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Abstract: Endocannabinoids were implicated in a variety of pathological conditions including anx-
iety and are considered promising new targets for anxiolytic drug development. The optimism
concerning the potentials of this system for anxiolysis is probably justified. However, the complexity
of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various
experimental approaches makes the interpretation of research results difficult. Here, we review the
anxiety-related effects of the three main interventions used to study the endocannabinoid system:
pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane
and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers
represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands pro-
vide inconsistent findings probably because they activate a multitude of mechanisms concomitantly.
More robust findings were obtained with genetic manipulations and particularly with function
enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms
indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety
without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved
by promoting active coping styles in critical situations. These findings suggest that the functional
enhancement of endocannabinoid signaling is a promising drug development target for stress-related
anxiety disorders.

Keywords: endocannabinoid system; anxiety; laboratory studies; mechanisms; transgenic animals;
pharmacology; function-enhancers

1. Introduction
1.1. The Endocannabinoid System

The endocannabinoid system consists of three major parts, the signaling molecules
(endocannabinoids), their receptors, and the enzymatic machinery that synthesizes and
degrades endocannabinoids before and after they have played their role, respectively.

Endocannabinoids are a family of lipid messengers including, but not limited to
anandamide and 2-arachidonoylglycerol (2-AG). The latter were discovered about 30 years
ago and were for a long time believed to be the only endogenous ligands of the cannabinoid
receptors [1,2]. Subsequent research demonstrated, however, that there are several lipid
messengers in the brain, which are generally called N-acylethanolamines (NAEs). These
are active at various cannabinoid-binding sites, but the mechanisms activated by them only
partially overlap [3].

Endocannabinoids are recognized by two G-protein coupled receptors, CB1 and CB2,
which were also discovered about 30 years ago [4,5]. Originally, it was believed that the
CB1 receptor is localized in the brain and affects neuronal function, whereas the CB2
is localized in the periphery and controls immunity [6]. Subsequent research, however,
demonstrated that the mechanisms that mediate endocannabinoid effects are far more
complex (see below).
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Endocannabinoids are synthesized on demand, and after completing their role are
transported back into the cytoplasm where they are degraded [7]. The routes of synthesis
are complex, but there are rate-limiting enzymes by which synthesis can be influenced
(e.g., NAPE-PLD and DAGLα/β for anandamide and 2-AG, respectively) [8,9]. After
accomplishing their role, endocannabinoids are taken up by a carrier-mediated transport.
Within the cytoplasm, anandamide is degraded via fatty-acid amide hydrolase (FAAH),
whereas 2-AG is degraded via monoacylglycerol lipase (MAGL) [10].

1.2. Functions

Endocannabinoids are believed to modulate a wide variety of bodily and psychological
functions [11]. For instance, they regulate energy metabolism [12], body temperature [13],
immunity [14], fertility [15], and a wide range of other physiological phenomena. They
also control almost all psychological functions, either influencing basic processes such
as neurogenesis [16], neuroprotection [17] and neural energetics [18], or by putatively
direct effects on anxiety, depression, cognition, reward, etc. [19,20]. In addition, the endo-
cannabinoid system is involved in a series of pathophysiological conditions such as cancer,
cardiovascular and neurodegenerative diseases [21–23]. This review focuses on the role
played by cannabinoids in anxiety, and the therapeutic potential of agents that control the
function of the endocannabinoid system.

1.3. Mechanisms

The mechanisms by which the endocannabinoid system achieves such wide-ranging
roles are multiple, and not completely understood. It is widely believed, however, that its
role in emotions and emotional behavior is primarily due to the retrograde inhibition of
neuronal signaling, e.g., by postsynaptic effects on presynaptic membranes. The role of the
presynaptic CB1 cannabinoid receptors in endocannabinoid actions was discovered rather
early [24] and was developed later into the retrograde inhibition concept. According to this,
neurotransmission elicits the postsynaptic release of endocannabinoids, which retrogradely
inhibits the release of the neurotransmitter that elicited the process [25,26]. Initially it was
believed that retrograde signaling is restricted to a specific type of GABAergic, particularly
cholecystokinin (CCK) containing inhibitory neurons [27]. This may have alone explained
the role of endocannabinoids in emotion as this type of GABA interneuron—in contrast to,
e.g., parvalbumin-containing ones—alter hippocampal networks in a manner consistent
with anxiolysis [27]. This assumption was later confirmed by behavioral studies demon-
strating that anxiety is indeed influenced by interactions between the two systems [28].
Subsequent research showed, however, that the CB1 receptor can control a wide range of
systems including glutamate, serotonin, acetylcholine, dopamine, opioid, norepinephrine,
and cholecystokinin neurotransmission [28–31] (Figure 1). In addition, it was revealed
that the brain expresses the CB2 cannabinoid receptor, which originally was believed to be
located exclusively in the periphery [32]. Endocannabinoids also activate the postsynaptic
vanilloid receptor type 1 (TRPV1) [33], or in more general terms, transient receptor potential
channels (TRPV1-4; TRPA1, TRPM8; [34]. They can also affect neuronal function by the
G-protein coupled receptors GPR55 and GPR18 [35–37]. The roles of these are poorly
understood, yet they have higher ∆9-THC affinity than the classical cannabinoid receptors
and are often considered actual cannabinoid receptors themselves. Endocannabinoids
may also directly activate a series of intracellular signal transduction pathways [38]. Such
mechanisms may be responsible for the tonic endocannabinoid signaling that controls basal
synaptic neurotransmitter release, and for the interaction between neurons and glia cells,
especially astrocytes [39,40].

In a way, the diversity of the molecular and cellular effects of endocannabinoids is
reassuring as it explains in general terms the diversity of their role in bodily and neuronal
functions. At the same time, however, it makes difficult to understand how specific
functions are controlled. This review addresses the issue from the point of view of anxiety.
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Figure 1. Target diversity of cannabinoid receptor ligands. These bind to, and affect the function
of, presynaptic, postsynaptic, membrane and intracellular receptors and ion channels. Receptor
ligands retrogradely inhibit 8 neurotransmitter systems, influence extracellular and intracellular
cation exchanges (primarily Ca2+), have an impact on the energy metabolism of neurons and mediate
communication with glia cells. The spectrum of effects is cannabinoid ligand-specific and depends
largely on the cell types and their physiological state. For details see text.

