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ABSTRACT

In this study, we proposed a novel GPU-based solution for modelling two-dimensional inviscid and
viscous compressible supersonic/hypersonic flows. Texture and surface pointers are used to access
GPU memory locations. For effective and efficient use of surface pointers, we grouped multiple 2D
arrays referenced and indexed by a single 3D surface pointer. To enable the proposed solver for
double-precision calculations, two consecutive 32-bit memory locations were grouped to maintain
the efficiency of surface pointers while taking advantage/accuracy of 64-bit calculations. Resolving
data and computation dependencies for parallel applications is another complex task that is the
focus of this study. Computation dependencies have been solved by using multiple mutually syn-
chronized GPU kernels and executing them sequentially using the GPU default stream to ensure that
all relevant data is available to the threads or computed before they actually use it. Consequently,
there is no intra-core data dependency in our proposed approach, while inter-core data depen-
dency is successfully solved by stringing multiple kernels together. Using NVIDIA GTX 660 GPUs, we
achieved 20x speedup compared to traditional Core i5® computers. This speedup is the result of
the Surface Pointer’s GPU capabilities for double precision computations. The simulation results are
also consistent with the experimental and numerical results of this study.
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1. Introduction (Soukov, 2021; Wang et al,, 2021). In addition, captur-

Computational fluid dynamics (CFD) is the study of gas
or fluid flow through software modelling of the under-
lying physics. The Navier-Stokes (NS) equation is the
basic equation for CFD, which describes the relationship
between pressure, velocity, density, and temperature for
fluids in motion (Chandar et al., 2013). Another impor-
tant factor for fluids moving at high velocity is the occur-
rence of shock waves in the flow field (Hoffmann & Chi-
ang, 2000). A shock wave is generated when the fluid,
gas, or plasma is flowing faster than the speed of sound.
When a shock wave is generated, an almost discontinu-
ous change in the temperature, density, and pressure of
the fluid is observed. When modelling and simulating
fluid flow at higher velocities, it is important to consider
such parameters (Hoffmann & Chiang, 2000).

As the geometry on CFD becomes more complex, the
size of the computational problem increases significantly

ing complex flow features further increases the com-
putational complexity by requiring more grid points
to be generated around the domain. These features
include shock waves, vortex structures, interactions
between the boundary layer and flow separation, etc.
Chen et al. (2007), Ladeinde and Nearon (1997), and
Nielsen (2004). In addition, the underlying numerical
methods require a large number of iterations to converge.
CFD Simulations on a modern multi-core computer
system can take hours or days (Zhai & Chen, 2003). One
way to speed up this process is to perform computa-
tions in parallel, which requires a highly scalable parallel
computing platform such as a graphics processing unit
(GPU).

GPUs are the most compact and massively paral-
lel hardware. Modern GPUs are equipped with thou-
sands of cores operating in parallel and very high
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memory bandwidth (Lai et al., 2020). GPUs are based
on the streaming model of processing and are capa-
ble of parallelizing computationally intensive tasks
(Glaskowsky, 2009; Weiskopf, 2007). The floating point
performance and memory bandwidth of GPUs are sev-
eral times higher than a conventional CPU (Cuda, 2015).
Existing applications that require the computational
power of GPUs need to be optimized and rewritten for
GPUs using CUDA or OpenCL, etc. Cuda (2015) and
Cuda (2020).

Many studies have been conducted to accelerate
CFD simulations with GPUs, but most of them con-
sidered only incompressible flows. For example, Chan-
dar et al. (2013) presented a GPU-based incompressible
NS-solver for motion over fixed grids. Wang et al. (2020)
proposed memory access patterns for higher order CFD
stencil computation. Wang et al. (2014) solved the incom-
pressible 3D NS equation using a combination of CPU
and GPU. Thibault and Senocak (2009) simulated incom-
pressible flows of GPU using the NS equation and
CUDA. Griebel and Zaspel (2010) simulated an incom-
pressible 3D two-phase flow on multiple GPUs. Télke
and Krafczyk (2008) presented a TeraFLOPs calculation
for GPUs, but for the less computationally intensive Lat-
tice Boltzmann method. Zuo and Chen (2010) acceler-
ated the simulation of the NS equation along with the
transport equation for airflow in HVAC systems with
GPU. Goddeke et al. (2009) have proposed GPU acceler-
ation for FEM NS solver. Rogers and Kwak (1990) used an
updraft difference scheme to solve the NS equation accu-
rately in time. Z.H. Ma. et al. have simulated compress-
ible but non-viscus flows on GPU using the meshless
method (Ma et al., 2014). Dequan Xu et al. also simu-
lated compressible but non-viscous super-sonic flows on
multi-GPU platform (Xu etal., 2021). Zhengyu Tian et al.
has used GPUs for simulating supersonic flows on hybrid
grids (Tian et al, 2020) and established the accuracy
of GPU computation due to its double precision. Other
related work could also be found in Adeeb and Ha (2022),
Kun and Xiaowen (2022), Kale et al. (2022), Kale, Sharma
et al. (2022), Lai et al. (2020), Shao et al. (2022), Wei
et al. (2020), and Weng et al. (2021).

