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Abstract: Due to the short range of pure electric vehicles, considering a long trip, the number 
and the locations of electric charging stations, especially the distance between consecutive 
charging stations, is a basic question, because the discharged battery must be recharged 
quite frequently. Today, the network of electric charging stations is unsatisfactory. During 
the construction of new and expansion of existing networks, the load of roads and the 
utilization of existing or imagined charging stations must be taken into account. For the 
estimation of these features, a perfect mathematical tool, is the theory of absorbing Markov-
chains. In this article a possible mathematical model, using Markov-chains, extended by the 
logit regression model will be presented. 
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1 Introduction 
The long-distance route for an electric vehicle requires lots of possibilities for 
recharging its battery, because, considering recent technology, the range of an 
electric car is not satisfactory for long-distance transport. The battery must be 
recharged frequently, therefore along roads, for example at road junctions lots of 
new charging stations must be built. The location, the number, the density, and the 
capacity of these charging stations are basic questions, because on the one hand, 
there is an expectation from the perspective of the drivers, on the other hand 
providing charging service for vehicles is a business enterprise for providers. These 
characteristic values and the utilization of charging stations strongly depend on the 
load of road sections in a road network. 
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In this article a mathematical model will be proposed, that can be applied to 
estimating the above-mentioned characteristic values. The point is, that this problem 
can be characterized by probabilities since in this process there are lots of random 
variables, for example, how does a driver select a new road section at a road 
junction, how many charging stations must be used for reaching the destination, etc. 

Two mathematical tools, will be presented for examining the above-mentioned 
problem. On one hand, the logistic regression/decision-making model will be 
applied for giving probabilities that are associated with the road sections and on the 
other hand, it will be proven, that for estimating some fundamental quantity, the 
theory of absorbing Markov-chains can be used efficiently. 

In the litarature several concepts can be found related this question. First, this 
problem is considered as an optimization problem [1] [2]. For optimization authors 
propose for example the very efficient genetic algorithm. Second, several other 
perspectives can be emphasized, like topography of the road network, and the 
battery lifetime [3]. Modelling the traffic of vehicles by graphs is commonly applied 
tool in the litarture [4-6]. And finally, the probabilistic point of view is also arises, 
the Monte-Carlo simulation process can be a possible mathematical tool too [7]. 

In this paper the author proposes a different procedure for modelling the traffic. 
Instead of handling it as an optimization problem a probabilistic model is presented, 
which is based on the very efficient and widely applied theory of Markov-process, 
that is combined with a probabilistic model. The advantage of this procedure is that 
the Markov chain is basicly independent to the specific probabilistic model. In the 
article one probabilistic approach is presented but any other method can be chosen 
by the user, it doesn’t affect the structure of the Markov process. Furthermore this 
method requires a small amount of calculations, even if the network is great, only 
powers of matrices and some eigenvectors must be determined. 

The rest of the paper is organised as follows: In Section 2, a simple example is 
examined, illustrating basic problems and challenges, in Section 3, one possible 
probabilistic model is proposed for choosing road sections, in Sections 4-6, the 
proposed application of the theory of absorbing Markov-chains is demonstrated, in 
these sections the construction procedure of Markov matrices and numerical results 
also can be found. In Section 7, the proposed algorithm is applied for a more general 
road network which has more terminal points. Finally, in Section 8, conclusions are 
summarized. 

2 A Case Study 
As an introduction, the road network, depicted in figure 1. will be studied in detail. 
As it can be seen, there is one initial point, node {1}, and one terminal 
point/destination, which is node {6}. This graph illustrates the road network by 
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edges, which can be considered as road sections, and nodes that illustrate road 
junctions. This graph is called transition diagram in the theory of Markov-chains. 
Charging stations can be at road junctions, or along any road sections. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
Transition diagram: The graph of a road network, with edges between nodes {j} → {i} that are 

possible routes, the cost of the road sections (Cji) and transition probabilities (pij) 

The point is that at some nodes in this example at nodes {2}, {3} and {4}, there is 
more than one possibility for the further route, the driver has to select one following 
road section, by some probability, therefore, from the initial point {1} to destination 
{6} there are several possibilities for choosing a route. The list below gives every 
possible route: 

R1: {1} → {2} → {4} → {6} 

R2: {1} → {2} → {5} → {6} 

R3: {1} → {3} → {5} → {6} 

R4: {1} → {2} → {4} → {5} → {6} 

R5: {1} → {3} → {2} → {4} → {6} 

R6: {1} → {3} → {2} → {5} → {6} 

R7: {1} → {3} → {2} → {4} → {5} → {6} 

Considering the choice of possible routes, several questions arise. Since a 
probability model will be presented, the most important and basic problem is the 
probability that can be attached to one specific route, if at one node in the road 
network, there is a possibility for choosing a further road section, because it is a 
fundamental decision-making process for the driver. In other words, if from the 
node {j} there is a direct route to node {i}, these are consecutive nodes in the 
network, then the transition probability pij must be determined by a plausible and 
reasonable method. 