Firstly, we review the main research tools used to study the behavioral roles of endo-
cannabinoid signaling. We evaluate the research questions these tools can answer regarding
the control of anxiety. In the following sections, we summarize the findings obtained with
each research tool. We highlight discrepancies in the literature, to evaluate the putative
clinical relevance of each approach. While each contributed substantially to understanding
the role of endocannabinoid signaling, their limitations differentiate them as regards their
practical utility as anxiolytics. Finally, we present the main hypotheses on the anxiety-
related roles of endocannabinoids. In fact, these outline the types of anxiety disorders
where certain endocannabinoid agents may be useful.

2. Research Tools—What Questions Can They Answer?

The major tools available for the study of the endocannabinoid system in behavior can
be grouped into several classes as shown below. Although each approach has its merits and
advantages, they also have limitations that should be considered when research findings
are interpreted.

2.1. Targeting Cannabinoid Receptors

Genetic tools include the disruption of the endocannabinoid receptors (CB1-KOs: [41];
CB2-KOs: [42]; CB1/CB2 double KOs: [43]) or else the induction of their overexpression in
various brain regions [44,45] or in all neurons [46]. Several transgenic lines were studied,
the background strains of which were different (Table 1). This may induce a certain amount
of variation regarding the behavioral consequences of gene invalidation. Nevertheless,
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the number of genetic lines is still limited, and the very same line was used by several
laboratories across the world. As such, findings can be cross-checked.

Table 1. The effects of CB1 gene disruption on anxiety.

CB1-KO

Background (sex) Effects on anxiety Anxiety test Reference

CD1 (♂) ↑ LD [47]

CD1 (♂) ↑ EPM [48]

CD1 (♂) ↑ EPM [49]

CD1 (♂) ↑ (increased stress response) EPM, LD, SI [50]

CD1 (♂) ↑ (high light) EPM [51]

C57BL/6NCrl (♂) ↑ EPM, LD [52]

CD1 (♂) ↑ (0.7, 1.5 mA) CF [53]

ICR (♂) ↑ (chronic stress-like phenotype) EPM [54]

CD1 (♂) ↑ (increased stress response) EPM [55]

CD1 (♂) ↑ (chronic stress) CF [56]

C57/BL6J (♂) ↑ SI [57]

C57BL/6J (♂) ↑ EPM, LD [58]

C57BL/6J (♂) ↑ EPM, LD [59]

C57BL/6N (♂, ♀) ↑ SI [60]

CD1 (♂) ↑ (young) OF, LD [61]

C57BL/6J (♂, ♀) ↑ (chronic pain) EZM, LD [62]

C57BL/6J (♂) ↑ (male) EPM [63]

CD1 (♂) → (old) OF, LD [61]

CD1 (♂) → (low light) EPM [51]

CD1 (♂) → EPM, OF [64]

CD1 (♂) → (unstressed) CF [56]

CD1 (♂) → (0.5 mA) CF [53]

CD1 (♂) → SI [65]

C57BL/6J (♂, ♀) → (control) EZM, LD [62]

C57BL/6J (♀) → (female) EPM [63]

C57BL⁄6 (♂) ↓ SPBT [66]

CB2-KO

Background Effects on anxiety Anxiety test Reference

C57BL/6J (♂) ↑ EPM, LD [67]

C57BL/J6 (♀) ↑ OF [68]

C57BL/6J (♂, ♀) → EZM, OF [69]

Gene Overexpression

Receptor Effects on anxiety Anxiety test Reference

CB1 * (♂) ↑ SI [45]

CB2 (♂) ↓ EPM, LD [70]
Changes in anxiety. ↑, increased; →, unaltered; ↓, decreased. Sex. ♂, male; ♀, female. Anxiety tests. CF, conditioned
fear; EPM, elevated plus-maze; EZM, elevated zero maze; LD, light/dark box; OF, open field; SI, social interaction;
SPBT, shock prod burying test. *, restricted to the medial prefrontal cortex. Note that the condition under which
the gene manipulation was effective or ineffective was indicated in brackets in the case of studies where transgenic
mice were studied under more than one set of conditions.
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The advantage of this method is that the intervention is rather mechanism-specific.
As shown above, endocannabinoids affect a variety of mechanisms. Transgenic animals
offer the opportunity of studying those that are specifically mediated by either of the two
receptors. In addition, knock-out mice are frequently used to elucidate the cannabinoid
receptor dependence of pharmacologic agents. As such, transgenic mice are valuable tools
of mechanistic studies. The disadvantage of the method is that it affects endocannabinoid
signaling in the whole brain or in large brain areas in the case of conditional transgenics
(see below). In addition, the invalidation of a gene brings about adaptive changes in the
brain, which to a certain extent complicate the interpretation of findings.

The pharmacological equivalents of these genetic manipulations are CB1 receptor
antagonists (e.g., rimonabant, the first such agent) [71] and CB1 agonists (e.g., the natu-
ral agonist delta-9 tetrahydrocannabinol [72] and CP 55,940, the first synthetic cannabi-
noid [73]). In recent years, a series of specific CB2 ligands were also developed [74]. See
Table 2 for agents studied with respect to their anxiety-related effects. These include ag-
onists that mimic the effects of endocannabinoids, antagonists that prevent the action of
agonists including endocannabinoids, and inverse agonists which induce effects opposite
to those of agonists. Inverse agonists usually also work as antagonists, especially at low
doses. Agonists may be the pharmacological equivalents of gene overexpression, whereas
antagonists may be the pharmacological equivalents of gene disruption. The advantages of
such pharmacological methods are dual. Firstly, the effects of agents can be dosed, which
cannot be achieved with genetic interventions. Secondly, pharmacological agents are more
relevant clinically than genetic interventions. However, the approach also has a series of
disadvantages as shown below.

Table 2. Discrepant findings with CB1 receptor ligands—examples.

The Effects of CB1 Antagonists Is Conflicting

Antagonist Effect on Anxiety Effective Dose (Range) Reference

Rimonabant

anxiogenesis (EPM, ETM, OF) 3 (1–3) mg/kg [64]

anxiolysis (EPM) 10 (1–10) mg/kg [75]

anxiogenesis (EPM, DW) 3 (0.1–3) mg/kg [76]

anxiolysis (EPM) 3 (1–3) mg/kg [48]

AM-281 no effect (LD) none (1–4) mg/kg [77]

AM4113 no effect (EPM) none (3.0–12.0) mg/kg [78]

AVE1625 no effect (LD) none (10–100) mg/kg [79]