To the best of our knowledge, there is no work report-
ing results from GPU-based NS solvers which consider
compressible, viscus and for supersonic/hypersonic flows
at the same time. Moreover, there are no reports on
using the surface pointer capability of GPUs for such
simulations. In this work, we have presented a GPU-
based solver for viscus, compressible supersonic and
hypersonic flows and its simulation results. We have
implemented the modified Runge-Kutta method (Damevin
& Hoffmann, 2001) together with the Harten-Yee
upwind total variation diminishing (HY-TVD) scheme

(Yee, 1989) for shock wave detection on GPU by exploit-
ing the power of surface pointers in an innovative and
efficient way. To the best of our knowledge, this is the
very first implementation of high-speed, viscous, and
compressible flows on GPUs using their surface pointer
capability. Main contributions of this study are given
below.

(1) We grouped multiple 2D arrays referenced and
indexed by a single 3D surface pointer to leverage
the efficiency of surface pointers on GPU.

We proposed 3D arrays of size XxYxN, where X
and Y are the grid dimensions in a problem and N
is the number of 2D arrays packed in the collec-
tion, to allow easier and more effective access to GPU
memory space.

For double precision calculations, 2 consecutive
32-bit memory locations have been grouped to pre-
serve the efficiency of surface pointers while taking
advantage/accuracy of 64-bit calculations.

Multiple mutually synchronized GPU kernels are
implemented to solve the problem of data and
computation dependencies in parallel applications/
computations.

()

3)

(4)

The rest of the paper is organized as follows. Section 2
describes the governing equations for simulation and
explains numerical method in detail. Implementation
details of our proposed GPU-based NS solver are given
in Section 3. Test cases for performance evaluation
are detailed in Section 4 and results are discussed in
Section 5. Finally, Section 6 concludes this study.

2. Mathematical modelling
2.1. Governing equations

In the present study, the two-dimensional NS equation
(Hoffmann & Chiang, 2000), which contains continuity,
momentum and energy equations, is solved to simu-
late viscous compressible flows with high velocity. NS
Equation can be expressed in the strong conservation
form as shown in Equation (1) and described in Equa-
tions (2) and (3).
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Here Q is the vector of conservative variables, and E,
F show inviscid fluxes, and E,, F, are viscous fluxes.
All other variables denote their conventional meanings.
For inviscid flow simulation, the viscous fluxes in the
right side of Equation (1) become zero. The above Equa-
tions (1) —(3) are transformed from Cartesian (x,y) to
curvilinear coordinates (£,7) and can be expressed in
flux vector form as shown in Equation (4) and described

in Equations (5) and (6) in the following.
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Pv = 7 (anv + 77va)
Where ] denotes the Jacobian of transformation from
(x,y) to (§,n) coordinates. Further details of the trans-
formation can be found in Hoffmann and Chiang (2000).
In the present study, air is assumed to be a perfect gas, as
shown in Equation (7). Therefore;

1
per=p (W +7v") +p/ (v = 1) (7)

Where, for air,y = 1.4 The absolute viscosity of the air is
computed by Sutherland’s law, described in Equation (8).
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2.2. Numerical method

Equations described in previous section are hereby solved
by using fourth order modified Runge-Kutta scheme
(Damevin & Hoffmann, 2001), as shown in Equation (9).
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Where LQ operator consists of convective part and
viscous part and has been discretized by 2nd order cen-
tral difference approximation. Equation (9) is compu-
tationally more efficient than the classical Runge-Kutta
method, since it is not necessary to store the previous
three steps in order to compute the n+1 step. Since this
method is a straight-order method, undesirable oscilla-
tions may occur in the vicinity of shock waves or other
flow gradients. However, these oscillations can be sup-
pressed by adding an artificial damping mechanism. In
Yee (1989), the Harten-Yee’s formulation, total varia-
tion diminishing (TVD), was used as an artificial damp-
ing term. There are two different ways to introduce the
damping mechanism into the scheme. One way is to
add it at each step of the modified Runge-Kutta scheme.
The second approach is to add it in the post-processor
phase after computing n + 1 steps. In this study, the latter
approach was used because it requires less computational
effort and time. The post-processor step with the dissipa-
tion part of the TVD scheme can be expressed as shown
in Equation (10).
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The formulation of Harten-Yee’s upwinded TVD scheme
in generalized coordinates, as per (Yee, 1989), is shown in
following Equations (11) and (12).
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The function v (y) is the entropy correction function
and is expressed in Equation (13). Further, mathemat-
ical descriptions of (8¢)i+1/2> (8y)ij+1/2> (ﬁg)iJr%’j and
(By)ij+1/2 are given in Equations (14) and (15).
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Here G is a limiter which has been computed using
Equation (16).
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3. Implementation details of proposed
GPU-based NS solver

As described earlier, GPUs enable massively parallel
implementation of the numerical solution to the Navier-
Stokes equation. In this section, we explain our imple-
mentation in this regard. A simplified sequence of opera-
tions to solve the equations under Section 2 is detailed
in Algorithm 1. About 30 two-dimensional arrays of
the same size are needed to accommodate all variables.
When multiple blocks are modelled simultaneously with
these equations, the number of arrays increases even fur-
ther. All these arrays had to be accommodated in the
GPU’s global memory and are updated accordingly. The
fastest way to access memory locations on the GPU is
through textures and surface pointers when used intel-
ligently (Cuda, 2014). Typically, a surface pointer binds
to a single CUDA array, so we need about 30 surface
pointers to manipulate all of these arrays. According to
Table 13 of Cuda (2014), there is an upper limit of 8
surface pointers to global memory for GPUs with pro-
cessing power 2.x and 16 for GPUs with higher processing
power. Clearly, this number is not sufficient to directly
exploit the efficiency of surface pointers. If we still want
to take advantage of the performance and efficiency of
surface pointers, the only way is to use some kind of
coordinate transformation technique and show multiple
variable arrays with few surface pointers.