C32; p23 {6} 

C12; p21 

C13; p31 

 {1} 

{4} 

{3} {5} 

… 
 {2} 
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In the following section, it will be demonstrated in detail, that the first reasonable 
assumption is that this transition probability depends on the "cost" of the road 
section, which is denoted by Cji költségtől. Several different definitions can be given 
for this "cost" it depends on expectations, demands, drivers, etc. In this article, we 
assume that the cost Cji is proportional to the time that is required for the travel 
along the road {j} → {i}, but instead of time that quantity could be the fuel 
consumption too. If the length of the road section is Sji, then the cost of the road 
section can be defined by the following formula 

ji
ji

S
C T

v
= +                  (1) 

where v is the average velocity of the vehicle considering the whole route, and T is 
the average charging time of the accumulator. This quantity is naturally taken into 
account only in nodes {2,3,4,5} and we assume that at node {1} the vehicle starts 
with a fully charged battery. This cost must be used if the probability of the choice 
of the road section is determined. The cost is the basis of the definition of the 
probability distribution which is defined by the logistic decision-making model. 
This model will be presented in Section 2 in detail. 

3 The Logistic Model of Transition Probabilities 
The logistic probability model [8] [9] first of all defines the ratio of two 
probabilities, the quantity that is called "odds", and not the probability itself. This 
model is widely used in decision-making processes, like the process that is being 
studied in this article. This model can also be used for giving a probability 
distribution, the method is as follows. 

First of all assume, that there are only two choices. The probability of choosing 
option one is p, and naturally in this case the probability of option two is 1 – p. 
According to the logistic model, the natural logarithm of the ratio of these 
probabilities "the odds", are approximated by a first-order polynomial by the 
following formula: 

( )ln :
1

p a bx x
p

 
= + = β − 

               (2) 

where x can be an "explanatory variable" in a linear regression model. This 
definition is the reason for the "logistic regression" name. For simplicity, we 
introduce a notation β for the right-hand side, which is, by assumption, a linear 
function of the cost, defined in formula (1). Solving this equation for p, the 
following probability distribution is obtained for the two option case 
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( ) 1; 1 ;
1 1

ep p p
e e

β

β β= β = − =
+ +

              (3) 

Thanks to the shape of the graph of the function defined by (3) the obtained curve 
is called a sigmoid curve (Figure 2). 

 
Figure 2 

The graph of the function defined by (3), the "sigmoid curve" 

The obvious and clear advantage of the application of formula (3) is that 
independent of the value of β, the codomain of the function is always the interval 
[0,1] therefore, for any β the value of the function can be considered as a probability. 

In practice, in real life generally, there are not only two options for choice but more 
than two. Consequently, the probability distribution that is defined by formula (3) 
must be given in a more general form. Assume that there are K options, and one 
option must be selected. The question is, how can be modified the previously 
presented simple procedure? 

The process is the following [8]. One specific option is chosen as a reference, it can 
be any, for example, let it be the choice K, and every odds is defined as a ratio of 
option pr and pK, for every possible r = 1, 2, 3,..., K – 1, similarly to (2): 

1 2 1
1 2 1ln ; ln ; .... ln ;K

K
K K K

p p p
p p p

−
−

     
= β = β = β     

     
              (4) 

from which it follows that, 

1 2 1
1 2 1; ; .... ;K

K K K Kp p e p p e p p e −β β β
−= = =               (5) 

and naturally, 
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1 1 1

1 1 1
1 1 1 ;r r

K K K

K r K K
r r r

p p p e p e
− − −

β β

= = =

= − = − = −∑ ∑ ∑               (6) 

from where by some rearrangement, the following probability distribution is 
obtained, 

1 1

1 1

1 ; ; 1,2,..., 1.
1 1

k

r r

K kK K

r r

ep p k K
e e

β

− −
β β

= =

= = = −

+ +∑ ∑
              (7) 