Agonists and Antagonists May Have Similar Effects

Ligand Effect on Anxiety Effective Dose (Range) Reference

∆9-THC anxiogenesis (EPM) 1, 2.5, 10 (0.25–10) mg/kg

[80]Rimonabant anxiogenesis (EPM) 3, 10 (1–10) mg/kg

AM-251 anxiogenesis (EPM) 3, 10 (1–10) mg/kg

Agonists Have Biphasic Effects

Ligand Effect on Anxiety Effective Dose (Range) Reference

HU-210
anxiolysis (EPM) 10 µg/kg

[81]
anxiogenesis (EPM) 50 µg/kg

CP 55,940
anxiolysis (EPM) 1 µg/kg

[82]
anxiogenesis (EPM) 50 µg/kg

∆9-THC
anxiolysis (LD, OF) 0.2 mg/kg

[83]
anxiogenesis (LD, OF) 7.5 mg/kg

All studies were performed in males. EPM, elevated plus-maze; ETM, elevated T-maze; LD, light/dark box; OF,
open field; DW, defensive withdrawal.
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It is often assumed that the tools listed above answer the question “What happens
if endocannabinoid signaling is up- or downregulated?” However, this assumption is
incorrect. As shown above, some endocannabinoid effects are exerted post-synaptically
via the TRPV receptor [33], and TRP channels in general [34], whereas other effects are
mediated by various intracellular signaling pathways [35–38]. Such cannabinoid receptor-
independent effects include the modulation of neural plasticity, mitochondrial function,
cardiovascular responses, etc., which do not involve cannabinoid receptors [43,84,85]. As
such, the scope of research conducted with these tools should be reduced to the question
“What happens if the effects of the endocannabinoid system on its receptors are inhibited
or facilitated, whereas other mechanisms are unaffected or are affected in a different way”?

While the answer to this question appears useful for understanding the system, and
for the development of novel pharmacological treatments, it is worth emphasizing that
the direct and unconditional manipulation of cannabinoid receptors is rather unphysio-
logical. Under physiological conditions, endocannabinoids are synthesized on demand
by a Ca2+-dependent mechanism [86]. Consequently, endocannabinoid signaling inhibits
neurotransmission where this takes place and if it crosses a certain threshold [87,88]. By
contrast, exogenously administered cannabinoid ligands inhibit neurotransmission indis-
criminately because the receptors are present continuously in large amounts throughout
the brain [89], moreover, throughout the whole organism [90]. These receptors are affected
concomitantly irrespective of the momentary release of endocannabinoids. Instead of
limiting or augmenting ongoing neurotransmission by a homeostasis-like process, ligands
affect neurotransmission independently of the natural requirements of neural function. In
addition, such unphysiological alterations in cannabinoid signaling can perturb neural
connections and, consequently, the cortical oscillations associated with physiological func-
tions [91]. In plain terms, endocannabinoid functions are targeted, whereas the exogenous
up- and downregulation of their receptors is pervasive.

These considerations naturally do not invalidate findings obtained by methods that
genetically or pharmacologically target endocannabinoid receptors, but one should refor-
mulate the question that such studies can answer. “What happens if cannabinoid receptors
are nonspecifically up- or downregulated at the level of the whole brain?” or in the case
of local administrations “at the level of rather large brain regions”. This in turn gener-
ates a second question: “To what extent such non-physiological manipulations reflect the
physiological functions of endocannabinoid signaling”?

2.2. Targeting the Degrading Enzymes

The considerations presented above are not valid to endocannabinoid signaling alone
but to pharmacology overall. Neural communication is targeted (except for extrasynaptic
or volumetric neurotransmission), whereas pharmacologic agents have general effects in
the brain. However, the endocannabinoid system stands out as it modulates a wide range
of neurotransmitter and non-neurotransmitter systems, which aggravates the problems of
poor coupling to physiological functioning. Fortunately, there is an alternative to direct
receptor modulation, which circumvents the problem to a certain extent. In particular,
one can target the enzymes that degrade endocannabinoids to terminate the signal. One
such enzyme, FAAH, is primarily active on anandamide, but can also degrade other
endocannabinoids such as 2-AG and oleamide [92]. The enzyme is widely present in
the organism. In the brain, the CB1 receptor and the FAAH enzyme are located in a
complementary fashion; FAAH is preferentially located post-synaptically to CB1, by which
it can control the access of the receptor to anandamide [93]. MAGL is more specific than
FAAH, although in addition to 2-AG it also catalyzes some non-endocannabinoid fatty
acids [94]. In contrast to FAAH, MAGL colocalizes with the CB1 receptor pre-synaptically,
which is also an appropriate place for controlling the 2-AG supply of the receptor [95]. The
two enzymes may partially colocalize, at least in the hippocampus [96].

The first enzyme inhibitor developed was URB-597, which inhibits the enzyme
FAAH [97]. FAAH inhibition increases the brain levels of anandamide by prolonging
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the duration of the endocannabinoid signal. Another compound, JZL 184, inhibits the
enzyme MAGL, which degrades 2-AG and enhances retrograde signaling by this ma-
jor endocannabinoid [98]. In addition to these two inhibitors, others were also studied
in anxiety tests (see Table 3). The FAAH enzyme was also studied by invalidating its
gene [99] and by inducing its overexpression by viral gene transfer [100]. MAGL-KO mice
were also created [101], but the over-expression of its gene has not yet been achieved to
our knowledge.

Table 3. The impact of degrading enzymes on anxiety.

A. Early Studies with URB-597

Effective dose (range) Species (test; sex) Effects on anxiety Reference

0.1 (0.05–0.1) mg/kg rat (EZM; ♂) ↓ [97]

0.1, 0.3 (0.03–0.3) mg/kg mouse (EPM; ♂) ↓ [80]

0.1, 0.3 (0.1–0.3) mg/kg mouse (EPM; ♀) ↓ [102]

0.3, 1 (0.3–1) mg/kg rat (EPM; ♂) ↓ [103]

1 (1) mg/kg mouse (EPM; ♂) ↓ [104]

0.1, 0.3 (0.1–0.3) mg/kg rat (LD; ♂) ↓ [105]

none (0.1–10) mg/kg mouse (EPM; ♂, ♀) → [106]

none (0.03–0.3) mg/kg mouse (EPM; ♂) → [107]

1 (1) mg/kg mouse (LD; ♂) → [104]

B. FAAH Inhibition Ameliorates Stress-Induced Anxiety

FAAH inhibitor Species Stress factor Reference

URB-597 mouse (EPM; ♂, ♀) light contrast * [106]

URB-597 rat (EPM; ♂) test aversiveness [108]

URB-597 rat (EPM, SPBT; ♂) nicotine withdrawal [109]

JNJ-5003 mouse (EPM; ♂) chronic stress [110]

PF-3845 mouse (LD, NH; ♂) contextual fear [111]

OL-135 rat (FRE; ♂) contextual fear [112]

PF-3845 rat (LD; ♂) chronic stress [113]

URB-597 rat (FRE, SI; ♂) contextual fear [114]