In this study, multiple 2D arrays are grouped to be
referenced by a single 3D surface pointer and indexed
accordingly. This technique is explained in Figures 1
and 2. All 2D arrays needed for the problem are packed
into a single 3D array and a surface pointer references
this common block. The size of the 3D array is given
by XxYxN, where X and Y are the grid dimensions in
a problem and N is the number of 2D arrays packed in
the collection. CUDA Surfaces use a 32-bit computing
architecture by default. To make it suitable for double-
precision computations, 2 consecutive 32-bit memory
locations have been grouped to preserve the efficiency
of surface pointers while taking advantage/accuracy of
64-bit computations.

Resolving data and computation dependencies is
another complex task for parallel applications. These
dependencies have been resolved by using multiple GPU
kernels and executing them sequentially using the GPU’s
default stream. The reason for this is to ensure that all rel-
evant data is available to the threads or computed before
they actually use it. Also, a grid point of the geometry
and all related computations for that point have been
assigned to a single thread. With this approach, no thread
has to wait for data computed by a neighbouring thread.
In other words, it can be safely said that there is no



Algorithm 1 Simplified sequence of operations

1 {&x, é,-:y’ Mx> 77y} «— {InputFile}

22 GPU «— {§;, éy’ Mx> 77}/}

3. {P,T,U,V, p} <— Initialize variables on GPU()
4: while Iteration < maxiterations do

5. At; < Local time step (&x, &y, nx, 17)

6 Ql'* «—1IndVartoQ (P, T,U,V,p)

7. Tx'* «— Calculate TVD(x) (&1, &y» 11> 71y)
8
9

Ty'* «— Calculate TVD(y) (&x, &5 11 1))
Qn'-* «— RK4 Stage 1 (a, B, A1, P, T, U, V, p,
(21”4 )

10: {P,T,U,V, p} <— QtoIndVar ( Qu'*)

1. {P,T,U,V, p} «<— Boundary Conditions (P, T,
U,V,p)

122 Qnl+* «— RK4 Stage 2 (o, 8, At;,P, T, U, V, p,
Ql...4 )

13 {P,T,U,V,p} <— QtoIndVar (Qn'"*)

14 {P,T,U,V, p} <— Boundary Conditions (P, T,
U,V,p)

15 Qn'~* «— RK4 Stage 3 (a, 8, Aty, P, T, U, V, p,
Ql...4 )

16 {P,T,U,V,p} <— QtoIndVar (Qn'*)

17z {P,T,U,V,p} <— Boundary Conditions (P, T,
U,V,p)

188 Qn'+* «— RK4 Stage 4 (a, 8, At;, P, T, U, V, p,
Ql...4 )

190 {P,T,U,V,p} <— QtoIndVar (Qn'-*)

200 {P,T,U,V,p} <— Boundary Conditions (P, T,
U,V,p)

21 Apply TVD ( Qnl-4, Txl4, Tyl"'4 )

2. {P,T,U,V,p} <— QtoIndVar ( Qn'-*)

23: {P,T,U,V,p} <— Boundary Conditions (P, T,
U,V,p)

24: end while

25. CPU «<— {P,T,U,V, p}

intra-core data dependency in our proposed approach,
while inter-core data dependency is successfully solved
by queuing multiple kernels in order of computation to
the default stream. The kernels from the standard stream
are started in the order of the program and the next kernel
starts its operation only when the previous one finishes.
In this way, synchronization between kernels is achieved.
Also, where necessary, two separate sets of variables were
used for source and destination to avoid conflicts when
reading and writing memory.

In total, 9 GPU kernels were used to compute different
parts of the problem respectively, which are summarized
in Table 1. All of these kernels are enqueued into the
standard GPU stream, as shown in Figure 3. A 2D block
distribution was used to decompose the problem. We
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surface<void, cudaSurfaceType3D> SOLTNs;

__device__ double inline READ SURFACE(int I, int J, int var)
{

double value;

surf3Dread(&value, SOLTNa, I * sizeof (double), J,

var, cudaBoundaryModeClamp) ;
return value;

Figure 1. Setting up memory read/write through surface point-
ers.

//Example for Writing a variable to Surface Array
SOL_WRITE(iP, value, I, J);
SOL_WRITE(iT, wvalue, I, J);
SOL_WRITE(iU, value, I, J);
/Example for Reading a
value = P(I,J);

value = T(I,J);

value = U(I,J);

Figure 2. Memory read/write example through surface pointers.

Table 1. List of kernels and their utilization in stated cases.