Formula (7) defines the probability distribution of a decision-making process for K 
options. The only disadvantage of this result is that the distribution in this form 
seems pretty strange because for option K it provides a different formula as if option 
K would be specific. Since in general there is no discrimination between options, 
giving this distribution in a symmetric form would be expedient. Using a linear 
parameter transformation, the distribution can be modified. Introducing parameters 
γr according to formulas as follows: 

; 1,2,..., 1; 0;r r K K K Kr Kβ = γ − γ = − β = γ − γ =               (8) 

instead of parameters βr the distribution can be given using "new" parameters. On 
the one hand 

1 1 1

1 1 1

1

1 1

1 1 1

; 1,2,..., 1.

k k K kK

r r K K r

k k

K r r

k K K K

r r r

K K

r r

e e e ep
e e e e

e e k K
e e e

β γ −γ γ−γ

− − −
β γ −γ −γ γ

= = =
γ γ

−
γ γ γ

= =

= = = =

+ + +

= = = −

+

∑ ∑ ∑

∑ ∑

               (9) 

and on the other hand, 

1 1 1

1 1 1

1

1 1

1 1 1

1 1 1

;

r r K K r

K K

K r r

K K K K

r r r

K K

r r

p
e e e e

e e

e e e

− − −
β γ −γ −γ γ

= = =
γ γ

−
γ γ γ
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= =

+

∑ ∑ ∑

∑ ∑

            (10) 
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Consequently, a symmetric form of the probability distribution in a decision-
making model is obtained for K choices, according to the logistic probability model. 
Summarizing results, the distribution is as follows 

1

; 1,2,..., .
k

r

k K

r

ep k K
e

γ

γ

=

= =

∑
            (11) 

This distribution will be applied when the traffic of electric vehicles will be 
examined. Naturally, the basic question is the definition of parameters γr.  
A plausible and reasonable definition can be the following 

; 1,2,..., .r rC r Kγ = − =             (12) 

where Cr is the cost of route r. Using this definition, the probability distribution for 
the problem, that is being examined in this article, is the following [8] [9]: 

1

; 1,2,..., .
k

r

C

k K
C

r

ep k K
e

−

−

=

= =

∑
            (13) 

The obvious benefit of the application of this model is that thanks to the negative 
exponent, the exponential function is strictly decreasing, the probability of the 
choice of "expensive" routes is highly, "exponentially" reduced, and conversely, the 
probability of the choice of "cheap" routes are highlighted, emphasizing the chance 
of inexpensive road sections. In the following section, this probability model will 
be used for modeling the traffic using Markov-chains. 

4 Modelling the Traffic by Markov-Chains 
Considering the road network, depicted in Figure 1, basically two problems must 
be examined. The first and basic question is the probability of the event that a 
vehicle is at one specific node (road junction). In mathematics, in the theory of 
Markov-chains these are "states" (pi, i = 1,2,...,6). These probabilities that form a 
discrete distribution are usually summarized in a state vector 

( ) ( ) ( ) ( ) ( ) ( )
51 2 3 4 6, , , , , ; 0,1,2,...

Tn n n n n n
n p p p p p p n = =  

π             (14) 

The notation "π" is commonly used in the theory. The superscript n refers to the 
fact, that in every junction/node, there is a challenge for the driver, a new road 
section must be selected, and after every step, the probability distribution changes. 
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In formula (14) N highlights that the given distribution is valid after n steps. Finally 
T superscript stands for the transpose of the vector because the vector must be a 
column vector. 

The initial state vector, the initial probability distribution in case, depicted in Figure 
1. is obviously the following: 

[ ]0 1,0,0,0,0,0 ;T=π             (15) 

The second fundamental question is the probability of the choice of the route {j} → 
{i} which is pij if {j} and {i} are consecutive nodes along the rote in this order. 
Considering the order of subscripts, the explanation of the notation is the following. 
This probability,  pij is a conditional probability, the probability of the event that the 
vehicle is at the node {i}, using the language of the theory of Markov-chains [10-
13], it is in the state {i} now, assuming that its previous state was the node {j}. This 
probability, which is called transition probability, is denoted by the symbol P(i | j) 
in probability theory, for which the notation pij is only a simplification. 