PF-3845 rat (EPM; ♂) alcohol withdrawal [115]

URB-597 rat (IA; ♂) contextual fear [116]

URB-597 rat (FRE, ASR; ♂) contextual fear [117]

C. MAGL Inhibition Ameliorates Stress-Induced Anxiety

MAGL inhibitor Species Stress factor Reference

JZL-184 rat (EPM; ♂) test aversiveness [118]

JZL-184 mouse (EPM; ♂) hormone
manipulation [119]

JZL-184 mouse (LD, NH; ♂, ♀) Susceptibility † [120]

JZL-184 rat (LD; ♂) chronic stress [113]

JZL-184 rat (FRE, SI; ♂) contextual fear [114]

JZL-184 rat (EPM; ♂) alcohol withdrawal [115]
↓, anxiety decreased; →, anxiety not changed; ASR, acoustic startle response; EPM, elevated plus-maze; FRE,
freezing in shock-associated environment; IA, inhibitory avoidance; LD, light–dark box; NH, novelty-induced
hypophagia; SI, social interaction test; SPBT, shock probe burying test; ♂,male; ♀, female; *, the open arms of the
EPM brightly illuminated, closed arms remained in shadow; †, groups were selected based on stress susceptibility.
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The main advantage of such agents is that they are more activity-bound than receptor
ligands. Endocannabinoids are synthesized on demand and are rapidly degraded after
their release [7,87]. This means that cannabinoids are present in the synapse for short
periods only. The enzymes have no substrates between bouts of activation; therefore, their
inhibition is inconsequential when the endocannabinoid system is inactive. This implies
that they alter physiological responses rather than induce non-physiological responses. The
two inhibitors also allow the separation of the effects of the two main endocannabinoids,
which is impossible with cannabinoid ligands as these bind to the same receptors. However,
this seems to be of little importance in the case of anxiety, as the consequences of FAAH
and MAGL inhibition appear similar (Table 3), even though differences were observed in
other behaviors [121]. The question that may be asked by the application of such agents
is “What happens if the natural endocannabinoid signaling was prolonged or if it was
shortened”? In plain terms, enzyme manipulations maintain the targeted nature of the
physiological process.

2.3. Targeting Other Mechanisms

The selective inhibition of enzymes responsible for the biosynthesis of endocannabi-
noids show the advantages of those agents that target degrading enzymes [122]. To our
knowledge, however, the anxiety-related effects of such agents were only sporadically
studied so far and consequently will not be discussed here.

Another physiologically sound way of studying the endocannabinoid system is the
blockade of their membrane transport (e.g., by AM-404) [123]. The termination of the
signal necessitates the transfer of endocannabinoids from the extracellular space into
the cytoplasm as the degrading enzymes are located intracellularly. This is achieved by
several membrane proteins, the most important being the endocannabinoid membrane
transporter [124,125]. This is widely present in neuronal membranes but also in peripheral
organs [126]. In principle, this pharmacological tool answers the same question as the one
that can be answered by using enzyme inhibitors. The anxiety-related effects of AM-404
were less well-studied than those of enzyme inhibitors, but the available data will be
reviewed in Section 3.3.

3. Cannabinoids and Anxiety
3.1. Transgenic Animals

According to the general view, the invalidation of the Cnr1 gene that encodes the CB1
receptor increases anxiety. This suggests that the CB1 receptor is involved in neuronal
processes that decrease anxiety. Although this assumption is supported by a relatively
large number of studies, it does not seem to be entirely true (Table 1).

Out of 26 studies found in PubMed after a careful search, CB1-deficient mice proved
to be anxious in 17 reports (65% of all studies), and whilst only 1 study found that CB1
gene disruption decreased anxiety, there were 8 (31%) in which the same manipulation had
no effect. As such, only a minority of studies reported “non canonical” findings, but this
minority was by far non-negligible. Similarly discrepant findings were obtained with the
CB2 receptor. What is the reason for such discrepancies?

It occurs that neither the background strain of gene manipulation nor the anxiety test
employed explain this variation in findings, except perhaps for the shock-prod burying test.
Albeit the test was validated pharmacologically for anxiety, it is quite different from the rest
of the tests and elicits complex behavioral responses which may explain the anxiolytic-like
effect of CB1 gene disruption in its case. Apart from this, however, discrepant findings
were obtained with all background strains and all anxiety tests. Although the life-long
absence of the KO gene could have caused developmental adaptations, this may have had
little impact on the discrepancies between findings because such adaptations were likely
similar especially when the background strain was similar, moreover, the same genetic line
was used by conflicting reports.
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In addition to the role of gender and age (one study each), it emerges that the aver-
siveness of the testing environment played a role in supporting the anxiogenic effects
of CB1 gene disruption, whereas decreased aversiveness appeared to abolish this effect.
Aversiveness in this context is defined as a fearful condition under which the anxiety test
was performed. Such aversive conditions include high light (light intensity levels around
or above 800 lx), which is aversive to nocturnal animals like rodents; the unfamiliarity of
animals with the experimenters or the testing environment; unexpected changes in the
environment during testing, etc. For example, ref. [52] shows that the consequences of
CB1 gene disruption depended largely on the aversiveness of the test arena illumination in
this study. We provide more details on aversiveness in Section 3.3, because this condition
was studied more systematically with such agents than with transgenic animals. Another
report suggested that CB1 gene invalidation affected anxiety-like behavior by altering
coping strategies, which also depends on test aversiveness [127]. The significance of similar
findings will be outlined in Section 3.4.

Taken together, the data seem to suggest that the invalidation of the Cnr1 gene in-
creases anxiety conditionally, and the condition to this effect is the aversiveness of the
testing environment. One can hypothesize that the role of aversiveness is greater than that
transpiring from the data of Table 1. Anxiety tests are performed in laboratory-specific
conditions, which may involve hidden aversive components. These are sometimes difficult
to identify from the Methods sections of publications but may be revealed by information
provided by authors on request. Such hidden aversive conditions will be detailed in the
section on FAAH inhibition.

In addition to studies on whole-brain (whole-organism) gene disruption, there are
studies on conditional knockouts where the Cnr1 gene was invalidated in specific cell
types and/or specific brain areas. Such studies, believed to reveal the mechanisms of gene
disruption in more detail, are incontestably highly valuable, but they are not devoid of
discrepancies either.