Kernel Purpose Case-1 Case-2 Case-3 Case-4
Kernel-1  RK4 routine (Viscous term) v v - v
Kernel-1  RK4 routine (No Viscous term) - - v -
Kernel-2 TVD(x) Calculation v v v v
Kernel-3  TVD(y) Calculation v v v v
Kernel-4 Qto IndVar v v v v
Kernel-5 Apply Boundry Conditions v v v v
Kernel-6 Local At calculation v v v v
Kernel-7  Apply TVD calculations v v v v
Kernel-8 IndVarto Q v v v v
Kernel-9  Communicatin on Interface - v - -

used the NVIDIA C compiler (nvcc) from CUDA toolkit
6.5 to compile all the code. The host operating system was
Fedora 20 with a memory of 4 GB. All programs run on
an NVIDAI Geforce GTX 660 GPU.

4, Performance evaluation

The proposed scheme for accelerating the simulation
of inviscid and viscous flows was considered for differ-
ent geometries. The obtained results were also compared
with existing experimental and numerical results (see
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kernel INIT<<<dimGrid, dimBlock>>>();

int K=0;
while (X < max iterations) |
K = K+1;

kernel DelT<<<dimGrid, dimBlock>>>():;
kernel IndVar to Q<<<dimGrid, dimBlock>>>():;
kernel TVDx<<<dimGrid, dimBlock>>>();
kernel TVDy<<<dimGrid, dimBlock>>>();

kernel RR4 STAGE<<<dimGrid, dimBlock>>>(1/ .

kernel Q to_IndVar<<<dimGrid, dimBlock>>>():

kernel ApplyBC<<<dimGrid, dimBlock>>>():;
kernel RR4_STAGE<<<dimGrid, dimBlock>>>(1/c.0, 2.0);
kernel Q to_IndVar<<<dimGrid, dimBlock>>>();

kernel RpplyBC<<<dimGrid, dimBlock>>>();
kernel RR4_STAGE<<<dimGrid, dimBlock>>>(1/4.0, 2.0);
kernel Q to_ IndVar<<<dimGrid, dimBlock>>>();

kernel RpplyBC<<<dimGrid, dimBlock>>>():;
kernel RR4_STAGE<<<dimGrid, dimBleock>>>(1/2.0, 1.0);

/ /Boundary

/ /Boundary C

kernel Q to_IndVar<<<dimGrid, dimBlock>>>();

kernel ApplyBC<<<dimGrid, dimBlock>>>(); //Boundary Conditions
kernel ApplyTvD<<<dimGrid, dimBlock>>>(1/2.0);

kernel Q to_ IndVar<<<dimGrid, dimBlock>>>():

kernel ApplyBC<<<dimGrid, dimBlock>>>();

//Boundary Conditions

HANDLE ERROR( cudaGetLastError() );
HANDLE _ERROR( cudaDeviceSynchronize() );

}

HANDLE ERROR( cudaMemcpy3D (&copyParamalut) ) ;

Figure 3. Example sequence of kernel execution for case-2 mentioned in Table 1.

Section 5). The details of the test cases used on GPU are
given below.

4.1. Case-1:5° wedge with cylindrical leading edge

Steady state, inviscid simulation around a two dimen-
sional wedge having cylindrical leading edge was per-
formed with conditions given in Table 2, found in Prabhu
etal. (1989). The grid generated around wedge along with
boundary conditions is shown in Figure 4(a) and it is
composed of 162 x 101 points.

4.2. Case-2: compression corner

The simulation of a steady-state viscous hypersonic flow
over a 7.5° compression corner (Simeonides et al., 1994)
was performed under the conditions given in Table 2.
The numerical simulation around the compression cor-
ner is described by the leading edge shock, the corner
oblique shock, the interaction of the shock boundary
layer, and the recirculation region at the corner. To cap-
ture these features, a 110 x 55 point mesh was generated
around the compression corner. The resolution of the
mesh near the wall was kept high to capture the flow gra-
dients and recirculation region, as shown in Figure 4(b).

Flow characteristics were extrapolated at the outflow and
at the top of the region. Noslip and adiabatic boundary
conditions were established at the wall.

4.3. Case-3: 2D half cylinder

A two-dimensional, steady-state, viscous hypersonic flow
over a half-cylinder (Prabhu et al., 1989) is simulated with
the parameters listed in Table 2. The numerical simula-
tion of the hypersonic flow around such a blunt body is
described by a strong detached bow shock and a subsonic
flow in the stagnation region. Figure 4(c) shows a grid
with 55 x 85 points around the half-cylinder. To calcu-
late the heat flux at the stagnation point, the spacing of
the first grid point was set to 1.0 x 1075 m. The solution
was started under the free flow conditions. At the out-
flow, the flow variables were extrapolated. At the wall, a
slip-free boundary condition was applied.

4.4. Case-4: backward facing step

For the conditions listed in Table 2, a steady-state viscous
high-speed simulation was performed at the backward
2D stage (Smith, 1967). For this configuration, two mesh
blocks were generated, shown in Figure 4(d). The first
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Figure 4. Mesh structure for all 4 problems. (a) Mesh for 5° wedge, (b) Mesh for compression corner, (c) Mesh for half cylinder and (d)

Mesh for backward facing step.

Table 2. Parameter values for performance test cases.