The matrix, that contains every transition probability for the road network, depicted 
in Figure 1., which is called the "transition probability matrix" [10, 13], is the 
following: 
 
 

21 23

31

42

52 53 54

64

0 0 0 0 0 0
0 0 0 0
0 0 0 0 0

;
0 0 0 0 0
0 0 0
0 0 0 1 1

p p
p

p
p p p

p

 
 
 
 

=  
 
 
 
  

A            (16) 

Considering the structure of the matrix the role of rows and columns must be 
clarified. Column (j) is the former state the "old" node/junction/position of the 
vehicle, where the vehicle comes from, and row (i) is the latter state, the "new" 
node/junction/position where the vehicle goes to. Every transition probability pij is 
obviously zero if there is no immediate connection between junctions {j} and {i}, 
in other words, there is no edge in the graph between nodes {j} and {i}. 
Furthermore, it is also obvious that  p65 = 1 since from state {5} there is only one 
route to state {6}, there is no possibility for choice between nodes {5} and {6}, 
therefore, the probability of selecting route {5} → {6} is 1. Finally, since the goal 
is reaching node {6} the vehicle remains in this state by probability p66 = 1. This 
state plays a particular role because this state can be accessed from every other state, 
but from this state, no other nodes can be accessed. If a vehicle reaches this state it 
remains in that state. This kind of state is called an "absorbing state". It must be 
emphasized that despite that p65 = 1 state {5} is not absorbing, because there is a 

          From 

 to 
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transition from the state {5} to state {6}. According to this observation, the 
examined stochastic process is an absorbing Markov-chain. The commonly applied 
partition [11] [12] can be seen in the transition probability matrix (16). 

The matrix A, defined by the formula (16) is a column-stochastic Markov-matrix, 
which means that the sum of entries in every column sum up to one 

6

1
1; 1,2,...,6.ij

i
p j

=

= =∑            (17) 

According to the theory of Markov-chains [10-13], the state vectors after some steps 
can be calculated by the following matrix-vector products 

2 3
1 0 2 1 0 3 2 0 1 0; ; ;....; ;....n

n n−= = = = = = =π Aπ π Aπ A π π Aπ A π π Aπ A π          (18) 

Considering (18) it is clear, that state vectors basically depend on transition 
probabilities. Our goal in the following section, using the logistic probability model 
presented in section 2., determining transition probabilities so that answers can be 
given to the questions asked in the introduction. 

(In some literature the role of rows and columns are interchanged in the matrix (16). 
In this case, the state vector (14) must be a row vector, the state transition matrix is 
row-stochastic and multiplications in (18) are in the opposite order 1n n−=π π A , 
etc. We use the above-given definition and consequences exclusively in this article.) 

5 Determination of Transition Probabilities 
In this section transition probabilities will be calculated [1] [2], which are entries of 
matrix A in (16), using the logistic decision-making model presented in Section 2, 
for the road network, illustrated in Figure 1. Probabilities will be calculated using 
the formula (13) for every node, considering reasonable modifications. The most 
important consequence of Section 2. is that for a route {j} → {i} the transition 
probability is proportional to exp(–Cij), so the only remaining problem is finding the 
normalizing factor such that (17) would be fulfilled. If the question is the transition 
probability pij from the state {j} to state {i} then the answer will be the following: 

6

6

6

6

;

R
i

iji
R
j

j

C

RC
ij C

R

e

p e
e

−

∈Ω−

−

∈Ω

=
∑

∑
          (19) 

where Ωi6 denotes the set of every possible route from the state {i} to state {6}. 
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Simply to say, the transition probability is computed by multiplying the exponential 
factor by a normalization factor. This normalization factor is simply a ratio of the 
sum of weight factors considering every route from the node {i} to the node {6} 
and the sum of weight factors considering every route from the node {j} to node 
{6}. It will be clear, that these probabilities form a discrete distribution in every 
column. 

Illustrating the procedure, we determine the distribution in the first column of matrix 
A in detail. Using the formula (19) the following is obtained 

26

2612

16

16

246 256 2456
12

1246 1256 12456 1356 13246 13256 132456

21

;

R

R

C

RC
C

R

C C C
C

C C C C C C C

e

p e
e

e e ee
e e e e e e e

−

∈Ω−
−

∈Ω

− − −
−

− − − − − − −

= =

+ +
=

+ + + + + +

∑

∑           (20) 

where the cost Cj...6 in the exponent of the exponential function denotes the total cost 
of the route {j} → ... → {6} no matter how long it is. To make it clear assume first, 
that for every route {j} → {i} the cost Cji is one unit. In this case, it is clear, that the 
total cost is proportional to the length of the route. For example for the route {2} → 
{4} → {6} the cost is 2 units, for the route {1} → {3} → {2} → {4} → {6} the 
total cost is 4 units, etc. 