Firstly, local gene manipulations identified many different mechanisms, the compari-
son or ranking of which is difficult. For instance, a series of studies suggested that forebrain
glutamatergic neurons have a major role in the anxiogenic effects of general CB1 gene
disruption, as CB1 disruption in this area increased anxiety to a similar magnitude than
that seen in CB1-KOs [53,56]. In addition, the rescue of CB1 receptors on dorsal telen-
cephalic glutamatergic neurons abolished anxiogenic effects observed upon CB1 receptor
loss [58]. However, similarly high anxiety was elicited by the disruption of CB1 receptors
in the medial septum and the nucleus of the diagonal band [128], and in the dopaminergic
neurons of the ventral tegmental area [129]. As such, we have three widely different local
mechanisms that may all underlie the effects of general Cnr1 gene disruption. Based on
these findings, one can hypothesize that anxiety increases irrespective of the brain location
or the neurochemical mechanism of gene disruption. However, this is unlikely.

Secondly, the number of discrepant findings is large with local manipulations. For
instance, CB1 receptor disruption in cortical glutamatergic neurons did not affect anxiety in
one study [52]. In addition, the overexpression of the CB1 receptor in the median prefrontal
cortex increased anxiety in the social interaction test [45], which is in contrast with the
anxiogenic effect of CB1 disruption in this area. Somewhat contrasting findings were
also obtained with the CB2 receptor. Their disruption in midbrain dopaminergic neurons
decreased anxiety [130,131], whereas their general disruption was anxiogenic. With the
CB1 receptor, the effects of general and dopamine-specific gene disruptions were similar,
whereas with the CB2 they were dissimilar.

Taken together, studies in transgenic mice suggest that the elimination of CB1 or CB2
receptors in the whole brain or parts of it may or may not increase anxiety. In the case of
CB1-KOs, the factor that differentiates effect from no effect appears to be the aversiveness
of the testing environment. However, the role of this was only studied specifically in a
restricted number of studies. In the case of conditional transgenic animals, discrepancies
likely arise from the differential role of the affected brain regions in anxiety. Cannabinoid
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receptors are expressed in a variety of brain regions and cell types, many of which play
opposite roles in anxiety. As such, discrepant findings may be natural consequences of
this variation in roles. The issue may be solved by a more comprehensive approach,
e.g., by systematic comparative studies into the main anxiety-related brain areas and
neurotransmitter systems.

Complete CB1 disruption was not reported in humans so far, yet polymorphisms in the
gene encoding the receptor were shown to affect anxiety. For instance, polymorphisms in
the promoter region of the gene increased vulnerability to anxiety disorders in conjunction
with polymorphisms in the promoter regions of the serotonin transporter [132]. It was also
shown that genetic variability in the promoter and coding region of the CB1 gene affected
the extinguishing of learned fear [133], and such polymorphisms conferred vulnerability to
panic disorder in females [134]. Taken together, these findings suggest that polymorphisms
in the CB1 gene underlie individual differences in human anxiety, which indirectly supports
the laboratory findings with knockout animals.

3.2. CB1 Receptor Pharmacology

Many cannabinoid receptor ligands were synthesized since the development of CP
55,940 and rimonabant. A recent list of CB1 ligands contains 56 entries [135], and the list
is not complete as new synthetic cannabinoids are regularly synthesized for recreational
purposes [136]. Many from this large number of ligands were studied for their effects on
anxiety; therefore, an exhaustive review of the literature would be far beyond the scope
of this study. Instead, we will focus on findings that outline the main features of this
research area.

In theory, the effects of CB1 gene disruption and CB1 antagonists should be similar,
yet this is not always so. For instance, the invalidation of the CB1 gene increased whereas
the CB1 inverse agonist rimonabant (SR141716) decreased anxiety in the wild types of KO
mice [48]. Moreover, rimonabant decreased anxiety in CB1-KOs as well, suggesting an effect
independent of the CB1 receptor. Although a subsequent study showed convergent effects
with the CB1 antagonist AM-251 [49], a series of similar findings led to the conclusion that
cannabinoids have an unknown third receptor. As one of the studies of the time suggested
“Recent evidence suggests that a third CB3 receptor is out there, waiting to be cloned” [130].
The CB3 receptor concept was later discarded, but subsequent research found multiple non-
CB1/non-CB2 action sites for cannabinoids (see Section 1.3 “Mechanisms”). Nevertheless,
these early studies were right in assuming that the CB1 and the CB2 receptors are not
sufficient to explain the effects of cannabinoids. Indeed, cannabinoid ligands bind to a
variety, moreover, different set of targets, which results in differences in their behavioral
profile, including but not limited to anxiety [137,138]. In addition, CB1 agonists and
antagonists may affect the same phenomena by different mechanisms. For instance, the
antagonist AM-251 and rimonabant are direct antagonists of mu-opioid receptors, whereas
the CB1 agonist WIN-55212-2 affects pain perception via interactions between the CB1 and
opioid receptors [139].

The divergent pharmacological profile of CB1 ligands leads to a series of discrepant
findings, a few of which are outlined in Table 2.

In blunt terms, both CB1 agonists and antagonists may either promote or inhibit anxi-
ety or may leave it unaffected. One and the same antagonist (e.g., rimonabant) increased
and decreased anxiety in two studies each, whereas three other CB1 antagonists failed to
affect anxiety. All three agonists, inverse agonists, and antagonists (∆9-THC, rimonabant
and AM-251, respectively) increased anxiety, whereas three different agonists had biphasic
effects. Such findings are no strong arguments for the statement that CB1 ligands are
promising targets of anxiolytic drug development.

Various hypotheses were advanced to explain such discrepant findings. One of the
obvious explanations is that different ligands have different impacts on the mechanisms
that mediate cannabinoid effects. For instance, the ability of cannabinoids to affect the
GPR55 receptor is variable; moreover, it may depend on the cell type and the tissue [140].
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In addition, one and the same agent, particularly AM-251, is an antagonist of the CB1
but an agonist of the GPR55, which is also considered a cannabinoid receptor. Similarly,
the ability of cannabinoid ligands to exert effects through transient receptor potential
(TRP) channels is also highly variable; moreover, ligands exert variable effects on various
subtypes of such receptors (TRPV1-4; TRPA1, TRPM8; [34]). The CB1 agonist WIN55212-2
increased intracellular calcium in cell cultures, while the agonist CP 55,940 did not [141].
These findings suggest that cannabinoid ligands have individual spectrums as it regards
the mechanisms they can activate. This may account for both the differential effects of
putatively similar agents (e.g., CB1 antagonists) and the biphasic effects of cannabinoid
agonists. Regarding the latter, one can hypothesize that in parallel with the increase in
dosage, more and more mechanisms are activated, which changes the behavioral outcome
of the treatment.