Description Symbol Case-1 Case-2 Case-3 Case-4
Mach number Moo 15.0 6.0 16.34 5.0
Free stream density (kg/m>) Poo 0.002 0.04142 - -
Free stream temperature (K) Too 295 57.3 52 -
Free stream pressure (N/m?) Poo - - 82.95 -
Wall Temperature (K) Tw - - 294.4 -
Total Temperature (R) To - - - 680°
Specific gas constant (J/kg - K) R 287 287 287 287
Specific heat ratio y 1.4 1.4 1.4 14
Reynolds number (/m ) Re; - 0.8 x 10° 3.94 x 106 3.94 x 10°
Corner deflection angle 6c - 7.5° - -
Cylinder radius (m) r - - 0.038 -
Length forward plate (m) Ly - - - 0.1016
Length aft plate (m) Ly - - - 0.3048
Step height (m) H - - - 0.010922

block consists of 52x52 grid points, while the second
block has 81x97 grid points. The supersonic flow field on
the backward stage is characterized by an expansion wave
at the corner, a separation region, a reattachment, and a
re-compression wave. Free flow conditions were specified
at the beginning of the solution. The flow characteristics
were extrapolated at the outflow and at the top of the two
blocks. Slip-free and adiabatic boundary conditions were
specified at both walls.

All cases described above use the GPU kernel execu-
tion order defined in Algorithm 1. The only exception
is the backward steps case, where 2 blocks are actually

used. In this case, steps 5 through 23 of Algorithm 1 are
repeated twice (i.e. once for each block). Another impor-
tant difference is that the 5° wedge geometry is solved
using the Euler equation, which does not require calcu-
lations of the viscous term. This change is explained in
Algorithms 2 and 3 (One stage of the RK4 method). In
all cases, Algorithm 2 is used for the calculations in all
stages of the RK4 method, while the 5° wedge geome-
try uses Algorithm 3 for all stages of the RK4 method.
The value of « used for the modified RK4 method is 1/8,
1/6, 1/4, 1/2 and the value of B is 4, 3, 2, 1 for all 4 stages
(Damevin & Hoffmann, 2001).
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Algorithm 2 Simplified one Stage of RK4 Method (vis-
cous term)
1. 8&,8n < CONSTANTS.

2 o, B, At;, P, T,U,V, p,Q"""* < INPUT.
3. V24 « Viscous (U, V, T).
4 E* « FluxE (P, U, V, T, p).
5. Fl* « Flux F (P, U, V, T, p).
6: £ < a X ?—gl
Aty

7N <=0 X G
8 Qn' <« Q' — £&.AFE! — . AF!

o Qn2t « QP4 — £ AER — AR 4 %
10: OUTPUT <« Qn'-#

Algorithm 3 Simplified one Stage of RK4 Method (5°
wedge)

1: 8&,8n <— CONSTANTS.

2 o, At, P, T,U,V, p,Q\* < INPUT.
3 El* « FluxE (P, U, V, T, p).
4
5

. Fl* « FluxF (P, U, V, T, p).
& <—a X %—gl
Afy

=3

Ne <~ o X

7. inu.4 «— Ql...4 _ %—CAEI..A _ nCAFl..A
8: OUTPUT <« Qn!-#

RHO

= 0.012
™ 0008

(a)

5. Results and discussion

As mentioned earlier, a total of 4 different case geome-
tries were simulated using our proposed NS solver on
GPU. The structured mesh for each of the geometries
is shown in Figure 4. The geometries named compres-
sion corner, 5° wedge and half cylinder were mod-
elled as single block mesh, while the backward step was
modelled with 2 blocks due to the presence of cor-
ner in the domain. The simulation results for the den-
sity profile and mach number for each case are shown
in Figures 5(a,b), 6(a,b), 7(a,b), and 8(a,b). The simu-
lated results for these geometries were also compared
with the available experimental or numerical results and
good agreement was found, as shown in Figures 9(a,b)
and 10(a-d). The time analysis and comparison of all
cases on GPU and CPU for 10 iterations is shown in
Figure 11. The individual time taken for each kernel is
shown in Figure 12. The time comparison for 10k itera-
tions is shown in Figure 13 and the speedup achieved in
each case is given in Figure 14.

Figure 11 compares the GPU and CPU time required
for 10 iterations, considering all 4 geometries. The GPU
total time is the sum of kernel time and memory copy
time. The memory copy time is negligible because the
memory copy is performed only once before the start
of the computation and then the results are copied back
to CPU after the completion of the iterations. In all 4
cases, significantly less time was required on the GPU
than on CPU. The geometry for the 5° wedge contains

Figure 5. Simulation results for 5° wedge geometry. (a) Density profile and (b) Mach no. profile.
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M: 05 15 25 35 45 55

(a)

RHO: 0.01 0.03 0.05

0.07

(b)
Figure 6. Simulation results for compression corner. (a) Density profile and (b) Mach no. profile.

RHO

0.07
0.055
0.04
0.025
0.01

(a) (b)

Figure 7. Simulation results for 2D half cylinder. (a) Density profile and (b) Mach no. profile.

the largest number of points to compute, but it too takes  are no viscous terms that require additional computa-
less time than the 2D half cylinder which has a smaller  tion time. This difference in time is evident in the next
number of points to compute. This is because there  Figure 12.
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RHO: 0.004 0.008 0.012 0.016 0.02 0.024

(a)

M: 05 15 25 35 45 55

(b)

Figure 8. Simulation results for backward facing step. (a) Density profile and (b) Mach no. profile.

