the possible restoration
after the loss is a challenge in the examination. It seems obvious that if we knew the
correct formulation of the mechanism of loss, the reconstruction of the signal may be
within reach. In the present work, we investigate the quantum mechanical problem
of damped transversal wave propagation. This mechanical process, interacting with
other physical phenomena, like thermal energy [1], electric charge transfers [2,3], spin
waves, spin relaxation processes [4–7], spin wave computing [8], operation in quantum
computers [9], or quantum computation on novel solid-state qubit platforms [10–12],
may cause unexpected deviance in their realization or in signal reconstruction. Further
experimental and theoretical motivations to incorporate dissipation into quantum theories
can be found in Haken’s [13] and Haake’s [14] early works.

The desire to develop a consequent quantization procedure for the damped oscillator
dates as early as quantum mechanics itself. There are many different ideas and methods
for resolving this dissipative physical problem. The methods are based on non-conserving
subsystems (Caldirola, Kanai) [15,16], explicit time-dependent formulations (Dekker, Dit-
trich et al.) [17,18] that cause incompatibility with the uncertainty principle (Weiss) [19],
decoupled harmonic oscillators in a reservoir (Leggett, and Caldeira et al.) [20–22], or on
the further development of Caldirola’s, and Kanai’s procedure (Choi) [23]. A recent study
by Bagarello et al. [24] discusses why there are certain doubts about quantizing Bateman’s
damped oscillator description [25]. A second quantized solution is presented by Risken [26].
In this method, there is no frequency shift, and only the amplitude is damped. An even
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more recent paper, by Serhan et al. [27,28], developed a Wentzel–Kramers–Brillouin (WKB)
approximation-based quantization procedure to study the damped quantum oscillator. The
latter is an explicit time-dependent Lagrangian method resulting in an exponentially de-
creasing time-dependent wave function, but it is a standing solution in space. For quantum
dissipative systems, El-Nabulsi [29] suggested the introduction of dynamical friction in the
theory. However, the velocity-dependent term does not appear in the equation of motion,
which generates exponential time relaxation.

The Lagrangian least action principle, including dissipative processes, is at the center
of coupled quantum or classical irreversible field theoretical processes. Considering all the
above mentioned, the following necessary step towards the mathematical formulation of
quantum dissipative processes is the Lagrangian construction of the dissipative harmonic
oscillator [30]. The mathematical structure provides a consistent and non-contradictory
system for the canonical quantities, the Hamiltonian function, and through them, the evo-
lution of the physical quantities over time. The developed Lagrange–Hamilton framework
allows for the introduction of the canonical quantization of the damped oscillator. The
presented procedure is somewhat different from the usual. Nevertheless, the state equation
and its related solution for the damped oscillator are completely identical to our physical
picture [31]. If the damping is identified with a shearing effect, we can develop the physical
idea that the oscillation is part of a transversal mechanical wave. Following this line of
thought, the quantization procedure can be transferred to the canonical quantization of this
mechanical wave. As a result, the transversal wave is composed of local vertical damped
oscillation and free propagation along the horizontal direction. The internal shearing causes
the damping effect, and the generated longitudinal motion is considered dissipation-free.
The related quantization procedure provides the quantized transversal mechanical wave
equation and the wave solutions. We can distinguish two kinds of solutions. One of these
is the well-known Gaussian spreading solution [32]. The other one is the so-called Airy
beam solution [33], which relates to a rather strange propagating mode. However, there is
experimental evidence for this kind of propagation in other fields of physics [34–41]. If this
solution existed in the case of quantized mechanical waves, it could be of great importance
from the point of view of the reconstruction of distorted signals.

The mathematical model we devised contains fourth-order derivatives. It is known
that stability problems [42] and unlimitedly growing solutions to such equations can arise
in the solutions to such equations. We will make the necessary comments in the appropriate
places. Now, we only mention that there are equations with a similar structure, where
additional factors ensure the real dynamics, e.g., the Dysthe equation [43–45], which is a
fourth-order modified nonlinear Schrödinger equation for describing water waves. Like-
wise, fourth-order equations are relevant and applicable to other areas of physics [46,47].