Even the effects of cannabinoids on the CB1 and CB2 receptors may show large
variations due to a differential brain distribution. It was shown that the brain distribution
of the cannabinoid ligands WIN-55,212 and SR-141716A is not uniform [142]. For instance,
two times more WIN-55,212 was accumulated in the hypothalamus than in the amygdala
after injecting the compound intraperitoneally. The accumulation of SR-141716A was also
inhomogeneous and importantly, the accumulation preferences of the two compounds were
different. The highest levels of SR-141716A were found in the prefrontal cortex, whereas the
lowest was observed in the cerebellum, which is different from that seen with WIN-55,212
(highest: hypothalamus; lowest: amygdala). Although the issue is insufficiently studied,
this report suggests that cannabinoids have a “brain fingerprint” of distribution, with
obvious consequences for behavior. One can hypothesize that in parallel with increasing
the dosage, cannabinoids can reach the threshold for effect in more and more brain areas,
which can change the behavioral outcome of the treatment.

These considerations may make the development of receptor ligand anxiolytics rather
difficult. A clinically useful anxiolytic should selectively target brain areas where endo-
cannabinoids affect anxiety favorably; moreover, they should target the appropriate neuron
types within this brain area, and out of the multitude of intracellular binding sites should
specifically affect those that have favorable effects on anxiety. This would involve the
optimization of the new compound for all three, brain distribution, cell-, and molecular
mechanism-selectivity. Drug development at this level of complexity is close to hopeless.

It is worth noting that the effects of pharmacologic agents also depend on stress
exposure like those of CB1 gene disruption. For instance, the biphasic effect of HU-210 on
anxiety under normal conditions lost its biphasic nature in chronically stressed animals [81].
Although there is a tight interaction between the mechanisms of the stress response and
endocannabinoid signaling [143], the impact of stress on anxiolytic efficacy was less well-
studied with receptor ligands than with CB1-KOs or enzyme inhibitors (see below), except
for pain-induced anxiety.

A specific case of anxiety associated with stress is that elicited by chronic pain, which
activates nociceptive afferents that target brain regions involved in affective and cognitive
processes [144]. Consequently, chronic pain is frequently associated with anxiety. Pain
perception is mediated by neurotransmitter systems that are subject to retrograde control
by endocannabinoid signaling, e.g., GABA, norepinephrine, TRPV1, etc. [144–146]. Not
surprisingly, the favorable impact of cannabinoid receptor ligands on pain-induced anxiety
is more robust than in the case of other anxiety types [147]. Even ∆9-THC provided positive
findings, although the applicability of this compound is hampered by its side-effects.
Nevertheless, recent advances improved the human applicability of this compound as
shown below, and in addition, more natural ways of enhancing endocannabinoid signaling
are also effective (see Section 3.3 “Enzyme inhibitors and transporters”).

The complex effects of cannabinoid receptor ligands may also explain the controver-
sial effects of natural cannabinoids in humans. Chronic consumption of cannabis either
increased or decreased anxiety, depending on the study [148,149]. Such conflicting findings
may be due to individual differences in cannabinoid receptor distribution or genetic poly-
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morphisms in humans, but it transpires that one major factor relates to the composition of
cannabis preparations. In addition to ∆9-THC, cannabis contains a variety of cannabinoids
and other psychoactive compounds, including cannabidiol (CBD) [150]. The latter does
not share the psychotropic effects of ∆9-THC and has the opposite neural and behavioral
effects [151]. This is valid also for the anxiety-related effects of cannabis, as products high
in ∆9-THC but low in CBD proved to be anxiogenic whereas those having a low THC:CBD
ratio were anxiolytic [152]. This assumption is also supported by a review showing that
no human studies provided evidence of anxiolytic effects of isolated ∆9-THC, whereas
isolated CBD reliably decreased anxiety in a variety of studies [153]. The finding that CBD
can counteract many unwanted effects of ∆9-THC including anxiety led to the assumption
that products that contain large amounts of CBD, or if CBD was added to cannabis, may
make cannabis consumption safer [154]. Indeed, a variety of studies showed that CBD
can counteract the anxiogenic effects of ∆9-THC when mixtures of the two compounds
were consumed [155–157]. Similar findings were obtained with various preparations, es-
pecially with naboxilols (e.g., Sativex) in which the ∆9-THC:CBD ratio is approximately
1:1. The absolute amount ∆9-THC and the baseline anxiety of participants is also relevant
for the favorable effects of CBD [155,158]. The creation of safer cannabinoid preparations
is naturally important, especially for consumers of younger ages, where ∆9-THC may
induce long-term increases in anxiety and may contribute to the development of anxiety
disorders [159–161]. In addition, the stable ∆9-THC-CBD ratio of naboxilols makes them
applicable for therapeutic purposes. For instance, naboxilols were shown to decrease
anxiety during cannabis withdrawal [162,163]. In addition, THC:CBD mixtures supported
withdrawal, probably because of its CBD content. Such mixtures may also be applicable
in conditions associated with pain. There are various conditions where chronic pain re-
sults in chronic stress and anxiety, and these may be ameliorated by treatments involving
endocannabinoid signaling [164,165]. One option would be the application of naboxilols
or cannabis preparations high in cannabidiol content, which lack the anxiogenic effects
of ∆9-THC [166]. Other cannabinoid signaling-related treatments are also applicable (see
Section 3.3).

It is important to note, however, that the addition of CBD to cannabinoid prepara-
tions does not make ∆9-THC an anxiolytic compound, whereas CBD, although present in
cannabis, is not a primary ligand of CB1 and CB2 receptors [167]. As such, discussing its
anxiety-related effects in detail is outside the scope of this review. In conclusion, cannabis
may activate mechanisms involved in a reduction in anxiety, yet the multitude of mech-
anisms activated by this compound—like with other cannabinoid ligands—make it an
unreliable anxiolytic agent, whereas ∆9-THC per se appears to be anxiogenic in humans.

3.3. Enzyme Inhibitors and Transporters

When we started to study the effects of the FAAH inhibitor URB-597 on anxiety, there
was a wealth of literature on the issue, most of which reported positive findings. The
compound reduced anxiety in a variety of species and strains, and in a variety of anxiety
tests (Table 3A). One study showed that similar effects can be obtained by invalidating the
gene of the FAAH enzyme [104], whereas another showed that the overexpression of FAAH
in the prefrontal cortex increased anxiety [100]. These studies showed that FAAH inhibition
is anxiolytic, suggesting that the enzyme is a promising target for drug development.

However, URB-597 did not affect anxiety in several studies (Table 3A); in addition,
FAAH-KO mice were not different from controls in another [106].