300 T T T T T
—R. K. Prabhu {Prabhu et al. 1989)
gl ==~ RK4 with HY-TVD i
200 —
E
o 150+ —
o
100 -
80 B
0 i - — -
2 18 18 1.7 16 -15 -1
i
(a)
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Figure 9. Comparison of RK4 + HY-TVD with existing numerical and experimental results for 5° wedge. (a) Comparison of pressure
distribution along stagnation line for 5° wedge and (b) Comparison of temperature distribution along stagnation line for 5° wedge.
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Figure 10. Comparison of RK4 + HY-TVD with existing numerical and experimental results for cases 2 to 4. (a) Pressure coefficient dis-
tribution along compression, (b) Skin fraction coefficient distribution along compression corner, (c) Pressure distribution along the wall
of 2D backward facing step and (d) Heat flux distribution along 2D half cylinder.

Figure 12 shows the time taken by each kernel com-  and kernel-3 calculations. All other kernels and memory
putation for each geometry. The first noticeable point  copies account for less than 10% of the total computa-
is that most of the time is spent on kernel-1, kernel-2,  tion time in all cases. Kernel-1 is the main routine that
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1
iy
Z 01
8
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0.0001 -

Compression Backward
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B CPU Time
B Memory Copy
M Kernel Time

m Total GPU Time

2D Half
Cylinder

wedge

Problems' Listing

Figure 11. CPU and GPU time comparison for all 4 cases.

Compression Corner

Backward Facing Step

B Mem H2D
B Mem D2H
m Kernel-1
u Kernel-2

u Kernel-3

5 degree wegde

Figure 12. Time taken by individual kernel.

computes all 4 steps of RK4 and the associated vari-
ables. Kernel-2 and Kernel-3 are responsible for calcu-
lating the total variation diminishing (TVD) variables
(TVD(x) and TVD(y)). The calculations performed by
all other kernels are explained in Table 1. Another notice-
able point is that the computation time trend is similar
for all cases, but not for the 5° wedge geometry. This
is due to the complex and time-consuming calculations
for viscous terms, which are not considered in this case.
This can be easily found out if you compare the two
Algorithms 2 and 3. Algorithm 3 lacks the calculations
for viscous terms, which are not required for the 5° wedge
geometry because it is simulated with the Euler equation.

Figure 13 shows the time required by CPU and GPU
for all cases where it takes thousands of iterations to

2D Half Cylinder

® Kernel-4
® Kernel-5
u Kernel-6
" Kernel-7
¥ Kernel-8

" Kernel-9

converge the problem to the solution. It is obvious that
the problems solved on the GPU are really fast. Back-
stepping geometry is a comparatively computationally
intensive problem and takes about 450 seconds on CPU.
Solving the same problem on a GPU takes less than 50
seconds, which is clearly better than solving on CPU. The
speedup achieved on the GPU is shown in Figure 14. The
maximum speedup achieved on the GPU is about 23,
for a compressed corner geometry. The speedup is nearly
constant for each number of iterations.

6. Conclusion and future work

This study presents an efficient GPU based solver for
compressible, high speed flows along with simulations
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Figure 13. Time vs. increasing number of iterations.
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Figure 14. Speedup vs. increase in number of iteration on GPU.

results obtained for four different 2D structured geome-
tries using this solver. Modified RK4 method along with
Harten-Yee upwind TVD scheme for shockwave cap-
turing has been implemented for solving the governing
equations. The most powerful, compact and massively
scalable parallel platform (GPU) was used for these sim-
ulations for the very first time. Surface pointers capability
of GPU was also exploited to speedup double preci-
sion computations. For these problems, results show a
speedup between 8 to 22 and more than 20 on an aver-
age GPU than that of standard core i5® computing
machines. It is evident if CFD codes and software use

GPU for simulation of problems, the computation speed
can be enhanced.

In the future, this research could be extended to
3D solvers. Moreover, the concept could be extended
to implicit solvers. A thorough investigation might be
needed to determine the computational cost of these
types of solvers. Another research direction could be to
study the behaviour of solvers for transient and fuzzy
systems.

Disclosure statement

No potential conflict of interest was reported by the author(s).



14 (&) M.NAVEED AKHTARETAL.

References

Adeeb, E., & Ha, H. (2022). Computational analysis of naturally
oscillating tandem square and circular bluff bodies: A GPU
based immersed boundary-lattice Boltzmann approach.
Engineering Applications of Computational Fluid Mechanics,
16(1), 995-1017. https://doi.org/10.1080/19942060.2022.20
60309

Chandar, D. D., Sitaraman, J., & Mavriplis, D. J. (2013). A
GPU-based incompressible Navier-Stokes solver on moving
overset grids. International Journal of Computational Fluid
Dynamics, 27(6-7), 268-282. https://doi.org/10.1080/10618
562.2013.829915

Chen, Q., Zhang, Z., & Zuo, W. (2007). Computational
fluid dynamics for indoor environment modeling: Past,
present and future. In Proceedings xxv congresso della
trasmissione del calore uit.6th International Conference
on Indoor Air Quality, Ventilation and Energy Conserva-
tion in Buildings: Sustainable Built Environment, IAQVEC
2007. https://research.polyu.edu.hk/en/publications/compu
tational-fluid-dynamics-for-indoor-environment-modeling-
past.

Cuda, C. (2014). Programming guide 6.5.