For the sake of simpler formulas, the notation α = exp(–1) is introduced. In this 
case, the formula (20) is equivalent to the following 

2 2 3 3 4

21 3 3 4 3 4 4 5 3 4 5
2 ;

3 3
p α + α + α α + α

= α =
α + α + α + α + α + α + α α + α + α

            (21) 

The other non-zero probability in the first column can be obtained by a similar 
procedure 

3 3 4 2 3 4 5

31 3 3 4 3 4 4 5 3 4 5
2 ;

3 3
p α + α + α + α α + α + α

= α =
α + α + α + α + α + α + α α + α + α

            (22) 

It is clear that the requirement  p21 + p31 = 1 is fulfilled, so a probability distribution 
is obtained. 

Repeating the previous process, every probability distribution can be computed in 
columns of matrix A. The results are as follows 
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2 3 3 4 2

42 23 542 3 2 3 4 2

2 2

52 53 642 3 2 3 4 2

2; ; ;
2 2

; ; ;
2 2

p p p

p p p

α + α α + α α
= = =

α + α α + α + α α + α
α α α

= = =
α + α α + α + α α + α

 (23) 

It is clear that in every column a discrete distribution is obtained, in other words, 
the matrix A is column-stochastic. Therefore the Markov-matrix A has been 
constructed. Using the above-given definition of α, the Markov-matrix, filled up 
with numerical data is the following 

0 0 0 0 0 0
0.5586 0 0.4656 0 0 0
0.4414 0 0 0 0 0

;
0 0.5777 0 0 0 0
0 0.4223 0.5344 0.2689 0 0
0 0 0 0.7311 1 1

 
 
 
 

=  
 
 
 
  

A             (24) 

The commonly applied and suitable partition of matrix A has been preserved. 
Compare matrix (16) and (24). The benefit of this partition will be clarified in the 
following section. In Section 5 the application of Markov-matrix will be presented, 
and it will be demonstrated that the theory can be efficiently applied to the 
examination of public transport. 

6 Properties of Absorbing Markov-Chains 
Considering (18) and (24) the probability of any state can be calculated for every 
integer n. The probability distribution of states can be seen below for n = 1, 2, 3, 
etc. 

2 3
1 0 2 0 3 0

0 0 0
0.5586 0.2055 0
0.4414 0 0

; ; ;....; .
0 0.3227 0.1187
0 0.4718 0.1736
0 0 0.7077

etc

     
     
     
     

= = = = = =     
     
     
     
          

π Aπ π A π π A π         (25) 

A bit more interesting question is what the powers of matrix A look like. The powers 
of A can be seen below for every positive integer exponent. 
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2 3

4

0 0 0 0 0 0 0 0 0 0 0 0
0.2055 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
; ;

0.3227 0 0.2689 0 0 0 0.1187 0 0 0 0 0
0.4718 0.1554 0.1966 0 0 0 0.1736 0 0.0723 0 0 0

0 0.8446 0.5344 1 1 1 0.7077 1 0.9277 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0

   
   
   
   

= =   
   
   
   
      

=

A A

A 5

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
; , 5;

0 0 0 0 0 0 0 0 0 0 0 0
0.0319 0 0 0 0 0 0 0 0 0 0 0
0.9681 1 1 1 1 1 1 1 1 1 1 1

n n

   
   
   
   

= = >   
   
   
   
      

A A

          (26) 

The result must be underlined, that for n ≥ 5 the nth power of A stays the same, in 
other words, it becomes stable, and it won't change if the exponent increases.  
A "stable matrix" or a "limit matrix" [3-6] is obtained, which is generally defined 
by the following limit: 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑨𝑨𝑛𝑛             (27) 

In this specific illustrating example the limit is reached if n = 5. This value depends 
on the shape and structure of the transition diagram, it can be less and also greater. 
This stable matrix can be computed in general, the form of the limit matrix can be 
given by the suitable partition that has already been applied earlier in (16) and (24). 
In general, the partitioned form of A is the following: 

𝑨𝑨 = �
𝑸𝑸(𝑛𝑛−𝑘𝑘)×(𝑛𝑛−𝑘𝑘) 𝟎𝟎(𝑛𝑛−𝑘𝑘)×𝑘𝑘
𝑹𝑹𝑘𝑘×(𝑛𝑛−𝑘𝑘) 𝑰𝑰𝑘𝑘×𝑘𝑘

�           (28) 

in which the meaning of partitions is clear according to (16) és (24), but we 
emphasize that 0 is the zero matrix, and I is the identity matrix,  k is the number of 
absorbing states (in the examined example k = 1), and n is the total number of states 
(in this case n = 6). Using this partition calculations that are necessary for powers 
of A and the stable matrix can be carried out easily. For some specific exponents, 
and for any n integer exponent the power of A can be found below: 

𝑨𝑨2 = �𝑸𝑸 𝟎𝟎
𝑹𝑹 𝑰𝑰� �

𝑸𝑸 𝟎𝟎
𝑹𝑹 𝑰𝑰� = � 𝑸𝑸2 𝟎𝟎

𝑹𝑹𝑹𝑹 + 𝑹𝑹 𝑰𝑰� 

𝑨𝑨3 = � 𝑸𝑸2 𝟎𝟎
𝑹𝑹𝑹𝑹 + 𝑹𝑹 𝑰𝑰� �

𝑸𝑸 𝟎𝟎
𝑹𝑹 𝑰𝑰� = � 𝑸𝑸3 𝟎𝟎

𝑹𝑹𝑸𝑸2 + 𝑹𝑹𝑹𝑹 + 𝑹𝑹 𝑰𝑰
� 

𝑨𝑨4 = � 𝑸𝑸3 𝟎𝟎
𝑹𝑹𝑸𝑸2 + 𝑹𝑹𝑹𝑹 + 𝑹𝑹 𝑰𝑰

� �𝑸𝑸 𝟎𝟎
𝑹𝑹 𝑰𝑰� = � 𝑸𝑸4 𝟎𝟎

𝑹𝑹𝑸𝑸3 + 𝑹𝑹𝑸𝑸2 + 𝑹𝑹𝑹𝑹 + 𝑹𝑹 𝑰𝑰
� 

. . . 
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𝑨𝑨𝑛𝑛 = �
𝑸𝑸𝑛𝑛 𝟎𝟎

𝑹𝑹𝑸𝑸𝑛𝑛−1+. . . +𝑹𝑹𝑸𝑸3 + 𝑹𝑹𝑸𝑸2 + 𝑹𝑹𝑹𝑹 + 𝑹𝑹 𝑰𝑰�

= �
𝑸𝑸𝑛𝑛 𝟎𝟎

𝑹𝑹(𝑸𝑸𝑛𝑛−1+. . . +𝑸𝑸3 + 𝑸𝑸2 + 𝑸𝑸 + 𝑰𝑰) 𝑰𝑰� 

    (29) 

The stable matrix is obtained if n → ∞. Since matrix Q is one partition of the 
Markov-matrix, every entry is less than 1 (see 24), therefore the sequence of powers 
of matrix Q tends to the zero matrix, according to the properties of the geometric 
sequence. The sum in the lower left corner, using again the properties of the 
geometric series, can be given in the following simple form: 

𝑰𝑰 + 𝑸𝑸 + 𝑸𝑸2 + 𝑸𝑸3+. . . +𝑸𝑸𝑛𝑛−1+. . . = (𝑰𝑰 − 𝑸𝑸)−1          (30) 

which sum exists if in some positive integer power of Q, every entry is less than 1 
[10, 11, 13]. In this example, it is valid for Q itself. Summarizing observations, the 
stable matrix can be given in a general form: 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑨𝑨𝑛𝑛 = � 𝟎𝟎 𝟎𝟎
𝑹𝑹(𝑰𝑰 − 𝑸𝑸)−1 𝑰𝑰�            (31) 

Using this limit matrix, on the basis of the theory of Markov-chains, the traffic, the 
public transport can be characterized numerically. The load of road sections and the 
utility of charging stations can be estimated by probabilities. 

The justification of this statement is, that some parts and partitions of the limit 
matrix have fundamental meaning [10-13]. 

1)  The entry in the ith row and jth column of the matrix (I – Q)–1 is the expected 
value of the random variable that the node {i} is reached exactly from the 
node {j}, in other words, the average number of vehicles along the road 
section {j} → {i}. 

2)  The sum of columns of the matrix (I – Q)–1 which is the row vector 1T(I – 
Q)–1 has also fundamental meaning. The jth coordinate of this vector is the 
average number of steps, in other words, the expected value of steps from 
the state {j} to the absorbing state, the average number of road sections for 
a vehicle from the node {j} to the destination. 