Such discrepancies are usual in pharmacological research in general and also in en-
docannabinoid research. However, it was reported earlier that URB-597 considerably
ameliorated the corticosterone response and amygdala activation elicited by restraint
stress [168,169]. This suggested that FAAH inhibition worked as a buffer against environ-
mental aversiveness. This can be considered a likely consequence of its main molecular
effect, e.g., the enhancement of anandamide signaling. Stress-induced and pathological
anxiety is believed to result from excessive neuronal (especially glutamatergic) activa-
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tion [170,171]; therefore, a reduction in this activation by retrograde endocannabinoid
inhibition would logically reduce anxiety as well. In support of the involvement of stress, a
modified—more stressful—version of the elevated plus maze test revealed anxiolytic effects
in a study where FAAH inhibition did not affect anxiety under normal conditions [106].
Prompted by this publication, we inspected earlier reports, and interviewed authors. The
information gathered suggested that testing was aversive in all studies where URB-597 was
effective [108]. In some cases, this was part of the experimental protocol, e.g., when anxiety
was studied during alcohol withdrawal [103]. In other cases, aversiveness derived from
local experimental practices. For instance, the testing arena was brightly illuminated, or the
light source was placed such that the closed arms were shadowed whereas the open arms
were illuminated in the elevated plus-maze test. In other cases, the study was performed in
animals housed individually, or in animals that were not handled and not habituated to
the testing environment. We showed earlier that aversive testing conditions enhanced the
effects of CB1 gene disruption on anxiety [51] and hypothesized that the same was true for
FAAH inhibition.

The hypothesis on the role of aversiveness was supported by the findings. URB-597
did not affect anxiety when the stressfulness of the testing environment was minimized, but
decreased anxiety under three conditions: when animals were not handled and were not
habituated to the testing environment, when they were tested under high light, and when
the illumination of the experimental room underwent sudden changes [108,119]. In contrast
to FAAH inhibition, the anxiolytic effect of the benzodiazepine chlordiazepoxide was not
changed by these conditions. Taken together, this suggested that FAAH inhibition has no
specific effect on anxiety but abolishes the anxiogenic effects of aversive environments.
Similar findings were obtained in a variety of stress paradigms and FAAH inhibitors
(Table 3B). Interestingly, highly similar results were obtained with the MAGL inhibitor
JZL-184 that enhances retrograde signaling by 2-AG (Table 3C). The first study on the
issue [118] entirely replicated earlier findings with URB-597 [108], but the endocannabinoid
that counteracted the anxiogenic effects of aversive testing environments was 2-AG in
this case.

There have been a few studies which studied the two enzyme inhibitors comparatively.
Two studies found that the effects of MAGL inhibition were more robust than the effects
of FAAH inhibition [113,115], whereas the third found the reverse [114]. As such, both
enzymes may become targets of anxiolytic drug development. However, chronic MAGL
inhibition was shown to desensitize central CB1 receptors and to produce other unwanted
effects. For instance, the life-long invalidation of the MAGL gene chronically elevated brain
2-AG levels, desensitized CB1 receptors in brain regions involved in the control of emotional
states, and enhanced excitatory drive in the basolateral amygdala-medial prefrontal (mPFC)
circuit, with subsequent elevation of glutamate release to the mPFC [172]. Not surprisingly,
these transgenic animals showed anxiety and obsessive–compulsive behaviors in the
light/dark box and marble burying tests [172]. CB1 receptor desensitization was also
observed in mice chronically treated with the MAGL inhibitor JZL184, but not in those
chronically treated with the FAAH inhibitor PF-3845 [173]. The unwanted effect profile
of the two inhibitors showed similar differences in other studies as well [174,175]. These
findings suggest that in the long term, MAGL inhibition involves risks that are not shared
by chronic FAAH inhibition, even though in the short run, both interventions decrease
stress-induced anxiety. These findings render FAAH a better target for anxiolytic drug
development than MAGL.

The cannabinoid transport blocker AM-404 replicated the effects of enzyme inhibitors.
This compound decreased anxiety in a variety of paradigms (e.g., the step-down avoidance
task, Vogel conflict test, contextual fear, elevated plus-maze, defensive withdrawal, and
separation-induced ultrasonic vocalizations) [176–180]. Only one study found that AM-404
did not decrease anxiety [77], but this result could have been confounded by environmen-
tal influences. Indeed, similar to FAAH inhibition, AM-404 ameliorated endocrine and
neuronal responses to stress [168,169] and one study found that its effect depended on the
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stress history of subjects [181]. It is noteworthy that many of the tests where the compound
was effective implicitly involved aversiveness.

The favorable stress-related effects of the agents discussed here potentially render
them useful in psychopathological states elicited by traumatic experience, e.g., post-
traumatic stress disorder [182]. Indeed, FAAH inhibitors not only ameliorated stress-
induced anxiety (Table 3B,C) but also promoted the extinction of aversive memories in
several paradigms [183–185]. Like enzyme inhibitors, the endocannabinoid transport
inhibitor AM404 also facilitated the extinction of conditioned fear [186].

Interestingly, similar findings were obtained in humans, when fear extinction was stud-
ied in conjunction with gene variants of the FAAH enzyme. In one study, a single-nucleotide
polymorphism associated with lower catabolic performance of FAAH increased plasma
anandamide levels and changed brain activation patterns elicited by a fear-conditioning
paradigm [113]. Although the genotype did not affect fear extinction, an indirect favor-
able effect was observed, this being mediated by the increase in anandamide levels and
their impact on brain activation patterns. In another study, genetic variation within the
FAAH gene influenced physiological, cognitive, and neural signatures of fear learning in
women with PTSD [114], whereas a subsequent study published by an overlapping set of
authors showed that the inherited FAAH deficit decreased anxiety responses elicited by
extinction recall [187]. Finally, FAAH inhibitors administered to humans elicited effects
similar to those of existing anxiolytic agents and dampened brain responses to emotional
stimuli [188]. Moreover, FAAH inhibition improved the recall of fear extinction memories
and attenuated the anxiogenic effects of stress [189]. FAAH inhibitors may also be useful in
conditions involving chronic pain (e.g., cancer, fibromyalgia) stress, and anxiety [190,191].
Taken together, these findings point to the translational power of laboratory studies and
render FAAH a promising drug target for stress-induced anxiety disorders.

3.4. FAAH Inhibitors and Coping Styles

A relatively new line of evidence suggests that FAAH inhibition goes beyond the
amelioration of stress-induced anxiety by promoting a change in coping styles. The idea of
addressing this issue came from studies suggesting that URB-597 promoted active coping in
both the forced swimming [192], and the fear conditioning tests [127]. In fact, these authors
recorded the usual behavioral variables, but interpreted them in terms of coping styles
rather than in terms of depression- and anxiety-like behavior. Fortunately, coping styles can
be investigated in tests that are associated neither with anxiety nor with depression, e.g.,
the tail pinch and back tests (see below). Employing such tests may allow the separation of
coping responses from effects on anxiety and depression.

Active and passive coping styles are two distinct behavioral phenotypes which differ
in the way challenges are dealt with [193,194]. In this context, challenges are in fact stressors
and aversive conditions that need to be handled when they occur. Active copers attempt
to control challenges when they occur (problem-oriented coping) whereas passive copers
respond to challenges by avoidant behavior. These temporally stable behavioral phenotypes
have adaptive significance in both animals and humans [193–196].

The rationale behind this line of research was that anxiety-like behavior is rather akin to
passivity in laboratory tests, whereas anxiolysis is usually identified by an active response.
For instance, the avoidance of the potentially dangerous open arms in the elevated plus
maze indicates anxiety, and at the same time it is also indicative of passive coping, as the
challenge imposed by the open arms is avoided. In a similar fashion, investigation of the
open arms is an active coping strategy, which at the same indicates decreased anxiety. The
same is true for most tests that investigate depression-like behavior. Floating in the forced
swimming test indicates a passive response to the challenge of forced swimming and is a
sign of depression-like behavior. Likewise, trials to escape the situation (struggling) are
an active response and at the same time a sign of reduced depression. An effect of coping
styles may be considered a common denominator of effects on anxiety and depression and
may explain both effects of endocannabinoid signaling.
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In the first study addressing the issue, we employed the tail-pinch test. This simple
tests consists in attaching a clamp to the tail of rats [197]. Passive copers endure the
clamp-induced discomfort by disregarding it, whereas active copers try to discard the
clamp [198]. The distribution of these two coping strategies was bimodal, e.g., mixed
strategies were less frequent than either active or passive coping. FAAH inhibition by
URB-597 promoted active coping, as the share of rats adopting the active strategy almost
doubled, mostly at the expense of passive copers. In a follow-up study, we studied mice,
which were forced on their backs [199]. Responses to this forced unnatural position are
indicative of coping styles [200]. Behavior showed bimodal distribution in the back test:
mice either showed escape attempts or equally distributed time between passivity and
escape. URB-597 increased escapes in animals with low escape scores. In the same study,
URB-597 promoted active responses in the fear-conditioning paradigm, where in addition
to decreasing freezing, it increased locomotion [199].

This approach to the interpretation of FAAH inhibition effects received little attention
so far, although similar findings were obtained in humans. It was shown for instance that
stress-coping traits are predicted by FAAH gene-mediated differences in amygdala threat
processing [201]. In this study, carriers of a low-expressing FAAH variant exhibited quicker
habituation of amygdala reactivity to threat and had lower scores on the personality trait of
stress-reactivity. As such, low FAAH activity was associated with low stress responsiveness
as a trait, and a quicker habituation to threatening stimuli.

4. Overall Interpretation of the Findings

The findings reviewed above justify the interest in the anxiolytic potential of com-
pounds that target the endocannabinoid system. It occurs that the enhancement in endo-
cannabinoid signaling decreases anxiety in a variety of paradigms. The least robust findings
were obtained with cannabinoid receptor ligands, which influence the whole organism
from immunity to cardiovascular functions [14,23]. This is possible because cannabinoid
ligands control the function of eight neurotransmitter systems pre-synaptically [28–31] and
of TRP channels post-synaptically [33,34]; in addition, they influence multiple intracellular
signaling pathways [35–38] and modulate interactions between glia cells and neurons
(Figure 2) [39,40]. Many or all these mechanisms are affected by both cannabinoid agonists
and antagonists. In addition, one and the same agent may be an antagonist at one of the
targets while being an agonist at another; moreover, the spectrum of effects is compound-
specific and depends on the type of cells that are exposed to the ligands [140]. Cannabinoid
ligands do affect mechanisms involved in anxiety control, yet the multitude of functions
affected in parallel appears to translate as conflicting findings in research.

From a mechanistic point of view, genetic manipulations led to more reliable findings,
likely because their effects are restricted—in theory at least—to just one of the multi-
tude of mechanisms that mediate the effects of endocannabinoids. Although secondary
changes—in fact, adaptations—may and do occur, the invalidation or the overexpression
of the CB1 receptor, for instance, is incomparably more specific than the inactivation or
activation of the whole system by receptor ligands. In addition, specificity can be increased
by targeted interventions that focus on one brain area, or one neurotransmitter system.
Not surprisingly, discrepant findings are fewer with transgenic animals than with phar-
macologic agents, and even these discrepancies may be explained by the dependence of
consequences on stress exposure.

Enzyme and transporter inhibitors are the most specific interventions available at
present. Such agents amplify ongoing endocannabinoid activations instead of influencing
the whole system. The chronic administration of particular agents may lead to unwanted
secondary changes, but acutely, these agents provide the most valuable information on the
functions of the endocannabinoid system and are probably the most promising targets for
anxiolytic drug development.
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Figure 2. Target selectivity of the main research approaches. (Upper panel) In theory, cannabinoid
receptor ligands activate all mechanisms that are controlled by cannabinoids. Practically, however, lig-
ands may bind to a subgroup of the target molecules only, due to the ligand specificity of mechanisms.
Nevertheless, each ligand activates a multitude of mechanisms, even if not all of them. (Middle
panel) The disruption of cannabinoid receptor genes eliminates responses mediated by the receptors
but allows effects mediated by other mechanisms. (Lower panel) Functional enhancers (inhibitors
of degrading enzymes and of transport proteins) affect only those cannabinoid functions that are
activated by the situation. This reduces the number of mechanisms affected. For details see text.
Black, mechanism activated; grey, mechanism not affected.

Three hypotheses have been put forward so far on the role of endocannabinoids in
emotional and behavioral control.

1. The endocannabinoid system controls behavior by its interactions with the stress
system (HPA-axis) and ensures normal functioning by eliminating excessive stress
responses at all three levels: the hormonal, neural, and behavioral [202].
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2. The endocannabinoid system contributes to the integration of perception and execu-
tion, by allowing this adaptation to the environment. It buffers maladaptive responses
and protects against psychiatric symptoms [203].

3. The endocannabinoid system promotes an active coping with challenges, which
confers the organism advantages in critical situations. This may be the common
denominator of its anxiolytic- and antidepression-like effects [204].

These three hypotheses appear complementary rather than contradictory. All three
suggest that the endocannabinoid system is a valid target for the treatment of psychiatric
conditions associated with dysregulated affect. The task is to find the agent that achieves
the goal with minimal risks.
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