Cuda, C. (2015). Programming guide 7.5.

Cuda, C. (2020). Programming guide 11.0.

Damevin, H. M., & Hoftmann, K. (2001). Development of a
modified Runge-Kutta scheme with TVD limiters for ideal
three-dimensional magnetogasdynamics. In 32nd AIAA
plasmadynamics and lasers conference (p. 2739). https://doi.
org/10.2514/6.2001-2739

Glaskowsky, P. N. (2009). NVIDIA’s Fermi: The first complete
GPU computing architecture. White paper 18.

Goddeke, D., Buijssen, S. H., Wobker, H.,, & Turek, S.
(2009). GPU acceleration of an unmodified parallel finite
element Navier-Stokes solver. In International confer-
ence on high performance computing & simulation (pp.
12-21). https://doi.org/10.1109/HPCSIM.2009.5191718

Griebel, M., & Zaspel, P. (2010). A multi-GPU accelerated
solver for the three-dimensional two-phase incompressible
Navier-Stokes equations. Computer Science-Research and
Development, 25(1), 65-73. https://doi.org/10.1007/s00450-
010-0111-7

Hoffmann, K. A., & Chiang, S. T. (2000). Computational fluid
dynamics volume I1I. Engineering Education System.

Kale, B. S., Bhole, K. S., Dhongadi, H., Oak, S., Desh-
mukh, P, Oza, A., & Ramesh, R. (2022). Effect of polyg-
onal surfaces on development of viscous fingering in lift-
ing plate Hele-Shaw cell. International Journal on Interac-
tive Design and Manufacturing (IJIDeM), 1-8. https://doi.
org/10.1007/512008-022-01030-9

Kale, B. S., Bhole, K. S., & Sharma, C. (2022). Effect of
anisotropies in formation of viscous fingering in lifting
plate Hele-Shaw cell. Advances in Materials and Process-
ing Technologies, 8(4), 3780-3793. https://doi.org/10.1080/
2374068X.2021.2013679

Kun, Y., & Xiaowen, S. (2022). Progress and prospects of multi-
speed lattice Boltzmann method. Acta Aerodynamica Sinica,
40(3), 23-45. http://dx.chinadoi.cn/10.7638/kqdlxxb-2021.
0348

Ladeinde, E, & Nearon, M. D. (1997). CFD applications in
the HVAC&R industry. ASHRAE Journal, 39(1), 44-48.
http://newsite.ttctech.com/Docs/insted/ ASHRAE_Journal-
v39n1.CFDApps.HVAC.R.pdf

Lai, ], Tian, Z., Yu, H., & Li, H. (2020). Numerical investiga-
tion of supersonic transverse jet interaction on CPU/GPU
system. Journal of the Brazilian Society of Mechanical Sciences
and Engineering, 42(2), 1-13. https://doi.org/10.1007/s4043
0-019-2160-6

Lai, J., Yu, H,, Tian, Z., & Li, H. (2020). Hybrid MPI and
CUDA parallelization for CFD applications on multi-GPU
HPC clusters. Scientific Programming, 202. https://doi.org/
10.1155/2020/8862123.

Ma, Z., Wang, H., & Py, S. (2014). GPU computing of compress-
ible flow problems by a meshless method with space-filling
curves. Journal of Computational Physics, 263, 113-135.
https://doi.org/10.1016/j.jcp.2014.01.023

Nielsen, P. V. (2004). Computational fluid dynamics and room
air movement. Indoor Air, 14(Supplement 7), 134-143.
https://doi.org/10.1111/ina.2004.14.issue-s7

Prabhu, R,, Stewart, J., & Thareja, R (1989). A Navier-Stokes
solver for high speed equilibrium flows and application
to blunt bodies. In 27th aerospace sciences meeting (p.
668). https://doi.org/10.2514/6.1989-668

Rogers, S. E., & Kwak, D. (1990). Upwind differencing scheme
for the time-accurate incompressible Navier-Stokes equa-
tions. AIAA Journal, 28(2), 253-262. https://doi.org/10.25
14/3.10382

Shao, X., Santasmasas, M. C., Xue, X., Niu, J., Davidson,
L., Revell, A. J., & Yao, H. D. (2022). Near-wall model-
ing of forests for atmosphere boundary layers using lat-
tice Boltzmann method on GPU. Engineering Applica-
tions of Computational Fluid Mechanics, 16(1), 2142-2155.
https://doi.org/10.1080/19942060.2022.2132420

Simeonides, G., Haase, W., & Manna, M. (1994). Experi-
mental, analytical, and computational methods applied to
hypersonic compression ramp flows. AIAA Journal, 32(2),
301-310. https://doi.org/10.2514/3.11985

Smith, H. E. (1967). The flow field and heat transfer down-
stream of a rearward facing step in supersonic flow [Tech.
Rep.]. Aerospace Research Labs Wright-Patterson AFB OH.

Soukov, S. (2021). Heterogeneous parallel algorithm for com-
pressible flow simulations on adaptive mixed meshes. In Rus-
sian supercomputing days (pp. 102-113). Springer. https://
link.springer.com/chapter/10.1007/978-3-030-92864-3_8.