3)  The (i, j) entry in the matrix R(I – Q)–1 is the probability of the event, that 
the absorbing state {i} is reached through the state {j}. In other words, the 
probability of the event that the vehicle reaches the destination {i} and before 
it attains node {j}, for example, charges its battery at that road junction. 

For the road network, depicted in Figure 1, and for the transition probability matrix 
that is given by (24) these matrices are as follows: 
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(𝑰𝑰 − 𝑸𝑸)−1 =

⎣
⎢
⎢
⎢
⎡

1 0 0 0 0
0.7641 1 0.4656 0 0
0.4414 0 1 0 0
0.4414 0.5777 0.2689 1 0
0.6773 0.5777 0.8034 0.2689 1⎦

⎥
⎥
⎥
⎤
           (32) 

In this matrix for example the entry (2,3) is 0.4656, which means that from the node 
{3} to node {2} the expected number of selecting the road section is 0.4656, etc. 
These numbers characterize the whole road network, and the load of various road 
sections can be compared. The indirect consequence of these data is that the 
utilization of charging stations at the nodes can be concluded. Summing columns of 
the previous matrix, the following row vector is obtained: 

𝟏𝟏𝑇𝑇(𝑰𝑰 − 𝑸𝑸)−1 = [3.3242 2.1554 2.5379 1.2689 1.0000]          (33) 

As we described earlier, the meaning of these vector components is the average 
number of steps from a specific node to the destination. For example, it is obviously 
1 at the node {5} because from this node a vehicle can only go to node {6} and the 
"distance" is only one step. But the from the node {2} the average number of steps 
to node {6} is 2.1554. 

Finally the result: 

𝑹𝑹(𝑰𝑰 − 𝑸𝑸)−1 = [1.0000 1.0000 1.0000 1.0000 1.0000]          (34) 

is trivial in this case, because there is only one destination/target in this network, 
therefore independent of nodes, the vehicle reaches node {6} by probability 1. 

7 A Case Study for Two Absorbing States 
Illustrating the proposed method, we present one more example, which is a bit more 
general than the previously studied example. Let the road network be the graph 
depicted in Figure 3: 

 
Figure 3 

Transition diagram: The graph of a road network, with one initial point, two absorbing states and 
different raod costs 
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The obvious difference between this second illustrating example and the previous 
one, on the one hand is that in this road network there are two terminal nodes, in 
other word two absorbing states {4} and {5}, and on the other hand, road costs are 
not units and are not the same. In this section the application of the proposed 
mathematical tools will be presented for this more general case. 

The column stochastic Markov-matrix for this case, is as follows and the necessary 
partition is also marked: 

21
3 3 3 2

31 32
2 3 2 2

42 43

52 53

0 0 0 0 0
0 0 0 0

0 0 0
0 1 0
0 0 1

p
p p

p p
p p

× ×

× ×

 
 
    = =    
 
  

Q 0
A

R I
            (35) 

Due to the fact that in this network there are 5 nodes, the transition probability 
matrix is a 5×5 matrix. Furthermore, since in this network there are two absorbing 
states, k = 2, in the partition of the matrix the identity matrix in the lower right corner 
is a 2×2 matrix, therefore matrix Q in the upper left corner is a 3×3 matrix. 

The probability distributions in the columns of A can be given by following the 
same logic. Using the same α notation for exp(–1), columns of A are as follows: 

4 3

32 4 3 25 4 3
4321 235 4 3

42 24 3 24 3
5331 225 4 3

52 4 3 2

;
22 ;;

3 2 ;
2 ;;

3 2 ;
2

p
pp

p
pp

p

 α + α
=

 αα + α + α α + α + α ==  α + αα  α + α + α =  
αα + α + αα + α   ==   α + αα α + α + α  =

 α + α + α

           (36) 

since for example, 

2

212

1

1

234 25 23524
12

125 1234 1235 134 135124

21

5 4 3

5 4 3
2 ;

3 2

R
v

v
R
v

v

C

RC
C

R

C C CC
C

C C C C CC

e

p e
e

e e e ee
e e e e e e

−

∈Ω−
−

∈Ω

− − −−
−

− − − − −−

= =

+ + + α + α + α
= =

α + α + α+ + + + +

∑

∑            (37) 

because C1235 = 1 + 2 + 2 = 5, etc. It is clear that these columns sum up to one, so 
the matrix is indeed column-stochastic. Markov-matrix filled up with numerical 
values can be seen below 
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𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
0.5777 0 0 0 0
0.4223 0.2689 0 0 0

0 0.1966 0.7311 1.0000 0
0 0.5344 0.2689 0 1.0000⎦

⎥
⎥
⎥
⎤
                                        (38) 

State vectors, 

𝝅𝝅0 =

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0⎦
⎥
⎥
⎥
⎤

;    𝝅𝝅1 = 𝑨𝑨𝝅𝝅0 =

⎣
⎢
⎢
⎢
⎡

0
0.5777
0.4223

0
0 ⎦

⎥
⎥
⎥
⎤

;    𝝅𝝅2 = 𝑨𝑨𝝅𝝅1 = 𝑨𝑨2𝝅𝝅0 =

⎣
⎢
⎢
⎢
⎡

0
0

0.1554
0.4223
0.4223⎦

⎥
⎥
⎥
⎤

; 

𝝅𝝅3 = 𝑨𝑨𝝅𝝅2 = 𝑨𝑨3𝝅𝝅0 =

⎣
⎢
⎢
⎢
⎡

0
0
0

0,5359
0,4641⎦

⎥
⎥
⎥
⎤

; 𝑒𝑒𝑒𝑒𝑒𝑒.                     (39) 

and powers of A for different exponents are illustrated below, 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
0.5777 0 0 0 0
0.4223 0.2689 0 0 0

0 0.1966 0.7311 1 0
0 0.5344 0.2689 0 1⎦

⎥
⎥
⎥
⎤

; 

𝑨𝑨2 =

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
0 0 0 0 0

0.1544 0 0 0 0
0.4223 0.3932 0.7311 1 0
0.4223 0.6068 0.2689 0 1⎦

⎥
⎥
⎥
⎤

;                                     

𝑨𝑨3 =

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.5359 0.3932 0.7311 1 0
0.4641 0.6068 0.2689 0 1⎦

⎥
⎥
⎥
⎤

= 𝑨𝑨4 = 𝑨𝑨5. . . = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑨𝑨𝑛𝑛  (40) 

The first observation is that the stable matrix is reached for n = 3. Finally, the 
partitions of the stable matrix must be examined. 

1) The expected number of "road section choices" can be seen in the matrix 
(I – Q)–1: 

(𝑰𝑰 − 𝑸𝑸)−1 = �
1 0 0

0.5777 1 0
0.5777 0.2689 1

� (41) 

2) The average number of steps to absorbing states are provided by the row vector 
1T(I – Q)–1: 

𝟏𝟏𝑇𝑇(𝑰𝑰 − 𝑸𝑸)−1 = [2.1554 1.2689 1] (42) 
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3) The probability of the event that one absorbing state is reached from a specific 
node, is given by the matrix R(I – Q)–1: 

𝑹𝑹(𝑰𝑰 − 𝑸𝑸)−1 = �0.5359 0.3932 0.7311
0.4641 0.6068 0.2689� (43) 

In this case, a great and basic difference can be realized between the first and the 
second example. In this matrix there are two rows, and the reason is clear, there are 
two absorbing states, so from any state both absorbing states can be reached, there 
are two options for any intermediate state, the probability for reaching one or the 
other absorbing state can be found in the matrix. It must be emphasised, that in all 
columns, probabilities form a distribution! 

Conclusions 

In this work, a method has been presented on how the theory of absorbing Markov-
chains can be used for modeling the traffic of vehicles along a given road network. 
The basis of this mathematical model is the logistic regression model, which is a 
sophisticated method for giving a probability of any decision in a decision-making 
process. The possible application of this logistic model is reasonable, because along 
a road network in every road junction, there is an expectation against the driver for 
choosing a following road section, so in every node, there is a decision-making 
process. 

It has been shown that the combination of these two theories can be used for 
estimating the load of road sections, and the utilization of charging stations, because 
these quantities can be characterized by data that can be found in the limit of the 
Markov-matrix. The process was illustrated by two examples. The first example, 
contained only one initial point and one destination with the same and unit road 
costs. In the second example, there is more than one destination in the road network, 
the road costs are different and not units. 

Further study will possibly include modifying the number of initial points and for a 
greater network/graph, an efficient and simpler method must be developed for 
giving the Markov-matrix. 

Calculations have been performed using the software MATLAB. 
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