The article is structured as follows: In the second part (Section 2), we summarize the
canonical description of the dissipative harmonic oscillator to the necessary extent. We give a
brief overview of the damped oscillator quantization method in the third part (Section 3).
Based on the results of the quantized damped oscillator, we extend the quantization procedure
for to case of the transversal mechanical wave. In the fourth part (Section 4), we establish the
related commutation rules; we calculate the Hamiltonian; then, we formulate the quantum
state equation of the damped transversal mechanical wave. We discuss the solutions to the
state equation in the fifth part (Section 5). We point out the possible Gaussian spreading
and the non-spreading Airy beam solutions. In the last part (Section 6), we summarize and
conclude the obtained results, and we present a future outlook.

2. The Canonical Description of a Damped Harmonic Oscillator

As an initial step, we need to split the transversal mechanical wave motion into
damped oscillation and free translation. This allows us to deal with the oscillation mo-
tion and the wave propagation separately. The damping of the oscillator is a physical
consequence of the internal friction; i.e., in the transversal propagation, a shear interac-
tion appears, similarly to viscosity. We assume that this shearing effect is proportional to
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the oscillation velocity, and its y-directional motion is perpendicular to the x-direction of
traveling wave propagation. The shearing force makes the oscillator’s motion dissipative.
We perform the calculations in parts. First, we examine the Lagrangian description of the
motion of the damped harmonic oscillator.

ÿ + 2λẏ + ω2y = 0, (1)

where λ [1/s] is a specific damping factor and ω [1/s] is the angular frequency of the free
oscillator. In general, the Lagrangian formulation requires the introduction of generator
potentials in the case of non-selfadjoint operators [48,49], like the first-order time deriva-
tive, here. This difficulty also appears in electrodynamics [50]. The Lagrangian frame
can only be applied through the introduction of the vector potential, which generates
the measurable fields. For this reason, we need to express the measurable quantity, y, by
the potential, q [m s2], as the definition equation shows [30]:

y = q̈ − 2λq̇ + ω2q. (2)

Then, a potential-based Lagrangian is constructed, which serves as the equation of motion.

L =
1
2

(
q̈ − 2λq̇ + ω2q

)2
. (3)

In the case of the second-order derivatives, there are two generalized coordinates and
two canonical momenta [31]. Applying the related variational calculus procedure for
higher-order derivatives—up to the second order here—in the Lagrangian [51], we must
define two generalized coordinates, and there are two coupled generalized momenta. (In
general, the order of the derivatives equals the number of generalized coordinates.) We
consider these coordinates as independent variables; by definition,

q1 := q, (4)

and
q2 := q̇. (5)

In this particular case, the conjugated momentum, p1 [m/s] to q1 [m s2], is

p1 :=
∂L
∂q̇

− d
dt

∂L
∂q̈

= 4λ2q̇ − ...
q − ω2q̇ − 2λω2q. (6)

The second momentum, p2 [m] to q2 [m s], is

p2 :=
∂L
∂q̈

= q̈ − 2λq̇ + ω2q. (7)

These double canonical pairs are of fundamental importance in further construction. In
the development of the theory, we need to formulate the Hamiltonian. (At this point, we
wish to emphasize that the Hamiltonian is not necessarily energy-like. As we will see later,
the related physical context resolves this peculiar property.) We can express H [m2] by the
introduced canonical variables as

H = p1q̇1 + p2q̇2 − L

=
1
2

p2
2 − ω2 p2q1 + p1q2 + 2λp2q2. (8)

We obtain the new coordinates, Q1 [m s] and Q2 [m], and the new momenta, P1 [kg m/s2]
and P2 [kg m/s], preserving the energy unit of Hamiltonian H′ [J] with the following
transformations:
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P2 = mωp2, (9)

Q2 = ωq2, (10)

P1 = mωp1, (11)

Q1 = ωq1, (12)

where m [kg] denotes the mass. Canonical momentum, P2 and coordinate Q2 become the
usual mechanical momentum and spatial coordinate. The transformation of the Hamilto-
nian is

H′ = mω2H. (13)

Finally, the Hamiltonian of the damped oscillator is

H′ =
1

2m
P2

2 − ω2P2Q1 + P1Q2 + 2λP2Q2. (14)

Since, the Lagrangian has no explicit time dependence, this Hamiltonian should be
constant. By applying the expressions of the coordinates in Equations (4) and (5) and
momenta in (6) and (7), the calculation of the Hamiltonian results [31] in

H = 0. (15)

Due to the proportionality of H and H′ in Equation (13) it is apparent that

H′ = 0 (16)

in Equation (14). This always ensures the conservation of the Hamiltonian. The treated
system is dissipative, so the only possibility for a constant Hamiltonian is that it needs to be
zero. Now, this is completed. In this way there, is no contradiction within the theory [31].

The fact that the value of the Hamiltonian function is zero seems particularly impor-
tant in this case. The appearance of higher-order derivatives in the Lagrange function (even
the second derivative) can lead to the so-called Ostrogradsky instability in the Hamiltoni-
ans [42,52,53]. There is a real risk of instability in dissipative processes since non-limited
solutions and oscillations may occur in the Hamiltonian functions. However, this situation
does not arise now because of the zero-valued Hamiltonian. The zero value stably and
clearly records the end result function solutions. Finally, we see that similar to Lagrangian
functions described with higher-order derivatives valid for other systems [43–45], stable,
convergent, and bounded solutions appear.

3. The Damped Oscillator Quantization Procedure

The quantization procedure of the damped oscillator is the second step in the develop-
ment of the theory. It requires a mathematical construction that differs from the usual direct
operator introduction, but in the end, we arrive at the physically relevant state equation.
Now, the task is to identify the canonical variables. If we consider the definition of the
potential in Equation (2) and the expressions of P2 and Q2 in Equations (9) and (10), we can
find the physically relevant relations as

P2 = m
dy
dt

= h̄k, Q2 = y, (17)

where k [1/m] is the wave vector and h̄ is the reduced Planck’s constant. A further compari-
son of the generalized coordinates, q1 and q2 in Equations (4) and (5), shows that there is
only a time factor between the two quantities (as between Q1 and Q2). Here, the time factor
means a division by the factor of iω. This procedure can be extended to the P2 momentum
(in this case, the time factor means a multiplication by the factor of iω); moreover, we have a
negative sign from the comparison of momenta p1 and p2 in Equations (6) and (7). Finally,
we obtain the other canonical pair as
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P1 = −ih̄kω, Q1 = −i
y
ω

. (18)

To achieve the operator formulations, we need to transform the variables from the
Fourier space to the real space, i.e., we take the relations

∂

∂y
= ik,

∂

∂t
= −iω,

∫
... dt = i

1
ω

, ky −→ −i. (19)

We remark that the sign difference between the space and time Fourier transform comes
from the generally used exp[i(ky − ωt)] formulation. The Fourier transform of an integral
is F (

∫ t
−∞ f (t)dt) = i 1

ω f̂ + π f̂ (0)δ(−ω). The multiplying factor i 1
ω in the first term on

the right-hand side will appear in further calculations. We will identify it as the related
operator for the Fourier transform of a time integral. Moreover, we neglect the second
term, assuming that f̂ (ω = 0) = 0, i.e., we consider the ω = 0 case as physically negligible.
Finally, the terms of the Hamiltonian can be formulated in the operator calculus.

P2
2 = −h̄2 ∂2

∂y2 , (20)

−ω2P2Q1 =
1
2

mω2y2, (21)

P1Q2 = −ih̄
∂

∂t
, (22)

2λP2Q2 = −2λih̄. (23)

The detailed calculations can be found in Ref. [31]. We substitute these expressions in
the Hamiltonian. Furthermore, we take into account that the Hamiltonian is zero; thus, we
obtain the following differential equation:

0 = − h̄2

2m
∂2ψ

∂y2 +
1
2

mω2y2ψ − ih̄
∂ψ

∂t
− 2λih̄ψ, (24)

which is the state equation of the quantum damped oscillator. The first three terms pertain
to the non-damped quantum oscillator, and the fourth term produces the damping through
this, the so-called complex quantum potential [54–57]. In the next step, we can extend our
study towards transversal waves.

4. Quantization of Damped Transversal Mechanical Waves

A transversal wave is the motion in oscillating mode along the x-axis without displace-
ment in this direction. However, momentum and energy transfer have crucial importance.
We can extend the above method for damped transversal waves and apply the quantiza-
tion formulation to obtain the relevant field equation. We arrive at the state equation of
the quantized damped wave by identifying the canonical momenta in Hamiltonian H′ in
Equation (14). Due to the transversal wave motion, the direction of wave propagation is
along the x-axis, and the displacement, in the direction of y. The canonical pair (P2, Q2)
relates to two-dimensional variables: (P2x, P2y) and (Q2x, Q2y). The relevant forms come
from Equations (9) and (10). The damped oscillator’s motion is in the y-direction; thus, the
transformed, conjugated pair of spatial coordinate y is, as usual,

P2y

(
= mvy = m

dy
dt

=

)
= h̄ky, Q2y = y. (25)

However, despite the free wave propagation in the x-direction, there is no actual displacement
in this direction. We consider that this torsion effect causes a contribution to longitudinal
mechanical momentum P2x. Thus, we may obtain the related canonical variables as
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P2x

(
= mvx = m

dx
dt

=

)
= h̄kx, Q2x = x = 0. (26)

The other canonical pair is (P1, Q1). The construction of momentum P1 = (P1x, P1y) and
coordinate Q1 = (Q1x, Q1y) is based on Equations (11) and (12) and a comparison with
momentum P2 and coordinate Q2 in Equations (25) and (26). The appearing time factor in
Equations (11) and (12) can be associated with Fourier-transformed pairs, i.e.,

P1y = −ih̄kyω, Q1y = −i
y
ω

, (27)

and
P1x = −ih̄kxω, Q1x = −i

x
ω

= 0. (28)

Similar to the previous discussion on (P2, Q2), the canonical pair in Equation (27)
is exactly equal to the oscillator. The second pair in Equation (28) means that there is
momentum transfer without effective displacement. To introduce the operator calculus, we
need the relevant Fourier transforms.

∂

∂y
= iky,

∂

∂x
= ikx,

∂

∂t
= −iω,

∫
... dt = i

1
ω

, kyy −→ −i. (29)

Considering these relations, we can introduce the operator calculus as we did in
the case of the damped oscillator. We can calculate the commutation rules of these op-
erators to complete the theory. We may expect that these are in line with the generally
known relations.

4.1. Commutation Rules

By applying the Fourier formulations mentioned above, we obtain the following
commutation rules: [

P2y, Q2y
]
= −ih̄, [P2x, Q2x] = 0. (30)[

P1y, Q1y
]
= ih̄, [P1x, Q1x] = 0, (31)[

P2y, Q1y
]
= 0, [P2x, Q1x] = 0, (32)[

P1y, Q2y
]
= 0, [P1x, Q2x] = 0. (33)

Please note that the structure of the brackets reflects the usual trend. It has an unambiguous
meaning for us in later use. We do not obtain contradictions on this level in the case of
different field couplings.

4.2. Calculating the Terms of the Hamiltonian

The following step is replacing the Fourier-calculated expressions with the relevant
operators. In this way, by applying the rules above, in Equation (14), the terms of the
Hamiltonian can be expressed in the operator formulation. The calculation of P2y and its
square, P2

2y, comes from Equation (25) and from the first term in Equation (29). Similarly, we
obtain P2x and its square, P2

2x, from Equation (26) and from the second term in Equation (29).
Finally, we obtain the components of momentum P2 and their squares as

P2y = h̄k = −ih̄
∂

∂y
−→ P2

2y = −h̄2 ∂2

∂y2 , (34)

P2x = h̄k = −ih̄
∂

∂x
−→ P2

2x = −h̄2 ∂2

∂x2 . (35)

Summarizing these results, we can calculate the terms of the Hamiltonian. The first term is
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P2
2 = −h̄2 ∂2

∂y2 − h̄2 ∂2

∂x2 . (36)

The second term includes the sum of P2Q1 = P2yQ1y + P2xQ1x quadratic products. Now,
we consider P2 from Equations (25) and (26), as well as Q1 from Equations (27) and (28).
Here, we must take into account that Q1x = 0. Finally, we apply the fourth Fourier
transform to Equation (29). The deduction steps of the second term are

P2Q1 = P2yQ1y = −ih̄k
y
ω

= − i
ω︸︷︷︸

−
∫

... dt

h̄k︸︷︷︸
mvy

y = −
∫

my
dy
dt

dt = −1
2

my2. (37)

We can recognize that only the vertical displacement has a contribution to the mo-
tion. The third term of the Hamiltonian is P1Q2 = P1yQ2y + P1xQ2x. We take P1 from
Equations (27) and (28) and the components of Q2 from Equations (25) and (26) with the
restriction of Q2x = 0. By applying the third and fifth Fourier transforms, we obtain

P1Q2 = P1yQ2y = −ih̄kωy = −ih̄ ky︸︷︷︸
−i

ω︸︷︷︸
i ∂

∂t

= −ih̄
∂

∂t
. (38)

In the next step, we focus on the fourth term of the Hamiltonian, P2Q2. The neces-
sary formulations come from Equations (25) and (26), and we take into account the fifth
Fourier transform.

P2Q2 = P2yQ2y + P2xQ2x = h̄ky = h̄ ky︸︷︷︸
−i

= −ih̄. (39)

Lastly, we obtain the last term of the Hamiltonian as

2λP2Q2 = −2λih̄. (40)

With this, we associate all terms of the Hamiltonian function with operators, and we
are ready to deduce the target damped wave’s state equation.

4.3. State Equation of Damped Traveling Quantum Waves

First, we turn back to the examination of the Hamiltonian. We saw that the deduced
Hamiltonian, H′, in Equation (14) must be zero as is in Equation (16). We substitute the
above-calculated expressions, and we introduce the state wave function, ψ(x, y, t). This
function involves all of the information about the physical process and the operators that
ensure its temporal and spatial evolution. By summarizing the results detailed above, we
arrive at the quantized state equation of the damped traveling mechanical wave of a large
number of degrees of freedom.

0 = ︸ ︷︷ ︸
frictionless quantum oscillator

− h̄2

2m
∂2ψ

∂y2 +
1
2

mω2y2ψ

free motion︷ ︸︸ ︷
−ih̄

∂ψ

∂t
− h̄2

2m
∂2ψ

∂x2 −2λih̄ψ︸ ︷︷ ︸
damping

. (41)

The essential effect of the zero-valued Hamiltonian can be inferred from the equation.
The mass appearing here is the mass per unit length of the continuum. The first three terms
pertain to the frictionless oscillator’s motion. The third and fourth terms have a role in the
traveling along the x-axis. This is a quantum state equation, in which the non-Hermitian
fifth term generates dissipation in the system. As we will show, the damping is not restricted
to the oscillation. The attenuation effect also appears in the entire transversal propagation.
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The state equation in Equation (41) (similarly to Equation (24)) belongs to the family
of complex quantum potentials [54–57].

Although the presented procedure is unusual in mathematical terms, it follows the
Lagrange method based on the principle of least action. The deviation from classical motion
is of the order of h̄, and the commutation relations remain valid. Thus, in its methodological
principles, the canonical quantization of transverse mechanical waves is complete. The
derived state equation is expanded with a term containing damping. Furthermore, this
term fits into the theory of complex quantum potentials. That is why we have to face the
problems of interpretation that have already been identified in the field [54–57].

In the next section, we show the solutions to Equation (41). It will be visible that the
dissipative part appears in an exponentially decreasing factor over time.

5. Oscillating–Traveling Damped Wave Packet

We can divide the steps of the solution to the dissipative state equation into two parts.
The oscillation and the traveling motion can be handled independently in a way. In the
first subsection, we write the solution for the damped oscillator referring to published
results [31]. The second and third subsections treat the two kinds of possibilities for the
traveling solutions. One of these is the well-known Gaussian spreading solution, in the
second subsection. The other one, the so-called Airy beam (wave train), is described in
detail in the third subsection. It is also a solution to the state equation of free motion. This
solution is non-spreading, which indicates a stable structure of the wave profile.

5.1. The Damped–Oscillating Part

In recent decades, the state function of the harmonic oscillator has achieved a satis-
factory form. After extensive development of the theory, Razi and Naqvi [58] calculated
the shape-dependent solution for the non-damped quantum harmonic oscillator. Recently,
by applying the potential-based canonical quantization procedure [31], we obtained the
damped oscillator wave packet (the particular solution to the “frictionless quantum oscilla-
tor” + “damped” parts in Equation (41)).

ρ(y, t) = |Ψ(y, t)|2 =
1

σy(t)
√

2
exp

{
− [y − y0 cos(ωt)]2

2σ2
y (y, t)

}
× exp(−4λt), (42)

where
σ2

y (y, t) =
h̄

2γmω

[
cos2(ωt) + γ2 sin2(ωt)

]
(43)

We see from the exp(−4λt) factor that the oscillator’s damping indicates dissipa-
tion, which makes the process irreversible. This oscillation is superposed on traveling
propagation. The traveling wave solution pertains to the free-motion part of Equation (41).

5.2. The Gaussian Spreading Solution for the Free-Propagation Part

The equation of the freely propagating state—the over-braced part (“free motion”) in
Equation (41)—is

0 = −ih̄
∂ψ

∂t
− h̄2

2m
∂2ψ

∂x2 . (44)

Its solution is a packet with velocity vx, along the x-direction,

ψG(x, t) =
(4/π)1/4√

a + i 4h̄
ma t

exp

(
−2(x − vxt)2

a2 + i 4h̄
m t

)
, (45)

where the normalized Gaussian initial state function is

ψG(x, 0) =
(4/π)1/4

√
a

exp
(
−2x2

a2

)
. (46)
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Thus, the traveling wave packet contribution to the motion is

ζ(x, t) = |Ψ(x, t)|2 =
(4/π)1/2√
a2 + 16h̄2

m2a2 t2
× exp

−4(x − vxt)2

a2 + 16h̄2

m2a2 t2

. (47)

Finally, we can build up the state function of the quantized damped mechanical wave
in Equation (48). The damping effect relates to the shearing effect in the direction of y.
During free propagation, the spreading motion of the wave packet appears. Multiplying
the functions in Equations (42) and (47), the obtained product, |Ψ(y, x, t)|2 = ρ(y, t)ζ(x, t),
formulates the intensity (I) of the state function, a special scalar field that pertains to the
quantized wave propagation.

I ∼ |Ψ(y, x, t)|2 =
1

σy(t)
√

2
exp

{
− [y − y0 cos(ωt)]2

2σ2
y (y, t)

}
× exp(−4λt)

× (4/π)1/2√
a2 + 16h̄2

m2a2 t2
× exp

−4(x − vxt)2

a2 + 16h̄2

m2a2 t2

. (48)

There is only one kind of damping in the motion related to the exp(−4λt) factor. Now,
we can recognize the previously mentioned situation where the damping was part of the
entire solution. We neither need to nor can distinguish the damping into the damping of
oscillation or traveling. The spreading-out motion and the damping effect together lead
to the total loss of the original waveform. Consequently, we cannot recover the initial
physical state.

5.3. Airy Non-Spreading Solution for the Free-Propagation Part

Nonetheless, mathematically, there is another possible solution to the state equation in
Equation (44). Berry and Balazs [59] showed that there is an Airy wave train solution to
the equation, which describes diffraction-free, freely accelerating propagation over long
distances in the x-direction.

ψAi(x, t) = Ai
[

B
h̄2/3

(
x − B3t2

4m2

)]
exp

[
iB3t
2mh̄

(
x − B2t3

6m2

)]
, (49)

where Ai denotes the Airy function. At first, it seems to be only an alternative mathematical
solution without further physical meaning. Without a doubt, when plotting the graph,
we see a strange function. Despite its peculiar property, we do not need to exclude it
without any discussion. Moreover, Siviloglou et al. reported the first observation of the
Airy beam [34,35] in a beam reflection from the front facet of a computer-controlled liquid
crystal spatial light modulator. Since then, there have been significant experimental proof
of the existence of the Airy train in mainly optical experiments [36–41]. These experiments
do not directly prove that the analogy can be simply transferred to the present case. At
the same time, we see that it is a naturally occurring phenomenon. Consequently, at the
moment, we cannot properly verify it for the actual process, but we cannot rule it out either.
We accept the Airy beam mathematical solution as an alternative wave function. Here, we
remark that this solution may exist together with the Gaussian spreading solution. Finally,
the superposition of these two solutions may describe the physical motion.

By using this, let us formulate the Airy beam-related intensity (I) of the dissipative
state equation in Equation (41) as

I ∼ |Ψ(y, x, t)|2 =
1

σy(t)
√

2
exp

{
− [y − y0 cos(ωt)]2

2σ2
y (y, t)

}
× exp(−4λt)

× Ai2
[

B
h̄2/3

(
x − B3t2

4m2

)]
. (50)
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The Airy propagating oscillation is damped, but there is no spreading; it remains
diffraction-free. Despite the amplitude decrease during propagation, the signal can be
easily reconstructed. These statements are not the same as saying that the wave remains
coherent. It means that it can be recognized in its attenuated form, at least for a while, and
we can trace it back to the original shape. It seems a promising opportunity in the fields of
information storage and transfer. We follow the propagating waves in Figures 1–4. (The
applied parameters are (in dimensionless units): B = 0.9; h = 1; m = 1; γ = 0.75; ω = 1.5;
λ = 0.06.) The non-damped propagation is visible from two different views. The typical
Airy beam can be identified from the front view in Figure 1. As it can be recognized, the
shape (the structure) of the beam is preserved during the time evolution. The oscillation
of the beam (train wave) can be seen from the face view in Figure 2. In this case, due to
covering, we see only the first element of the beam. The wavefront is coming towards us.
The elapsed time is shown on the vertical axis.

Figure 1. Non-damped oscillating−traveling Airy wave, front view. The translational propagation is
in the x−direction (from left to right); the oscillation is along the y−axis (on the x − y plane). The
third coordinate is the time scale, t. The same color pertains to the same moment in time.

Figure 2. Non-damped oscillating−traveling Airy wave, side view. The translational propagation is
coming towards us; the oscillation is along the y−axis (on the x − y plane). The third coordinate is
the time scale, t. The same color pertains to the same moment in time.
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The damping of the Airy wave packet is observable from the thinner wave components.
However, there is no spreading-out motion, as Figures 3 (front view) and 4 (side view)
show. We can continuously identify the remaining structure of the beam. It means that the
involved information is always recognizable during the transfer. The damping itself is not
equal to the total information loss. We can amplify the attenuating amplitude to its original
value. Finally, it seems we can recover the initial information or, at least, recognize it. As
we mentioned previously, the presented transverse wave is a superposition of two damped
propagation modes. Moreover, since the Gaussian solution is also a part of Equation (41),
their combination gives a physically realistic movement.

Figure 3. Damped oscillating−traveling Airy wave, front view. The translational propagation is in
the x−direction (from left to right); the oscillation is along the y−axis (on the x − y plane). The third
coordinate is the time scale, t. The same color pertains to the same moment in time. The dissipation
(information loss) can be recognized from the narrowing of the beam’s cross-section (from the bottom
to the top).

Figure 4. Damped oscillating−traveling Airy wave, side view. The translational propagation is
coming towards us; the oscillation is along the y−axis (on the x − y plane). The third coordinate is
the time scale, t. The same color pertains to the same moment in time. The damping of the oscillation
can be recognized well from the narrowing of the beam’s cross-section (from the bottom to the top).
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The signal reconstruction is of fundamental importance in information transfer. In
spin relaxation-based processes, the Loschmidt echo [6,7] seems promising in restoring the
original signal. This is a process in which the initial state is recoverable quite well. Hopefully,
by combining it with the presented ideas, the loss in information can be decreased, and state
recovery can be achieved effectively. It is a great challenge for the future.

Countless open questions remain regarding damped quantum mechanical wave states
and signal reconstruction. Nevertheless, there are similar efforts in the literature regarding
the minimization of transmission loss and channel instability [60,61].

6. Conclusions

The application of the potential-based canonical quantization procedure can be ex-
tended to damped transversal mechanical waves. We show that the structure of the
canonical variables, momenta, and coordinates is flexible enough to separate the oscil-
lating (P1y, P2y, Q1y, Q2y) and the propagating (P1x, P2x, Q1x, Q2x) motions. Via the Fourier-
transformed canonical quantities, we achieve the operator calculus. Finally, the particular
property of the Hamiltonian, namely, its zero value, enables us to formulate the related
damped transversal wave equation. (Since, in our method, the Lagrangian does not depend
on time explicitly, the Hamiltonian must be constant. In the case of dissipative processes,
this requirement does not seem to be evident. However, the zero-valued property of the
Hamiltonian ensures this requirement and also helps to avoid the unlimited and unstable
solutions.) The obtained state equation describes the damping in such a way that it pertains
to the oscillator and the transversal motion in the same interaction. It reflects the physically
relevant situation where there is only one damping effect on the propagation. The solution
to the state equation can be expressed as the product of the quantum oscillator (relating
to the path integral method with the shape-changing formation), the transversal motion
(Gaussian or Airy), and the exponentially time-decreasing factor. We show that there are
two possibilities for the transversal solutions. (1) One of these is the Gaussian solution,
where the signal is spreading; together with the damping, the carried information tends to
zero over time. The damping indicates such a loss in the signal that restoration is impossible
in this scenario. (2) The other possibility is the Airy wave train (beam). This solution is
non-spreading, diffraction-free, and shape-preserving, despite the damping. The amplitude
of the signal is decreasing. However, the original signal content might be recovered through
a non-linear amplifying process. The process of amplification does not have to affect the
structure of the signal. The discussed wave propagation mode is promising for long-range
quantum signal transfer. It is an open question of how to apply the presented method
for other types of transfer, like spin waves, charge/spin density waves, and other related
transfers. This research may be necessary for information technology applications.
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