Thibault, J., & Senocak, L. (2009). CUDA implementation of
a Navier-Stokes solver on multi-GPU desktop platforms for
incompressible flows. In 47th AIAA aerospace sciences meet-
ing including the new horizons forum and aerospace exposi-
tion (p. 758). https://doi.org/10.2514/6.2009-758.

Tian, Z., Lai, J., Yang, E, & Li, H (2020). GPU-accelerated
computations for supersonic flow modeling on hybrid
grids. In 5th international conference on mechanical, con-
trol and computer engineering (ICMCCE) (pp. 1391-1397).
IEEE. https://doi.org/10.1109/ICMCCE51767.2020.00305.

Tolke, J., & Krafczyk, M. (2008). TeraFLOP computing on
a desktop PC with GPUs for 3D CFD. International Jour-
nal of Computational Fluid Dynamics, 22(7), 443-456.
https://doi.org/10.1080/10618560802238275

Wang, S., Li, Z., & Che, Y. (2020). Memory access optimization
of high-order CFD stencil computations on GPU. In Inter-
national conference on parallel and distributed computing:
Applications and technologies (pp. 43-56). Springer. https://
link.springer.com/chapter/10.1007/978-3-030-69244-5_4.

Wang, Y., Baboulin, M., Rupp, K., Le Maitre, O., & Fraigneau, Y.
(2014). Solving 3D incompressible Navier-Stokes equations


https://doi.org/10.1080/19942060.2022.2060309
https://doi.org/10.1080/10618562.2013.829915
https://doi.org/10.2514/6.2001-2739
https://doi.org/10.1109/HPCSIM.2009.5191718
https://doi.org/10.1007/s00450-010-0111-7
https://doi.org/10.1007/s12008-022-01030-9
https://doi.org/10.1080/2374068X.2021.2013679
http://dx.chinadoi.cn/10.7638/kqdlxxb-2021.0348
http://newsite.ttctech.com/Docs/insted/ASHRAE_Journal-v39n1.CFDApps.HVAC.R.pdf
https://doi.org/10.1007/s40430-019-2160-6
https://doi.org/10.1155/2020/8862123
https://doi.org/10.1016/j.jcp.2014.01.023
https://doi.org/10.1111/ina.2004.14.issue-s7
https://doi.org/10.2514/6.1989-668
https://doi.org/10.2514/3.10382
https://doi.org/10.1080/19942060.2022.2132420
https://doi.org/10.2514/3.11985
https://doi.org/10.2514/6.2009-758
https://doi.org/10.1109/ICMCCE51767.2020.00305
https://doi.org/10.1080/10618560802238275

on hybrid CPU/GPU systems. In High performance comput-

ing symposium (hpc’14). https://inria.hal.science/hal-01205305/

Wang, Y., Yan, X., & Zhang, J. (2021). Research on GPU parallel
algorithm for direct numerical solution of two-dimensional
compressible flows. The Journal of Supercomputing, 77(10),
10921-10941. https://doi.org/10.1007/s11227-021-03704-9

Wei, E, Jin, L., Liu, J., Ding, E, & Zheng, X. (2020). GPU accel-
eration of a 2D compressible Euler solver on CUDA-based
block-structured cartesian meshes. Journal of the Brazilian
Society of Mechanical Sciences and Engineering, 42(5), 1-12.
https://doi.org/10.1007/s40430-020-02290-w

Weiskopf, D. (2007). Gpu-based interactive visualization tech-
niques. Springer.

Weng, Y., Zhang, X., Guo, X., Zhang, X., Lu, Y., & Liu, Y. (2021).
Effects of mesh loop modes on performance of unstructured

ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 15

finite volume GPU simulations. Advances in Aerodynamics,
3(1), 1-23. https://doi.org/10.1186/s42774-020-00055-6

Xu, D, Luo, S., Song, J., Liu, J., & Cao, W. (2021). Direct numer-
ical simulations of supersonic compression-expansion slope
with a multi-GPU parallel algorithm. Acta Astronautica, 179,
20-32. https://doi.org/10.1016/j.actaastro.2020.10.047

Yee, H. C. (1989). A class of high-resolution explicit and
implicit shock-capturing methods.

Zhai, Z., & Chen, Q. Y. (2003). Solution characters of itera-
tive coupling between energy simulation and CFD programs.
Energy and Buildings, 35(5), 493-505. https://doi.org/10.10
16/S0378-7788(02)00156-1

Zuo, W., & Chen, Q. (2010). Simulations of air distributions
in buildings by FFD on GPU. HvacéR Research, 16(6),
785-798. https://doi.org/10.1080/10789669.2010.10390934


https://doi.org/10.1007/s11227-021-03704-9
https://doi.org/10.1007/s40430-020-02290-w
https://doi.org/10.1186/s42774-020-00055-6
https://doi.org/10.1016/j.actaastro.2020.10.047
https://doi.org/10.1016/S0378-7788(02)00156-1
https://doi.org/10.1080/10789669.2010.10390934

	1. Introduction
	2. Mathematical modelling
	2.1. Governing equations
	2.2. Numerical method

	3. Implementation details of proposed GPU-based NS solver
	4. Performance evaluation
	4.1. Case-1: 50 wedge with cylindrical leading edge
	4.2. Case-2: compression corner
	4.3. Case-3: 2D half cylinder
	4.4. Case-4: backward facing step

	5. Results and discussion
	6. Conclusion and future work
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice




