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Chapter 1

Introduction

1.1 Preface

Artificial Intelligence (AI) and Computer Vision (CV) technologies have the potential to rev-
olutionize the defence sector, providing new opportunities for military operations, situational
awareness, and decision-making. This doctoral dissertation explores the complex relationship
between AI and CV technologies and their potential applications in defence, taking a compre-
hensive approach to the examination of the current state of these technologies and the associated
challenges and limitations.

The research for this dissertation was conducted through a combination of a literature review
and case studies, providing a thorough examination of available information and data. This
analysis provides an in-depth understanding of the impact that AI and CV technologies could
have on the defence sector and the wider implications for society.

One of the key findings of this research is the significant potential for AI and CV technolo-
gies to enhance the defence capabilities of a nation. However, this potential is not without its
challenges. Ethical and moral dilemmas, security risks, and the possibility of misuse are some
of the many challenges that must be addressed to ensure the responsible deployment of these
technologies in defence.

This doctoral dissertation serves as a valuable resource for individuals and organizations
working in the defence sector, AI and CV researchers, and policymakers who play a role in
shaping the future of these technologies. It provides insights and recommendations to help
guide the responsible development and deployment of AI and CV technologies in defence,
taking into account the ethical and security implications that arise from their use.

Briefly, this doctoral dissertation provides a comprehensive examination of the relationship
between AI and CV technologies and their potential use in defence. By highlighting the oppor-
tunities and challenges of these technologies, it offers valuable insights and guidance for their
responsible development and deployment in the defence sector, helping to ensure that these
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technologies are used in a way that benefits society and protects against potential harm.

1.2 Introduction

The emergence of new technologies, such as Artificial Intelligence (AI) and computer vision,
has created new challenges for traditional security measures, including those in the military and
IT sectors. One particular challenge is the real-time analysis of computer images, which can
be addressed through the use of cost-effective AI systems. Furthermore, the combination of AI
and computer vision has the potential to revolutionize military applications, such as autonomous
weapons systems.

In the past, disruptive innovations like floppy disks, CDs, and the internet have had a pro-
found impact on the world. However, the recent emergence of AI and computer vision technolo-
gies is expected to have an even greater impact on the world’s economic, legal, and IT systems.
In addition to military and defence administration, the use of AI and computer vision raises
various scientific, technical, and legal issues, particularly in terms of data security, integration,
and isolation.

Using AI and computer vision to analyze visual data also presents scientific and technical
challenges, including high computing power requirements and slow image analysis method-
ologies. To address these challenges, strategic combinations of multiple technologies can be
used. AI and computer vision technologies are expected to significantly reduce human error
and improve the efficiency of decision-making in various industries, including the armed forces
and law enforcement. Comprehensive research is required to fully understand the potential of
these emerging technologies and to identify the best-use case scenarios for military and law
enforcement applications.

1.3 Artificial Intelligence and security related applications

Artificial Intelligence was first coined by John McCarthy, also known as the father of AI, at a
Dartmouth conference in 1956 [1]. Since then, AI has been continuously proven to be beneficial
in several domains including human assistance systems. Figure 1.1 shows various important in-
ventions over the years based on AI that opened ways to multiple diverse areas of research.
In July 2018, where Daniel Faggella, the head of Research and CEO of Emerj, addressed the
Interpol–United Nations (UNICRI) Global Meeting on the Opportunities and Risks of Artifi-
cial Intelligence and Robotics for Law Enforcement. This was the beginning of discussions
regarding Artificial Intelligence in policing, security, and law enforcement.

Kevin McCaney notes in Law Enforcement Using Analytical Tools to Predict Crime, that
law enforcement agencies are starting to rely on predictive analytics software in anticipating and
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Figure 1.1: Timeline of major Artificial Intelligence events (original illustration by Viktor
Huszár).

preventing crime. Until recently, such technology was mostly used by competitive enterprises.
An example would be the IBM Blue Crush (Criminal Reduction Utilizing Statistical History)
software in use by the Memphis, Tennessee Police Department to “analyze crime and arrest
data, and combine it with weather forecasts, economic factors, and information on events such
as paydays and concerts to create predictive models” [2]

The criminal justice system is a crucial component of society, responsible for maintaining
law and order, investigating and prosecuting crimes, and providing justice and punishment to
those who have committed crimes. This system is comprised of three main agencies: police,
courts, and correctional facilities. The role of these agencies is to work together to enforce the
law, protect the public, and hold those who have committed crimes accountable.

In order to perform their functions effectively, these agencies must have access to cutting-
edge technology and expert analysis. One of the most important areas of focus in this regard is
the use of Artificial Intelligence (AI) programs to enhance the precision of crime analysis and
scenario simulation. This is where the National Intelligence Model (NIM) comes in. Developed
in the UK, NIM is designed to improve and assist intelligence-led police operations.

The National Intelligence Model consists of nine individual elements, each of which plays
a critical role in improving the efficiency and effectiveness of law enforcement activities [3].

• Crime Pattern (number/relations) focuses on analyzing the number and relationships of
crimes committed in a given area. This information is then used to better understand the
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types of crimes being committed, which can inform law enforcement efforts to prevent
and respond to these crimes.

• Criminal surveys are another important component of the National Intelligence Model.
This element focuses on gathering data on crime and criminal activity in a given area,
which can be used to develop a deeper understanding of criminal behaviour. This infor-
mation can then be used to create targeted and effective responses to criminal activity.

• Demographic/ Social Trend Analysis is another important element of the National Intel-
ligence Model. This element focuses on analyzing demographic and social trends in a
given area, which can be used to identify areas that may be at higher risk of criminal
activity. This information can then be used to inform law enforcement efforts to prevent
crime in these areas.

• Profiling criminal operations is another critical element of the National Intelligence Model.
This element focuses on identifying the characteristics of criminal operations, including
the actors involved, the types of crimes being committed, and the methods used to commit
these crimes. This information can then be used to create targeted and effective responses
to criminal activity.

• Network analysis (actors who make up such networks) is another important element of
the National Intelligence Model. This element focuses on analyzing the actors who make
up criminal networks, including the relationships between these actors and the types of
crimes being committed. This information can then be used to disrupt criminal networks
and prevent crime from being committed.

• Risk analysis is another critical component of the National Intelligence Model. This
element focuses on identifying the risks associated with criminal activity, including the
likelihood of a crime being committed and the potential consequences of these crimes.
This information can then be used to inform law enforcement efforts to prevent crime and
protect the public.

• Target profile analysis is another important element of the National Intelligence Model.
This element focuses on identifying the characteristics of criminal targets, including the
types of crimes being committed and the methods used to commit these crimes. This
information can then be used to create targeted and effective responses to criminal activity.

• Operational Intelligence assessment is another important element of the National Intel-
ligence Model. This element focuses on assessing the effectiveness of law enforcement
operations, including the strategies and tactics used to respond to criminal activity. This
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information can then be used to refine and improve law enforcement efforts, ensuring that
they are as effective as possible.

• Results analysis is the final element of the National Intelligence Model. This element
focuses on evaluating the results of law enforcement activities, including the effectiveness
of various strategies and tactics. This information can then be used to inform future law
enforcement efforts, ensuring that they are as effective as possible.

The use of Artificial Intelligence (AI) and robotics in policing have become increasingly
popular due to their potential to improve crime prevention, investigation, and response. How-
ever, the same features that make AI and robotics appealing to law enforcement can also be
used by criminals and terrorist groups to carry out malicious attacks. This has been highlighted
in a report by the United Nations Interregional Crime and Justice Research Institute (UNICRI),
which concludes that AI and robotics could be both a tool for good and a weapon for evil in
policing. The report identified three main areas of attack, each with its unique set of challenges
and implications for the criminal justice system [4]. The report identified three main areas of
attack:

• Digital attacks, such as automated spear phishing, automated discovery, and exploitation
of cyber vulnerabilities. These types of attacks rely on the use of AI to automate the
process of finding and exploiting cyber vulnerabilities, allowing criminals to gain access
to sensitive information, such as login credentials and financial information.

• Political attacks, such as the spread of fake news or media to generate confusion, conflict,
or the use of face-swapping (deep fake) and spoofing tools to manipulate video and create
trust issues in political figures. These types of attacks can have a significant impact on the
public’s trust in political leaders, as well as the validity of evidence in court. Furthermore,
the use of deep fake technology can lead to the creation of false narratives, making it
difficult to differentiate between what is real and what is not.

• Physical attacks, such as facial recognition capabilities in armed drones or drones smug-
gling contraband. These types of attacks can have serious consequences, such as the
potential loss of life or the smuggling of illegal goods into the country. The report also
highlights the potential of AI to be used to subvert another AI system by poisoning data
sets, which could result in incorrect decisions being made by law enforcement agencies.
[5].

Therefore, the UNICRI report highlights the need for caution in the use of AI and robotics in
policing and the criminal justice system. While these technologies have the potential to improve
the efficiency and accuracy of law enforcement, they also present new challenges and risks that
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must be considered. The report suggests that law enforcement agencies must work closely with
experts in AI and cybersecurity to mitigate these risks and ensure that AI and robotics are used
for the public good in policing.

1.3.1 Law Enforcement Equipment Technologies

In the recent past, law enforcement agencies have been implementing various technologies to
enhance their policing and surveillance capabilities. These technologies have been used to im-
prove situational awareness, response times, and investigative abilities. One such technology is
IBM i2 COPLINK [6], which can help law enforcement organizations solve crimes faster, keep
officers safer, and disrupt crime and terrorism by organizing and providing tactical, strategic,
and command-level access to vast quantities of seemingly unrelated data. This includes crim-
inal histories, arrest records, and incident reports, helping identify patterns and relationships
among various criminal activities.

The Chinese government’s social credit system [7] is another technology that has been used
for policing and surveillance. The system assigns a score to each citizen based on their social
and economic behaviour, which can affect their access to various services and opportunities.
The system has been criticized for its potential for abuse and lack of transparency. Another
technology used for surveillance is the doorbell camera from Ring. Through partnerships with
law enforcement agencies, the company’s cameras have extended the reach of surveillance to
private properties. With alarm monitoring, users are notified when a security issue is detected
[8].

ShotSpotter [9] is a technology used to detect and locate gunshots. It uses acoustic sensors
to detect and triangulate the source of gunfire, providing real-time alerts to law enforcement
agencies. The technology has been used to reduce response times and improve public safety in
high-crime areas.

PredPol is a predictive policing software that uses machine learning algorithms to identify
areas with a high likelihood of crime. The software generates daily crime forecasts, enabling
law enforcement agencies to deploy resources proactively. The software has been used in sev-
eral cities across the United States, with mixed results in terms of effectiveness and concerns
about potential biases [10].

Palantir Gotham is a data analytics software used by law enforcement agencies for intelli-
gence gathering and investigation. The software allows agencies to collect and analyze large
amounts of data from various sources, including social media and government databases. The
software has been used in several high-profile cases, including the tracking of Osama bin Laden
[11].

Automated Number Plate Readers (ANPR) are cameras that can capture and read the license
plates of vehicles passing by. The technology has been used for various purposes, including
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locating stolen vehicles and identifying individuals with outstanding warrants. However, the
use of ALPRs has raised concerns about privacy and potential misuse of the data collected [12].

Axon Body Cameras are wearable cameras used by law enforcement officers to record their
interactions with the public. The cameras have been used to increase transparency and account-
ability in policing, as well as to provide evidence in legal proceedings. However, the use of
body cameras has also raised concerns about privacy and the potential for misuse of the footage
collected [13].

X-ray Backscatter Imaging is a technology used for screening individuals and vehicles for
concealed weapons and other contraband. The technology uses low-dose X-rays to create im-
ages of objects concealed on a person or inside a vehicle. The use of the technology has raised
concerns about privacy and health risks associated with exposure to X-rays [14].

The use of AI and other technologies in law enforcement has increased in recent years,
providing various benefits but also raising concerns about privacy, biases, and potential misuse.
As these technologies continue to evolve, it will be important to strike a balance between public
safety and individual rights and liberties.

1.4 AI in military applications

The application of Artificial Intelligence (AI) and Computer Vision in the military and defence
sector has gained significant attention in recent years. In the literature, there is a growing body
of research exploring the use of these technologies for various military and defence applications.

1.4.1 Target recognition and classification

The application of AI and Computer Vision technologies for target recognition and classification
in the military and defence sector is an important area of research and development. These
technologies can be used to automatically identify and classify targets from surveillance images,
which can help to speed up the target recognition process and support decision-making. For
example, deep learning algorithms can be trained to recognize and classify different types of
weapons, vehicles, and other targets based on their visual appearance.

1.4.2 Autonomous systems

The development of autonomous systems is another key area of focus in the literature on AI and
Computer Vision applications in the military and defence sector. These systems can be designed
to operate without human intervention, reducing the risk to human personnel and supporting
operations in dangerous environments. For example, autonomous vehicles, unmanned aerial
vehicles (UAVs), and other systems can be equipped with AI and Computer Vision technologies
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to enhance their situational awareness and decision-making capabilities. This can include object
detection and tracking, target recognition and classification, and other capabilities that can help
to enhance their performance and reduce the risk to human personnel.

1.4.3 Weapon systems

AI and Computer Vision technologies are also being used to enhance weapon systems in the
military and defence sectors. This can include target acquisition and tracking systems, which
can improve the accuracy and effectiveness of weapon systems. For example, AI and Computer
Vision technologies can be used to automatically identify and track targets, allowing weapon
systems to engage them more accurately and effectively. This can help to reduce the risk to
human personnel and improve the effectiveness of military and defence operations.

1.5 Computer Vision using AI for public safety

Computer vision has been making great strides in recent years, with applications ranging from
facial recognition to autonomous vehicles. One area where computer vision is having a major
impact is in the field of surveillance and security. With more and more video cameras being
deployed in public spaces, the amount of recorded footage that must be analyzed by operators
is becoming overwhelming. To address this problem, much research is being conducted to
develop systems that can automatically analyze this footage.

The goal of this research is to reduce the mechanical load on the operators of these cameras.
By automating the process of analyzing the footage, the operators will be freed up to focus on
other important tasks, such as responding to potential threats. In addition, automatic analysis
of footage will allow for faster and more accurate identification of potential threats, as well as
more efficient use of resources.

The deployment of video cameras in public spaces is becoming increasingly common, with
cameras being placed in educational institutions, parks, shopping malls, traffic lights, highways,
and even at country borders. The goal of these cameras is to ensure safety, by providing a record
of events that can be used to identify potential threats and respond to them in a timely manner.

The development of systems that can automatically analyze footage from these cameras is
a critical area of research, as it will have a major impact on the efficiency and effectiveness of
surveillance and security systems. By reducing the workload of operators, these systems will
be able to provide more accurate and timely information, which will in turn help to ensure the
safety of the public. Some important applications related to surveillance and security where
computer vision and AI technologies can be extremely useful are shown in Figure 1.2. These
applications are discussed in the following.
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Figure 1.2: Applications of AI and computer vision in the fields of video surveillance and
security monitoring (original illustration by Viktor Huszár).

1.5.1 Object detection and localization

The use of facial image data for face detection and person identification has become ubiquitous
in today’s society, being utilized in both smartphones and offices. With the advent of AI and
modern methods for face detection, these systems are now able to accurately identify individuals
even in crowded environments. The recent revolution in real-time object detection using deep
learning has made a significant impact in the field of image recognition, with AI-based object
detection algorithms demonstrating impressive robustness to various lighting conditions and
background environments, and delivering precise results even in low-light conditions.

One particularly important application of object detection in the realm of public safety is
the detection of weapons, such as guns and swords, in surveillance videos. By utilizing frame-
level data, these systems are able to detect and localize such weapons, thereby alerting law
enforcement authorities to potentially dangerous situations. Another significant use case for
object detection is in the protection of infrastructure, including private properties, restricted
zones, and railway passages. By implementing virtual fencing methods, these areas can be
monitored to ensure that they are not being trespassed. This is achieved by marking prohibited
regions in the optical image frame of surveillance cameras and comparing the localized pixel
coordinates of detected objects against these marked regions to identify any violations.

The use of computer vision and AI in detecting vehicle number plates from traffic cameras
is another crucial area where these technologies have demonstrated enormous potential. The
fast movement of vehicles can cause significant motion blur in traffic videos, making it difficult
to accurately identify vehicle number plates even for the human eye in some cases. However,
AI-based vision algorithms have demonstrated exceptional performance in these applications,
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outperforming several state-of-the-art baseline methods.

1.5.2 Object tracking and behaviour analysis

Carrying out object detection in a video across multiple images allows for the modelling and
evaluation of object behaviour. The trajectories of object coordinates in multiple video frames
contain crucial information about the movements of objects and their interactions with other
objects. For instance, the trajectories of automobiles in surveillance videos can be used to detect
a range of events, such as speed limit violations and one-way traffic violations. By analyzing
the trajectories of multiple vehicles, it is also possible to automatically detect traffic accidents.

In many applications, including smart cities, the movement analysis of people is of great
significance for recognizing abnormal or violent actions, such as fights. By leveraging deep
learning for behaviour analysis, it is possible to not only observe these actions but also predict
the future movements of individuals. This enables the observation and classification of any
deviations from normal behaviour, providing a valuable tool for identifying potential security
risks.

The use of object detection and behaviour analysis in video data has far-reaching implica-
tions, with applications not only in public safety, traffic management, and smart cities, but also
in fields such as sports analysis, wildlife conservation, and even entertainment. The ability to
track and analyze object behaviour in real-time opens up a range of possibilities for understand-
ing and optimizing human and animal movements, as well as improving our understanding of
the world around us.

1.5.3 Distributed deep learning

Developing effective deep-learning models requires a substantial amount of data collection and
processing. To train practical deep learning models, millions of training samples must be in-
corporated, making the size and nature of the training data a critical factor. Specifically, videos
contain data with multiple pixel values collected across various dimensions, including colour,
spatial, and temporal. Depending on the number of frames, loading, and processing a video
for training can be a computationally intensive task that requires a large amount of memory
bandwidth.

To meet these memory requirements, the use of multiple high-end GPUs is a common ap-
proach. These GPUs are used to share the training data and to ensure that sufficient memory
is available for processing. However, such high-end GPUs are not always readily available in
consumer-level computers.

An alternative to using multiple GPUs is to use multiple computers as distributed nodes.
This involves partitioning the data into smaller chunks and training independent models on
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each computer. This approach can be especially useful in scenarios where access to high-end
GPUs is limited and allows for the efficient processing of large amounts of data.

1.6 Scientific challenges

Despite the promising potential of AI and computer vision in safety and security applications,
there remain several scientific challenges that need to be addressed to enable their practical
implementation. These challenges are discussed below:

• Deep learning for image/video classification - In the context of security and military ap-
plications, image/video classification is a critical task for detecting and identifying poten-
tial threats, such as weapons, explosives, and suspicious activities, in real-time. Accurate
classification of images and videos is a fundamental task in most security-related AI ap-
plications. However, current methods for image and video classification have limitations
in terms of their reliability, especially in security applications where misclassification can
have severe consequences.

• Dataset evaluation and diversity - Successful deep learning models require large and
diverse datasets for training, but in safety and security applications, access to training
data can be limited by regulations and ethical considerations. This lack of data diversity
can result in model over-fit and reduced generalizability to new scenarios. Several works
in the literature do not evaluate the diversity in public datasets.

• Generalizability - The ability of trained AI models to generalize to new scenarios is a
crucial aspect of their practical use. However, existing literature on safety and security
applications using AI does not adequately address the generalizability of trained models,
particularly through cross-database validation studies.

• Prototypes - To apply research findings to practical safety and security applications, it is
essential to develop prototypes and stand-alone implementations. However, much of the
current research in safety-related applications do not address the applicability of devel-
oped methods or how they can be adapted for practical use cases.

Addressing these scientific challenges will require new research and innovative solutions
that can enable the development of practical safety and security applications using AI.

1.7 Research motivation and hypotheses

According to data from the National Center for Education Statistics (NCES), there were approx-
imately 962,300 incidents of crime reported at public schools in the United States during the
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2017-2018 academic year [15] and 938,500 incidents of crime were reported during the 2019-
2020 academic year [16]. These incidents included theft, vandalism, and physical assaults,
among others. The high incidence of crime in schools, as reflected in the statistics, underscores
the need for effective safety and security measures.

On the one hand, while manual guarding by security personnel is important, there is always
a chance that there is not enough personnel to control all the activities on school premises,
leaving students and staff vulnerable to potential threats. In Hungary, according to the National
Police public records, a considerable percentage of schools cannot afford security personnel.
In 2021, it was reported that 13.7% of schools in Hungary faced financial constraints and were
unable to hire guards. In 2023, this percentage has increased to 14.5%, indicating a growing
trend of schools struggling to allocate sufficient funds for security personnel.

On the other hand, technology has advanced in recent years and the usage of surveillance
cameras is widely growing. Video surveillance is a powerful tool for promoting public safety
and preventing crime, but with this power comes a challenge: how can security personnel ef-
ficiently monitor vast amounts of video data for signs of violence or other criminal activity?
While surveillance footage can be critical evidence in criminal prosecutions, the sheer volume
of data generated by cameras makes manual monitoring impractical and error-prone. To effec-
tively prevent crime and reduce crime rates, it is important to explore automatic and efficient
methods for detecting and recognizing anomalies such as violence in surveillance videos.

1.7.1 Closing the Loop: Bridging Research and Practice in the Develop-
ment of Digital Guard Systems

With the growing potential of computer vision and artificial intelligence technologies, it is pos-
sible to develop innovative systems that can automatically and accurately identify violent or
abnormal activities, allowing military patrols and security personnel to respond quickly and ef-
fectively to potential threats. Such AI-driven smart security surveillance systems are referred
to as Digital Guard Systems. Using Digital Guard systems, schools or other institutions can
supplement the efforts of military guards and human security personnel and provide an addi-
tional layer of protection for military decision-makers, troops, or in other use cases for stu-
dents, staff, and visitors. Furthermore, with situations such as the COVID-19 pandemic, such
systems can help schools maintain social distancing protocols and monitor compliance with
mask-wearing policies, among other health and safety measures.

As the field of school security continues to evolve, researchers are increasingly exploring
the potential of digital guard systems to enhance safety and prevent violence. The digital guard
systems can be advanced to identify and track people, objects, and vehicles in real-time and
can generate alerts and notifications when it detects any suspicious activity. A key application
of digital guard systems is in military barracks, and defence campuses where it can be used to
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monitor the perimeter, detect unauthorized access, and provide situational awareness to security
personnel. Further, in airports, these systems can be used to monitor the flow of people and
detect any suspicious behaviour or objects, improving the overall security and safety of the
airport. Finally, these systems can also find applications in other critical infrastructures such as
power plants, oil refineries, and government buildings to monitor and protect these high-value
targets.

The focus of this experimental research is to explore the latest scientific and technological
advancements in digital guard systems, with a specific emphasis on the integration of computer
vision and AI technologies for safety purposes. It is important to note that, before digital guard
systems can be fully integrated into security protocols, a strong theoretical foundation must be
established to guide their development and implementation and a multitude of issues must be
addressed along the way including the identified scientific challenges in the previous section.

This thesis work identifies and tackles three key areas of research to advance digital guard
systems. The first research area deals with the detection of spoof attacks from human video
frames, which is critical for ensuring the authenticity of a video under inspection and filtering
out any fraudulent videos. The second key research area addresses violence detection in videos,
which is essential for identifying potential threats and responding to them in a timely man-
ner. Finally, the third research area provides conceptual tools to train highly resource-intensive
AI/deep learning algorithms for digital guard systems that use highly confidential data in a dis-
tributed environment, which is necessary for scaling up AI applications that use secure large-
scale data for training purposes. By addressing these research areas, this thesis work seeks to
contribute to the development of more robust and effective digital guard systems. The research
hypotheses are detailed in the following:

• H1: Deep learning-based methods can effectively detect spoof attacks from human video
frames.

– This hypothesis aims to explore the application of AI in detecting fake or manipu-
lated video footage, which is becoming increasingly prevalent to fool smart digital
systems. The research will focus on using deep learning techniques to develop ac-
curate and efficient spoof detection algorithms.

• H2: Deep learning-based methods for action recognition can be adapted for violence
detection.

– This hypothesis aims to investigate the potential of using AI for detecting violent be-
haviour in real-time. By leveraging existing deep learning models for action recog-
nition, the research will explore their adaptation for detecting violent actions and
behaviour.
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• H3: Distributed ledger technology can effectively run high resource-intensive AI/deep
learning algorithms.

– This hypothesis aims to explore the potential of using distributed ledger technology
(DLT) to improve the scalability and efficiency of running AI and deep learning
algorithms in military contexts. The research will investigate the use of DLT for the
decentralized processing of large datasets and high computational tasks.

The current research will focus on addressing the scientific challenges outlined in the pre-
vious section by investigating innovative solutions within the identified key research areas in
hypotheses H1 and H2. Specifically, the research aims to develop methods for image/video
classification, improve dataset diversity for deep learning models, enhance the generalizability
of trained models, and develop prototypes for practical safety and security applications. Further,
the research objective of hypothesis H3 is to investigate the effective utilization of distributed
ledger technology in running high resource-intensive AI/deep learning algorithms. This will be
achieved through an empirical exploration of the research on distributed computing.

1.8 Scope of work

The scope of this research work encompasses the exploration and refinement of existing deep
learning models for use in the context of safety and security. The aim of the research is to
investigate and experiment with new datasets that can be utilized to train and test these models,
with the goal of identifying effective approaches for practical implementation.

The availability of real-world footage for training deep learning models is limited due to
privacy laws such as GDPR. Consequently, the use of synthetic training data has become more
common in computer vision research. While the researchers have previously experimented with
training data that contains pasted object patches on real images, this approach may not fully
capture the diverse and complex action patterns associated with violent or deceitful behaviour.
However, given the scope of the current work, the preparation and use of synthetic training data
are outside of the research focus.

The research will focus on developing successful deep-learning models and proposing ap-
proaches for their practical implementation. Example prototypes and system architectures will
be discussed in order to demonstrate the potential utility of the proposed models. However,
specialized hardware development tailored to deep learning models is beyond the scope of the
current work. Overall, this research seeks to contribute to the advancement of the field of deep
learning in the context of safety and security, with a focus on developing models that can be
implemented in practical applications.
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1.9 Research methodology

In this research, a two-stage approach was undertaken, with a literature review in the first stage
and the proposal of novel methods in the second stage, which overcome the shortcomings of ex-
isting methods and advance state-of-the-art results. The first two key areas of research, spoofing
detection, and violence detection, strive to be applied research, with sample prototypes devel-
oped for implementation.

The development of novel tools and a database, as well as the integration of state-of-the-art
deep learning algorithms, are designed to enhance the reliability and effectiveness of spoofing
detection in human activity recognition (HAR) applications. The proposed system applies a
data-driven approach that jointly examines various regions of the captured images to detect
spoofing, improving the detection of replay attack spoof cases in HAR applications.

Similarly, the research on violence detection aims to develop efficient methods for practical
applications by adapting and extending the computationally light 3D deep learning architecture
X3D-M using various collected datasets. The goal is to achieve good classification accuracy
while maintaining computational efficiency and improving generalizability.

In contrast, the research on distributed computing is more empirical, exploring how dis-
tributed ledger technology can effectively run highly resource-intensive AI/deep learning algo-
rithms.

The overall research methodology involves a combination of empirical and applied research
approaches, with the aim of developing innovative and practical solutions to challenges in the
field of AI for security and military applications.

1.10 Dissertation organization

The dissertation is organized as follows: Chapters 2, 3 & 4 are self-contained. Each of them
presents a brief introduction, followed by a summary of state-of-the-art methods, their limita-
tions, and the main contributions to spoof detection, violence detection, and decentralized AI
computing using distributed ledger technology respectively. New scientific results from the cur-
rent work (described in Chapters 2, 3 & 4) in essence are presented in Chapter 5. Chapter 6
briefly discusses the overall applications of the work. Finally, conclusions and future work are
presented in Chapter 7.

1.11 Author Contributions

The contributions for addressing each hypothesis are as follows:
H1 - Dr Vamsi Kiran Adhikarla provided the initial conceptualization and design for the
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project, which laid the foundation for this work. Their contribution can be distributed as 25%
for conceptualization and 10% for implementation. The remaining work, including data col-
lection, algorithm development, testing, and manuscript writing, was done by me, with a joint
contribution of 65% for implementation and 5

H2 - Dr Vamsi Kiran Adhikarla, Dr Imre Négyesi, and Dr Csaba Krasznay provided the
initial conceptualization and design for the project. Their contributions can be distributed as
10%, 10%, and 5% for conceptualization, respectively. The remaining work, including data
collection, algorithm development, testing, and manuscript writing, was done by me, with a
joint contribution of 65% for implementation and 5% for manuscript writing.

H3 - All the contributions for this hypothesis, including conceptualization, design, data
collection, algorithm development, testing, and manuscript writing, were performed by me.
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Chapter 2

Live Spoofing Detection

2.1 Introduction

Human Activity Recognition (HAR) has become a widely researched topic in recent years,
thanks to the availability of ubiquitous computers and smart wearable sensors. The goal of
HAR algorithms is to provide information on the physical activities of humans, from simple
to complex. To achieve this, the algorithms take data from various sensors as input and use
machine learning and computer vision techniques to extract information about human activities.
HAR algorithms have a wide range of applications, including medical diagnosis, keeping track
of elderly people [17], [18], [19], smart homes [20], automated driving [21], military training
and surveillance [22], [23], crime control, and motion-driven virtual games [24]. For instance,
in the medical field, these algorithms can be used to monitor the physical activity of patients with
chronic conditions and to detect changes in their activity patterns that may indicate a worsening
of their condition. In smart homes, HAR algorithms can be used to automate lighting and
heating systems based on the presence and movements of residents. In automated driving, they
can be used to monitor the driver’s activities and detect any signs of drowsiness or distraction.

In military training and surveillance, HAR algorithms can be used to monitor soldiers’ phys-
ical activities and training progress and to detect any signs of injury or exhaustion. In crime
control, these algorithms can be used to monitor public spaces and detect suspicious activities.
Finally, in motion-driven virtual games, HAR algorithms can be used to track player movements
and translate them into in-game actions.

In the context of automatic HAR, a spoofing attack occurs when a person deliberately pro-
vides misleading or false visual data to the activity recognition algorithm. The algorithm then
reports this fake data as a successfully performed action. This type of attack is particularly con-
cerning in the context of intelligent video surveillance systems, which are becoming increas-
ingly popular in places such as large waiting rooms, campuses, and public spaces. Intelligent
video surveillance systems are designed to recognize simple or complex motion patterns and
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derive high-level subjective descriptions of actions and interactions among subjects and ob-
jects. However, these systems are vulnerable to spoofing attacks, particularly when people are
equipped with smartphones. For example, a person could play a pre-recorded video on their
smartphone screen in front of a surveillance camera, misleading the system into recognizing a
false action.

Given the increasing use of intelligent video surveillance systems and the potential for
spoofing attacks, it is critical to develop methods for detecting such attacks before making a
final decision on recognized actions. This is essential for ensuring the reliability and accuracy
of these systems and maintaining public trust in their use.

Sensors used for HAR can be divided into two main categories: wearable and external sen-
sors [25]. Wearable sensors are those that measure the required data for activity recognition
while in physical contact with the user. Examples of wearable sensors include accelerometers,
gyroscopes, and magnetometers, which are used to translate human motion into signal patterns
[26] for activity recognition. These sensors are often integrated into wearable devices, such as
fitness trackers, that are worn by the user. On the other hand, external sensors are set at fixed
points and require interaction from the user. They are commonly used in applications such as
public safety and surveillance, where cameras are set up at fixed locations to capture human
activity. With the advancements in deep learning methods, such as convolutional neural net-
works and recurrent neural networks, it is possible to achieve state-of-the-art results in activity
recognition. These deep learning methods can automatically learn features from raw sensor
data, improving the accuracy and reliability of the recognition process.

A use case that utilizes deep learning methods for Human Activity Recognition using exter-
nal sensors is illustrated in Figure 2.1. This use case involves a user interacting with a digital
gaming application designed to analyze and rate their freestyle football/soccer performance.
The user is equipped with a football, which serves as a tool for interacting with the application.
In this scenario, deep learning algorithms are employed to detect the body parts of the user and
the football in real-time. The real-time detection information is then used to recognize the cur-
rent activity of the user, enabling the application to accurately assess their performance. This
information is then passed on to the evaluation stage, where the user can compare their skills to
others and work on improving their abilities.

The use of deep learning approaches for Human Activity Recognition has numerous po-
tential applications, including in the digital gaming industry. By detecting human activities in
real time, deep learning algorithms can provide valuable insights into the user’s performance
and enable them to improve their skills. The use of external sensors, such as cameras, in this
scenario, provides a unique perspective on the user’s activities and allows for a more compre-
hensive analysis of their performance.

Despite the high recognition accuracy achieved by Human Activity Recognition (HAR)
systems, they are still vulnerable to spoofing attacks where intruders can deceive the system
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Figure 2.1: A sample event detection in a digital football game - user hits the ball with the right
knee. Top row: left - detection on a single frame of a video that captured a real user, right -
detection on the same frame of the same video captured on a computer monitor (fake user).
Bottom row left to right: close-ups of the detected head and football of real and fake users
respectively (original illustration by Viktor Huszár).
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by presenting fake visual data. One common type of spoofing attack is replaying a video of
human activity on a digital screen. This is demonstrated in Figure 2.1, which shows how a
deep learning algorithm employed in the system is unable to distinguish between real and fake
human activities.

The presence of these spoofing attacks poses a significant security challenge for HAR sys-
tems. Fraudsters and intruders can come up with innovative ways to bypass the simplest security
measures and penetrate computer vision systems. Therefore, it is crucial for future develop-
ments to effectively filter out such potential frauds and provide robust solutions for protecting
against spoofing attacks.

The challenge of spoofing detection must also be addressed in accordance with existing
infrastructural systems. This is because fraudsters and intruders can have creative ideas and
solutions for circumventing computer vision systems and bypassing security measures. The
high recognition accuracy of HAR systems makes it even more important to ensure the security
of the system and prevent spoofing attacks.

Despite the advancements in Human Activity Recognition (HAR) systems, there are several
challenges that need to be addressed. One of the challenges is related to the quality of the
data that is collected by the sensors, particularly in the case of external sensors. For example,
weather conditions like rain, fog, or snow may affect the image quality captured by cameras,
leading to poor recognition results. Furthermore, the use of cameras for activity recognition
may also be limited by visibility conditions, such as lighting and shadows.

Another challenge is the limited amount of data available for training deep learning algo-
rithms, particularly Convolutional Neural Networks (CNNs). CNNs are data-driven algorithms,
and thus require large amounts of data to learn and make accurate predictions. However, due
to regulations such as the General Data Protection Regulation (GDPR), access to large datasets
may be restricted, making it challenging to train the algorithms effectively.

In certain applications, such as military training and surveillance, the data is often classified
and access to the data is limited by nature. This further complicates the process of training the
algorithms and achieving accurate recognition results. The challenge lies in finding a way to
train the algorithms effectively while adhering to data privacy regulations and ensuring the se-
curity of classified data. To overcome these challenges, it is important for researchers to explore
alternative data sources and develop innovative techniques for data collection and processing.

The use of artificial intelligence in profiling competencies based on pre-defined risk criteria
is an important aspect in the field of surveillance and security. This is because AI can help
to process and analyze large amounts of image data from existing cameras to identify potential
risks and security threats. The development of profiling competencies is based on various image
analysis techniques, including object analysis and motion analysis. The objective of this process
is to make use of the data captured by cameras to identify patterns and trends that can help to
identify potential risks and security threats.
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Moreover, the implementation of this technology requires the support of competent authori-
ties such as the police, National Security Special Service, and other relevant organizations. The
verification of the data obtained from AI-based systems can only be carried out with the support
of these authorities, who can validate the results and take appropriate action if needed. Addi-
tionally, national public service universities, and military and police academies play a crucial
role in defining the professional requirements and methodology for further experimental devel-
opment in the field of AI and security. These organizations have the expertise and resources
needed to conduct research, analyze data, and develop best practices and protocols to ensure
that the technology is implemented effectively and securely.

The task of spoof detection in the context of HAR is even more challenging due to the nature
of the captured data. As users are always moving, this can lead to the generation of blurred
images on captured video, making it difficult for spoof detection algorithms to accurately detect
such attacks. Additionally, depending on the complexity of the action recognition, it may be
necessary to stream visual data to a server for remote processing, which may involve video
compression and resizing operations that further degrade the quality of the video and make the
task of spoof detection even more challenging.

To overcome these challenges, I propose a deep learning-based approach for spoof detection
in videos for HAR applications. My approach leverages the latest advances in deep learning and
computer vision to accurately detect spoof attacks in real-time, even under challenging condi-
tions. The proposed approach is specifically designed to be robust against the types of attacks
that are commonly encountered in HAR applications and has the potential to significantly im-
prove the overall security and accuracy of these systems.

In the current work, a lightweight deep learning-based algorithm that runs in parallel with
HAR algorithms to detect and report cases of spoofing is proposed. Figure 2.2 shows the
flowchart of my proposed system architecture. The incoming real-time visual data stream is
fed in parallel to HAR and proposed spoofing detection algorithms. Irrespective of a successful
or unsuccessful activity recognition using the HAR algorithm, on a positive detection of a spoof
case, a spoofing attack is reported to the operator. If no spoofing attack is detected, further vi-
sual data is grabbed from the sensor for processing by HAR and spoofing detection algorithms.
In particular, the contributions of this work are:

• A deep learning-based approach that can be used to detect spoof attacks from video
frames capturing humans. The algorithm precisely detects the spoofing attacks and is
also able to cope with video resizing and streaming artefacts, while it remains lightweight
enough to run it on a mobile device alongside the main HAR algorithms.

• A strategy to combine detection of the proposed deep learning network, temporally on a
captured video or on a live video stream for detecting video replay spoof attacks system-
atically while maintaining real-time performance.
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• A new database comprising real and spoof videos captured from 38 different users in
different locations and under different lighting conditions. The database is diverse and
precisely captures the required features for training my deep learning network.

• An additional evaluation of the performance of the proposed approach in the context of
biometric recognition applications.

• An IOS mobile application that implements the proposed approach in real-time on a mo-
bile device.
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Figure 2.2: Proposed workflow for spoofing detection in HAR applications: A lightweight
spoofing detection algorithm is run in parallel to HAR algorithm for live detection of spoofing
attack cases (original illustration by Viktor Huszár).

The research work described in this section is derived from the author’s own publications in
this field [27] [28], which provide the foundation for the current study.

2.2 Related work

There are vast varieties of techniques available for detecting replay attacks from visual data.
Most of these are addressing spoofing detection in bio-metric recognition applications, pre-
dominantly using facial image analysis. Users are located close to the camera and looking
towards the camera. To the best of my knowledge, my system is the first of its kind exploring
spoof detection from videos in the context of HAR where users are located far away from the
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camera and not always looking at the camera. In the subsequent paragraphs, I present some of
the more relevant works in the domain of spoof detection using facial image data.

In the field of replay attack detection, techniques proposed in the literature can be grouped
into four major groups: user behaviour modelling, user cooperation, hardware-based, and data-
driven characterization[29].

Behaviour modelling techniques are designed to track user actions, such as head movement
and blinking. They are employed to determine whether the individual in front of the camera is
a real user or a photograph of that user. Research in this field has also explored detecting subtle
movements in a live human face using motion magnification, but this approach is not applicable
to my current work as it only addresses the scenario where an attacker uses a photograph [30]
[31]. In contrast, my focus is specifically on detecting video replay attacks, which require
a different approach. Unlike traditional behaviour modelling techniques that are limited to
identifying static photographs, my approach must be able to effectively detect and distinguish
between real-time human activity and artificially generated video replays. To achieve this, I
utilize advanced machine learning algorithms and techniques to analyze the video data and
identify anomalies.

User cooperation-based techniques for detecting presentation attacks rely on secondary in-
teraction between the user and the detection module [32]. These techniques typically require
the user to perform a specific movement or action, which can serve as evidence that the user
is indeed a real individual and not a video replay. However, in the context of automated video
surveillance, it is often not practical to use user cooperation-based techniques as users may not
be available or willing to engage in deliberate interaction with the system. Also, the system may
need to operate in scenarios where user interaction is not possible. Therefore, relying solely on
user cooperation-based techniques may not be sufficient for a reliable and efficient spoofing
attack detection system in such contexts. Nonetheless, it is possible that user cooperation-based
techniques could be employed as one component of a comprehensive approach to presentation
attack detection in automated video surveillance systems. The scope of current research does
not include exploring the effectiveness and feasibility of such comprehensive approach.

Also, it is worth noticing that while these techniques can be effective, they may not always
be practical for use in automated video surveillance systems, as users may not be available or
willing to engage in such interactions. It is therefore important to consider other approaches
that do not rely on user cooperation to effectively detect presentation attacks in such systems.

Hardware-based techniques make use of additional hardware such as infrared or depth sen-
sors to understand the depth information of the scene [33] [34]. Within such techniques depth
cues enable us to differentiate between a flat object such as a mobile telephone screen or real
3D objects such as humans. Thus, these methods provide better robustness against variations
in illumination and pose of the user. However, in applications such as motion-driven games
designed to work with smartphones, users may not always possess such additional hardware on
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their devices. Thus, the scope of the application for these methods is limited.
Finally, there are techniques that are data-driven and characterize the replay attacks by pre-

dicting/learning the artefacts/features of attempted attacks using the visual data that came from
a standard acquisition sensor. This work focuses on such data-driven techniques using visual
data obtained from fixed or mobile cameras. In the rest of this section, several techniques that
are data-driven and relevant to the current work are discussed.

2.2.1 Depth analysis

There is a branch of techniques for spoofing detection based on scene depth analysis using
optical-flow estimation. They intend to estimate the 3D structure of the face of a user to dis-
criminate between a 3D live face and a 2D spoof face [35] [36]. Similar to depth camera-based
spoofing detection, live faces are 3D objects and can be clearly differentiated from a 2D planar
medium such as photographs. Such methods can be practically used to identify attacks from
planar static mediums. But if the camera is not stationary or if the user is moving, obtaining
reliable depth information for performing spoof detection can be very difficult and challenging.
Moreover, depth or shape analysis examines several frames to make a single prediction which
can make these approaches slow and resource intensive.

2.2.2 Texture analysis

The mediums used for spoofing such as paper or digital screens have different reflection prop-
erties than real and live faces. Texture analysis approaches make use of this observation for
spoofing detection [37], [38], [39]. By modelling the interaction between the illuminating and
the reflective surfaces, it is possible to extract albedo and normal maps [40], which can be
used as features to discriminate between real and attack samples. These methods have faster
response time than depth analysis-based approaches since they often examine one frame at a
time. However, they have poor abilities to generalize to HAR applications, since there can also
be reflective objects in real videos that can trick such approaches. Furthermore, in the case of
HAR applications, users are dispersed and the lighting is mixed and uncontrollable. So, the
basic assumptions do not hold in practice. Other texture-based approaches try to capture the
high-frequency information using descriptors, such as a variation of local binary patterns (LBP)
[41] [42].

2.2.3 Image quality

These methods estimate degradation in overall image quality which occurs during recapturing
photographs or screens. Some factors that contribute to image quality degradation include blur-
riness and colour deformation. [43], [44], [45], [46]. To compute image quality, it is often
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needed to have a reference image that is not available. The usual approach is to simulate a
degraded version of the source image and use it together with the source image for computing
image quality. Here the hypothesis is that the objective quality degradation between the source
and the simulated image is relatively less in cases of real images when compared to attack im-
ages. Thus, if acquisition conditions are not similar, this hypothesis does not hold, which makes
these methods delicate to HAR scenarios.

2.2.4 Frequency domain analysis

Recapturing on digital spoofing mediums introduces high-frequency noise into the image data
due to the discreteness of the presentation mediums. This frequency-specific information can
be captured by Fourier analysis [47], [48]. Frequency domain-based methods explore these
noise signals in the recaptured video to distinguish between live and spoof faces [49], [50].
These noise signals in the frequency domain are strong cues to detect attacks. However, it
should be noted that using high-definition spoofing mediums can dampen this noise and the
recognizable noise patterns are not always present which makes such approaches solely based
on them unreliable.

2.2.5 Egomotion-based spoofing detection

In addition to the above methods in literature, there are other potential methods that are not
explored in the literature for spoof detection. One such method is the use of egomotion of the
camera, which involves approximating the movement of the camera using the Inertial Mea-
surement Unit (IMU) data that is available in all current phones. By combining this data with
optical flow, it is possible to create a rough three-dimensional depth map of the scene that can
be used for spoofing detection. While this approach is cooperative in nature, as it requires the
user to turn the phone in a specific direction. However, it is important to note that there may
be limitations to this approach. Firstly, the IMU data can be noisy and unstable, which may
affect the accuracy of the depth map. Additionally, if the camera is placed close to the monitor
in order to only capture the user’s interaction with the football and not the monitor bezel, the
methods for generating optical flow may rely on color associations and may not always produce
a 3D structure of the scene that is flat like the image displayed on screen. Therefore, while
egomotion-based spoofing detection is an interesting area for future research, it may not be a
practical solution for detecting presentation attacks in all scenarios.

2.2.6 Methods based on deep learning

In recent times, in the context of several image recognition applications, it is proven that mod-
els based on Convolutional Neural Networks (CNNs) achieved state-of-the-art performances.
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Such deep learning approaches learn to predict features or intermediate representations directly
from the raw pixel data without the need for computing the features explicitly. Using CNNs for
performing spoof detection in HAR applications is not represented in the literature. However,
architectures are proposed for performing spoof detection, especially on videos in facial biomet-
ric authentication applications. Rodrigo B. et al., [29] proposed an approach using ResNet50
[51]. They train this network using several pre-computed maps such as depth, saliency, and
illumination maps, which makes their approach context-dependent. Using such approaches on
a mobile device can be cumbersome, since computing these maps can be highly resource inten-
sive.

Yaojie L. et. al., [52] proposed an approach using a combination of CNNs and Recurrent
Neural Networks (RNNs) for detecting spoofed faces. Particularly, they use RGB+HSV rep-
resentation of images and use several video frames to make a single prediction. I argue that
residual networks are usually slower since they work on multiple frames.

Atoum. Y. et. al., [53] introduced a two-stream CNN which computes a) local features from
patches and b) depth maps and combines the output of these streams for replay attack detection.
Using local features makes these methods robust. However, due to depth map computation,
they may not be able to keep up with the real-time requirements, especially, when an activity
recognition algorithm also has to run in parallel on a mobile device. In my current work, I also
target the mobile device scenario where lightweight models are highly favoured.

2.2.7 Summary of state-of-the-art methods

Table 2.1 summarizes the performance of methods published in the literature for face spoofing
detection on public datasets. Except for deep learning-based methods, intra-database results
for the Idiap Replay-Attack and UVAD databases are results are reported using the Half Total
Error Rate (HTER) (%) metric. Intra-database results for the CASIA FASD, MSU MFSD, and
MSU USSA databases are reported using Equal Error Rate (EER) (%) metric. For the ZJU
Eyeblink database classification accuracy is reported. Unless otherwise specified, all cross-
database results are reported using the HTER metric.

Preliminary methods for spoofing detection using approaches such as blinking detection
fail under video replay attacks. Other slightly advanced methods based on low-level texture
descriptors and simple classifiers for spoofing detection are also shown to fail under challenging
cross-dataset protocols [54]. It is important to note that among previously developed methods,
and most of the modern deep learning methods, for video replay spoofing detection use public
datasets for experimenting and comparing different methods. I argue that there are several
inconsistencies among the existing public datasets for video replay spoofing detection using
facial image data in terms of the subject position, image resolutions, and cameras used for
dataset generation. Cross-dataset evaluations in literature have shown limitations of both the
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developed methods and existing datasets.
I also argue that spoofing detection datasets for biometric or live face detection are not rele-

vant to HAR applications since they generate data in static sessions with minimum illumination
variability. In contrast, in HAR applications, users can have the flexibility to freely choose their
location, and eventually, it is not always possible to control user behaviour. Such uncontrolled
behaviour can happen in school campuses, other institutions and military sites. Besides, in some
cases such as virtual games, some of the body parts including the face are partially or completely
occluded by objects for interaction such as a football. Methods developed in the literature for
spoofing detection in bio-metric face authentication applications may not extend to such cases.
On top of that, if the activity recognition involves remote server processing, the image data may
be subjected to resizing and/or compression. The dependency of such operations on spoofing
detection accuracy is not discussed in the literature. Finally, the state-of-the-art deep learning-
based methods for spoofing detection using facial image data involve pre-processing steps such
as face alignment after face detection which is impossible in HAR use cases since the head
position of a user is not fixed. Also in the literature, there are no such meticulous studies using
deep learning methods targeted at mobile devices.

To address all of these issues, in this work, I developed new tools including a novel database
and robust data-driven approach that jointly examine various regions of the captured images to
detect spoofing. My system enhances and integrates state-of-the-art deep learning algorithms
for detecting replay attack spoof cases for HAR applications.

2.3 Visual analysis for video replay spoofing detection

2.3.1 Context selection for spoofing detection

Activity recognition algorithms have been developed to recognize various human activities in
image and video data, such as walking, running, jumping, and even more complex activities
like dancing or playing sports. These algorithms typically involve identifying and computing
the locations of one or several body parts or joints, or in some cases, complete skeleton tracking
of a user from an image [63]. In the context of virtual games, such as football, it is important
to also recognize the location of an interaction object, such as a football, in the image along
with the user’s body parts. The choice of using football as an interaction object in this study is
due to the fact that it is a widely popular and non-violent sport that can be enjoyed by people
of all ages and skill levels. Moreover, I wanted to ensure that users are engaged in an activity
that is safe and does not involve weapons or engage users in crime. Thus, a database of users
interacting with football is created, which can be used for developing and evaluating activity
recognition algorithms for virtual sports games. The databsae is diverse and consists of 50500
full HD images of 38 users juggling a football in different backgrounds and lighting conditions.
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Table 2.1: Performance of published methods on face spoofing detection. Please refer to the
text concerning the metrics used for evaluation.

Method State-of-the-art performance
Face motion analysis ZJU Eyeblink [31] (Intra-DB, Cross-DB)

[31]: (95.7, n/a)
Idiap Replay-attack [37] (Intra-DB, Cross-DB)
[30]: (1.25, n/a)
CASIA FASD [55] (Intra-DB, Cross-DB)
[56]: (21.75, n/a)

Depth analysis Idiap Replay-attack (Intra-DB, Cross-DB)
[57]: (12.5, n/a)

Image texture analysis Idiap Replay-attack (Intra-DB, Cross-DB)
[54]: (15.54, 47.1); [58]: (0.8, n/a); [59]:(2.9, 16.7);
[60]:(1, n/a)
CASIA FASD (Intra-DB, Cross-DB)
[59]: (6.2,37.6) ; [60]: (7.2, 30.2)

Image quality analysis Idiap Replay-attack (Intra-DB, Cross-DB)
[61]: (7.41, 26.9); [43]: (15.2, n/a);
CASIA FASD (Intra-DB, Cross-DB)
[61]: (12.9, 43.7)
MSU MFSD [61] (Intra-DB, Cross-DB)
[61]: (5.82, 22.6)

Frequency domain analysis Idiap Replay-attack (Intra-DB, Cross-DB)
[50]: (2.8, 34.4)
CASIA FASD (Intra-DB, Cross-DB)
[50]: (14, 38.5)
UVAD [50] (Intra-DB, Cross-DB)
[50]: (29.9, 40.1)

Deep learning based methods PR FASD [62] (Intra-DB, Cross-DB)
[62]-ResNet: (n/a, 14.19); [62]-DenseNet: (n/a, 16.97)
MSU MFSD (Intra-DB, Cross-DB)
[62]-ResNet: (n/a, 20.53); [62]-DenseNet: (n/a, 21.78)
Idiap Replay-attack [37] (Intra-DB, Cross-DB)
[62]-ResNet: (n/a, 31.42); [62]-DenseNet: (n/a, 31.52)
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For collecting data, I selected both male and female users between the ages of 8 and 40. These
images are extracted from several videos shot using various iPhones - iPhone 6, 6S, SE, 7,
8, X, and XS. Some representative images from my database are are shown in Figure 2.3.
These images are manually labelled with bounding boxes that encapsulate the following data:
human body parts - head, left shoulder, right shoulder, left elbow, right elbow, left hand, right
hand, left hip, right hip, left knee, right knee, left foot, right foot and also the bounding box
of the football. After gathering the database and labels, I trained YOLO [64] deep learning
CNN architecture and later used it for detecting the required body parts together with the ball
from the video frames in a single shot. I chose well-proven YOLO state-of-the-art CNN for
this task because of its fast and robust performance even on mobile devices. Specifically, I
used the YoloV3 deep learning CNN architecture for detecting required body parts and the
ball from the video frames in a single shot. The YoloV3 has shown excellent performance on
object detection tasks, which is crucial for detecting the relevant body parts and the ball in the
soccer videos. Moreover, YoloV3 is trained end-to-end and does not require any external region
proposal methods, making it faster and more efficient than traditional object detection methods.
Note that, in contrast to traditional face detection methods, I generate face bounding boxes that
also contain a substantial background image to provide more contextual information.

In order not to overload the final application for activity recognition with the additional
functionality of spoofing detection, I consider the already computed body parts location data
for this purpose. Among the detected bounding boxes by my trained YOLO model, the head
bounding box, comprising the human face is uncovered most of the time and is composed of
different interesting structures and characteristics. Due to the wide usage in bio-metric authen-
tication systems and given its potential in many applications such as surveillance, home, and
institutional security and border control and military, to experiment further with spoofing detec-
tion, I chose to use the extracted head bounding box data from the trained YOLO model. Note
that this also ensures the generalization of my approach to other HAR applications where there
are not any similar interaction objects and also to cases where the lower human body is not
visible. For training the deep learning models, the collected image data was shuffled following
random permutation of the order of the images and their corresponding labels. This ensures that
the order of the data does not bias the results of the model. This approach is commonly used in
machine learning research to prevent overfitting and improve generalization of the model.

2.3.2 Models

While working with videos, there can be several ways to combine the temporal information
which makes it hard to use fixed-sized architecture. In my work, I handle videos as several
short clips consisting of identical-sized frames. The idea is to use these several frames of a clip
to learn spatiotemporal features. For the experiment, I consider a network inspired by one of
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Figure 2.3: Representative images from my video database. Videos consist of several users
playing a digital football game in diverse locations with varying lighting and backgrounds (orig-
inal illustration by Viktor Huszár).
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the ImageNet challenge winning models, VGG16 net [65]. I chose this architecture in my ex-
periments for various reasons: Firstly, the VGG blocks are smaller networks, support real-time
performance, and are light enough to be embedded into mobile devices. Secondly, it is proven
in the literature that VGG16net has the potential for representing complex visual relationships
[66]. Finally, the VGG network offers flexibility to change input size and alignment which
makes it easier to adopt and modify this network for experimenting with several input data
dimensions. Particularly, I consider two VGG blocks, each comprising two 3X3 convolution
layers followed by a 2X2 pooling layer for the experiment. The output of these VGG blocks
is connected to two fully connected layers. The final layer is connected to a softmax classifier
with dense connections (see Figure 2.4).

1616 64

64

conv1

32 32 32

conv2

1 81
92

fc3

1 64

fc4

1

fc5+softmax

2

Figure 2.4: CNN architecture inspired from VGG16 net used for my experiments (original
illustration by Viktor Huszár).

I carefully chose this simple model to achieve better run-time performance while still re-
taining the detection accuracy. I implemented my system in Keras [67]. I consider the CNN
in 2.4 as baseline CNN and investigate approaches to combine information across the temporal
domain (see Figure 2.5). Here I describe my trails for learning the spatiotemporal features.
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Figure 2.5: Some of the explored approaches for capturing spatiotemporal features: Single
frame model processes one image at a time; Concatenated frames model processes consecutive
5 frames at a time; Delayed frames model processes two frames at a time that are 15 frames
apart temporally (original illustration by Viktor Huszár).

Single frame model (SF)

For studying the potential of static frames in accurately classifying the genuine and spoof cases,
I consider this model. SF takes every frame of a video and outputs the observations. Here, the
extracted face bounding box from the current input Full HD frame is resized to 64X64X3 pixels
and then fed to the aforementioned baseline CNN.

Concatenated frames model (CF)

The approach here is to combine the visual information across a time window containing con-
tiguous frames in a video clip. This is achieved by adapting the filters on the convolutional
layer of the first VGG block in the baseline model. Similar to the SF, the consecutive frames
across the considered time window are resized to 64X64X3 pixels and the initial convolutional
filters are extended to be of size 64X64X3XN pixels, where N is the size of the considered time
window. I choose N=5 in my work for learning and detecting local patterns across the time
window.

Delayed frames model (DF)

The delayed frames model uses two separate baseline models until the second VGG block and
these two models is fed with two 64X64X3 resized frames that are P frames apart in the given
video sequence. After the second VGG block, the outputs of these two models are merged
together and connected to the rest of the fully connected layers on the baseline model. In this
work, I use P=15 for learning and detecting global features.

Ensemble multi-stream model (EM)

The ensemble model investigates the resized head bounding box in three different streams of
processing over three spatial resolutions. The approach is presented in Figure 2.6. Similar to the
SF model, I consider one frame at a time. From the input HD video, single frames are extracted

39



and fed to the trained YOLO model to extract the head region on the image. The detected head
bounding box is resized to 64X64X3 pixels and processed in three different streams.

In the first stream, the resized head image is fed to the baseline model (same as SF). In the
second stream, lower 64X32X3 pixels of the resized head image is cropped and supplied to the
modified baseline model for processing. On the initial convolutional layer of the baseline model,
filters are modified to be of the size of the cropped image in this stream. This stream mostly
gets the visual data around the chin area and this way, bias coming from any users wearing
eyeglasses or caps is minimized. The last stream is fed with the cropped central 32X32X3 pixel
data from the resized image. This data is processed by another modified baseline model that
has the required initial convolution filter size. The stream processes the central crop of the face
and this way it has no bias from any disturbing patterns from the background. The detections
from these three streams are manually fused based on the detection probabilities and majority
voting for arriving at an ensemble detection.
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2.3.3 Learning

Data preparation and pre-processing

For learning the genuine and spoof cases, I used the same dataset used for training the YOLO
body detection containing 50500 Full HD images obtained from 38 users, each user performing
14 different juggling tasks in 38 scenes while playing Sqiller [24] [68]. The average duration
of each video is 3.23seconds with minmum and maximum values of 2 seconds and 4.4 seconds
respectively. For training my models, I generated an additional 50500 Full HD spoofed images
using the original images by capturing the same videos on several monitors - a 27-inch Dell 4
Kilo (4K) monitor, a 15-inch Full HD Lenovo laptop monitor, a 13-inch MacBook Pro monitor
with the resolution of 2560×1600. Before training the networks, I pre-process all video frames
to extract the head region using the previously trained YOLO model and resize the head image
to 64X64 pixels. I also use data augmentation techniques to reduce problems from overfitting -
increase and decrease the pixel brightness by a value of 50, double and half the image contrast,
and add Gaussian noise with variances of 50 and 100. These pre-processing steps are consis-
tently added to all the video frames. Finally, before training, I shuffle the data and scale all the
pixel intensities to the range [0, 1].

Optimization

I use Adam [69] available in Keras to optimize my models with the initial learning rate of 1e−4.
The model is compiled with a binary cross-entropy loss function. For training, I use a batch
size of 12 samples and 20% validation split. Models with improved validation accuracy are
automatically saved every 100 epochs to retain the best models. It should be noted that com-
putational complexity and real-time execution are not critical for all applications, and it may be
possible to record videos on the device and process them later. However, in our case, we aimed
to achieve real-time detection of spoofing attacks on the mobile device itself, which requires us
to consider computational efficiency during model training and testing. We use Keras mainly
for prototyping, we chose it for its ease of use and compatibility with TensorFlow. We acknowl-
edge that other frameworks could result in better model performance, but we found that Keras
was sufficient for our purposes in prototyping and testing the models. To address the issue of
real-time execution on mobile devices, we converted our trained models to CoreML, which is
an optimized framework for iOS devices. This allowed us to achieve real-time performance and
practical implementation of our models on the mobile device itself.
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2.4 Results and discussion

2.4.1 Testing scheme

Since I am targeting to detect spoof cases continuously either on recorded or live video streams,
I define chunks of overlapping video clips, each containing several frames (depending on the
model under testing) with an overlap of 15 frames. For each clip, I provide a single prediction.
To this end, within a considered clip, I run my models on three frames that are 15 frames apart
and combine these predictions for obtaining a single prediction for this clip. Therefore, given
a video stream, in the case of SF and EM models, the first prediction is made after 31 frames,
and thereafter, predictions are made every 15 frames. In the case of the DF model, since it
takes as input two frames that are 15 frames apart, the first prediction is made only after 45
frames and thereafter, predictions are made every 15 frames. In the case of the CF model,
since it takes 5 consecutive frames as input, the first prediction is made after 35 frames and
thereafter, predictions are made every 15 frames. Figure 2.7 demonstrates the testing schemes
more distinctly.
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Figure 2.7: Schemes used for testing the proposed models: all models are tested on overlapping
video clips. Within each video clip, three predictions are made and majority voting is applied
to derive a prediction for this video clip (original illustration by Viktor Huszár).
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2.4.2 Experiments on my dataset

As mentioned earlier, to the best of my knowledge, my system is the first of its kind to explore
spoof detection from videos in the context of HAR. Since also as mentioned before, I prepared
a dataset containing 101000 images, obtained from 38 different players. These images contain
users located at varying distances from the camera so that all the body parts are visible. The
face orientation of players widely varies across videos and sometimes the face is completely
or partially occluded by the ball. I manually annotate these images with head bounding boxes
containing facial and background information of the players which is then used for training a
YOLO model that detects head regions in an image in real-time. Figure 2.8 shows the histogram
of InterPupillary Distances (IPD) on all the images used for training my models (64X64). With
the highest number of samples at around 44 pixels, my database also contains samples where
IPD is evidently located between 0-50 pixels which show the distribution of how far away users
are located from the camera. 0-pixel IPD may mean either the face is not completely visible or
a player is facing in an orthogonal direction to the camera.
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Figure 2.8: Histogram of interpupillary distances across various players in my database (original
illustration by Viktor Huszár).

Training

I split the database by assigning 80% of the videos to the training set and 20% to the test set.
To this end, I separate videos from 8 players in my database and use them for testing. All
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the models are trained for 1000 iterations and training each model took about 24 hours on
average. Among the testing videos, predictions are made for each video clip containing 30
frames irrespective of the length of the video. To report results, I use results collectively from
all video clips in the testing split.

Video-clip level predictions

I used videos from 8 users (20% of the whole database) for testing that are not included in the
training. In these videos, users performed similar actions using football as in the training set
in challenging indoor and outdoor lighting conditions. A fake database for the test set is also
created using random monitors that are mentioned in section 2.3.3. Similar to the training set,
the test set also contains videos from users who are both male and female in the age group 8-40.
I report my results using a set of metrics commonly considered in biometric presentation attack
evaluation, as defined by the International Organization for Standardization (ISO) [70]. The
metrics include the Attack Presentation Classification Error Rate (APCER), which is the pro-
portion of attack presentations that are incorrectly classified as bona fide presentations, and the
Bona fide Presentation Classification Error Rate (BPCER), which is the proportion of bona fide
presentations that are incorrectly classified as attack presentations. The Half-Total Error Rate
(HTER) is calculated as the average of the APCER and BPCER and provides a comprehensive
measure of the overall performance of a model. Lower values of APCER, BPCER, and HTER
indicate better performance of a model. Table 2.2 presents the results of the various described
models on the testing split. For reporting these results, the outputs of the models are used as
obtained and thresholding based on class prediction probabilities is not applied. These metrics
are commonly used in the computer vision community for evaluating biometric presentation
attack detection systems.

The ensemble model outperformed other methods by a considerable margin. This can also
be validated by analyzing the trade-off between False Positive Rate (FPR) and True Positive
Rate (TPR) on the testing set (see Figure 2.9. Higher value of Area Under Curve (AUC) rep-
resents the better performance of a model). Note that the single-frame method also provides
reliable results. However, my experiments show that combining the frames across time did not
yield better results. Particularly, in the case of the CF model, the APCER value is high indi-
cating that several fraud users are accepted as valid users by this model. This suggests that
combined frames may not always contain patterns that can be sufficiently characterized by my
deep learning model and may be completely arbitrary. In the case of the DF model, the BPCER
value is high indicating that several real users are categorized as fake users by this model. From
this behaviour, I hypothesize that the DF model learned features accounting more to motion than
to the patterns related to spoofing detection. It is important to note that my detected head re-
gion contains visual information about the background or the scene as well as the user costume.
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Figure 2.9: Receiver operating characteristics (ROC) of the methods evaluated on my testing
database. Compared to other models, the Ensemble multi-stream model produced better classi-
fication results (original illustration by Viktor Huszár).

The cropped lower region contains lesser visual information about the background but contains
information about the user’s costume, and cropped central region contains mainly visual infor-
mation about the user’s face. I have observed that specular, glossy surfaces in the background,
spectacles and face masks of users, and dense striped costumes can mislead spoofing detection.
By utilizing three cropped regions extracted from the detected head bounding box, I believe that
the EM makes smaller errors in spoofing detection than other methods used for comparison.

Table 2.2: Results (%) on my testing database

Method APCER BPCER HTER
SF 9.9010 12.9496 11.4253
CF 36.4486 1.7007 19.0746
DF 3.1915 45.5556 24.3735
EM 8.9109 6.1151 7.5130

Comparison with existing baseline spoofing detection methods

For assessing the effectiveness of my ensemble method, I consider recent baseline spoofing
detection methods for comparison. Please note that, as pointed out earlier, there are no rel-
evant data-driven approaches in the literature for spoofing detection from videos when users
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are performing simple or complex activities and are free to choose their position. Particularly,
I consider the following four descriptors for the experiment, which are reported as potential
candidates in the literature for spoofing detection applications using facial image data: LBP
histograms, Local Binary Pattern histograms from Three Orthogonal Planes (LBP-TOP) [71],
Statistical Binary Pattern histograms (SBP) [72] and Statistical Binary Pattern histograms from
Three Orthogonal Planes (SBP-TOP) [73]. Also, it is reported in the literature that the Support
Vector Machines (SVM) classifiers achieved better accuracy than random forest classifiers in
spoofing detection applications [73].

Consequently, for comparison, I have trained four different SVMs using the above-mentioned
four descriptors. For training SVMs, I used the sci-kit-learn toolkit. While calculating these de-
scriptors, I use radius, R = 1, and several points P = 8 (see [73] for more details on these
parameters). For calculating SBP, I considered two orders of moments obtained with the mean
and variance. For computing the orthogonal planes, I consider 3D frame stacks containing 20
consecutive video frames. For acquiring joint histograms in the case of SBP and SBP-TOP, as
described in [73], two binary images are computed additionally by thresholding the input or
moment images concerning their average value. For testing, I used the same testing dataset that
is used for comparing the proposed methods. Table 2.3 presents the results from the baseline
methods in the literature together with the results from the EM method using my testing dataset.
Experimental results show that my EM method outperformed other methods by a considerable
margin. My observations correspond to the results presented in [54] - that approaches using low
or medium-level texture descriptors and training simple classifiers using these descriptors for
spoofing detection are not effective under cross-dataset protocols.

Table 2.3: Results of existing baseline spoofing detection methods (%) on my testing database
after training using my training database.

Method APCER BPCER HTER
LBP 40.5780 48.1586 44.3683

LBP-TOP 27.2727 40.3226 33.7977
SBP 3.1915 45.5556 24.3735

SBP-TOP 15.4124 78.9660 47.1892
EM 8.9109 6.1151 7.5130

Experiments with video compression

As mentioned earlier, depending on the complexity of the action to be recognized, it is needed to
stream the video to a remote server where the actual processing of the video stream happens. In
cases like motion-driven virtual games, where user videos are streamed from a mobile telephone
to a remote server, there is not always enough network bandwidth to stream the video in its
native quality or resolution. Subsequently, video compression techniques are applied to reduce
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Figure 2.10: Evaluation of the sensitivity of my ensemble multi-stream model to video com-
pression rates: the model produces robust results even at lower bitrates (higher compression)
(original illustration by Viktor Huszár).

the video bitrate which introduces video artefacts. For evaluating the ability of my EM model
to correctly classify the spoof cases, I generate compressed video streams with varying bitrates
from 300 kbps to 1500 kbps.

For this experiment, a recorded video is considered and evaluation is done completely of-
fline. Multiple videos are generated with different bitrates using FFmpeg [74]. Figure 2.10
shows the AUC values under various bitrates. Results show that my ensemble model performs
robustly even under extreme compression (300 kbps).

2.4.3 Experiments with face recognition databases

To evaluate the ability of my spoofing detection model to generalize to other domains such as
face recognition systems, I experiment with two widely known datasets in this context: Idiap
REPLAY-MOBILE [75] and CASIA Face AntiSpoofing [55]. Particularly, I identify the spoof-
ing cases that occur in video replay cases and evaluate the performance of my algorithm on
these attacks. The CASIA Face AntiSpoofing Database consists of 600 video clips of 50 sub-
jects. Out of the 600 video clips, 150 clips represent video replay attacks. Compared to the
Idiap database, the CASIA DB provides images captured using a variety of cameras (Sony
NEX-5-HD, two low-quality USBs) to capture replay attacks displayed on an iPad. However, a
significant deficiency of this database is that the video replay attacks are captured in very low
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resolution (640 X 480). The REPLAY-MOBILE dataset consists of 1190 video clips of photo
and video presentation attacks (spoofing attacks) to 40 clients, under different lighting condi-
tions. These videos were recorded with an iPad Mini2 (running iOS) and an LG-G4 smartphone
(running Android) in full HD resolution.

Table 2.4 shows the evaluation results on testing sets of the considered face recognition
databases. The facial images are cropped using the supplementary data obtained from the
database and then resized to 64X64 pixels before feeding to my EM model. The test results
are reported using my testing scheme (see Figure 2.7). My results show that my approach per-
forms well on the REPLAY-MOBILE database irrespective of the fact that the users are located
very close to the camera (higher IPD values than that of my database). My method also performs
reasonably well on the CASIA database. The relative drop in the performance in the case of
the CASIA database is due to the low-resolution input images. Note that my method is trained
on image data that is extracted from full HD input images and I hypothesize that my learned
feature set does not correspond very well to images that are captured at lower resolution. Note
that, this may not be a problem since the current generation sensors used in HAR applications,
including surveillance systems, are capable to capture full HD images.

Table 2.4: Results (%) on considered face recognition databases

Method APCER BPCER HTER
REPLAY-MOBILE 5.4678 13.7856 9.6267

CASIA 27.0916 16.0396 21.5656

2.4.4 Mobile implementation and performance

I implemented my Ensemble multi-stream model in swift for IOS [76]. The application is
standalone and tested on iPhone 8 released in 2017 and has a 2.39 GHz Hexa-core 64-bit. My
Keras models as well as the YOLO model for head bounding box detection are converted to
CoreML API for running on the IOS device. The application takes as input incoming frames
from the on-device-camera and runs my trained YOLO model to detect head bounding box
information. The head bounding box was then resized to 64X64 for ensemble multi-stream
processing. I follow the strategy shown in Figure 2.7 for processing the incoming frames for
detection. The algorithm works in real-time.

The proposed method can run on iPhone 8 and processes a single frame on an average in
4 milliseconds. This translates to a frame rate of about 250 frames per second. Following my
testing scheme shown in Figure 2.7, running EM every 15 frames further ensures that there are
enough resources left on the device for running the activity recognition applications.
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2.4.5 Performance constraints

I compute head bounding box information using a pre-trained YOLO model with fixed anchor
sizes for bounding boxes. The anchor sizes are chosen to assume that a user is located at a
distance range of 0.5-2.5 meters away from the camera. Also, for training, I use those samples
when a user is located within this range. If a user moves out of this range, bounding boxes may
still be detected, but with less probability. However, due to fixed-size anchors, in such cases, the
bounding box would contain relatively more information about the background. My algorithm
fails to detect spoofing in such a situation.

my spoofed database contains samples captured from cameras held at angles close to zero
(almost held vertically) along the camera Z axis (depth axis). My rigorous testing shows that
if the recording camera (camera used for action recognition and not the original camera that
captured video for spoofing) rotates beyond the range of -15 to 15 degrees along the camera Z
axis, my algorithm fails to detect spoofing attacks.

Also, my database consists of images of a user where at least one of the eyes is visible
(the user can face sideward perpendicular to the direction pointed by the camera) or the face is
covered with a football which is my considered object for interaction. If a user faces completely
away from the camera (only hair or a bald head is visible), my algorithm also fails to detect
spoofing in such cases.

Under natural lighting conditions, my EM method can precisely detect spoofing cases. To
deal with artificial lighting conditions, I also captured enough samples in my database, where
a scene is lit by a bulb having a flickering frequency as observable by cameras. However,
thorough testing shows that if more than one light source is in the scene, my algorithm has
issues detecting the spoofing cases.

One potential limitation of the data splitting strategy used in this study is that the test set
was not split based on the recording methods used for generating the spoofed images. Instead,
the test set consisted of videos from 8 players who were not included in the training set. This
approach may not ensure that the recordings in the test set are independent, and that the method
validates the spoofing detection capability in general, instead of detecting noise typical of a
particular camera or display. As such, the results of the study should be interpreted with caution,
as they may not fully represent the performance of the algorithm in detecting spoof attacks in
real-world scenarios. Future research could consider using a more representative test set to
address this limitation.

2.5 Concluding remarks

The study investigates video replay spoofing detection in human activity recognition using RGB
sensors. An ensemble multi-stream model was proposed to detect attacks by examining multi-
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ple regions of the face. The model’s performance was evaluated using 38 subjects under diverse
conditions and showed robust results even with partial face visibility. The algorithm was val-
idated on a mobile device and demonstrated real-time performance with a minimal memory
footprint. Future work may involve adapting the method to devices with advanced sensors and
studying algorithms for detecting face and body coverings designed to confuse spoof detection
systems.

2.6 Applications in defence and security

Video replay spoofing detection has become a critical issue in the defence and security sector
due to the potential for malicious attacks. The study of the application of video replay spoofing
detection in the context of human activity recognition using RGB sensors is an exciting area
of research that holds promise for enhancing security and defence measures. The proposed
ensemble multi-stream model has shown robust performance in diverse conditions, even with
partial face visibility, making it highly practical for use in the field.

This technology has practical applications in a variety of defence and security areas, includ-
ing securing military installations, monitoring troop movements, and safeguarding sensitive
information. The proposed algorithm has been validated on a mobile device and demonstrated
real-time performance with minimal memory footprint, further adding to its practicality.

Future work in this area can focus on adapting the method to devices with advanced sen-
sors to further enhance the accuracy and robustness of the model. This can involve exploring
techniques such as feature extraction and data augmentation to improve the model’s accuracy.
Another crucial aspect of future work is investigating algorithms for detecting face and body
coverings designed to confuse spoof detection systems, which could be a critical aspect of se-
curing sensitive information in the defense sector.

The interdisciplinary nature of this work requires collaboration between experts in computer
vision, machine learning, and signal processing to develop robust and efficient algorithms for
video replay spoofing detection in human activity recognition. Further research in this area will
undoubtedly lead to the development of more advanced technologies for enhancing security and
defense measures, which is crucial for the safety and well-being of nations and their citizens.
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Chapter 3

Violence Detection in Surveillance Videos

3.1 Introduction

The current landscape of video surveillance has shown the importance of having an efficient and
effective way to monitor and detect anomalies in the massive amount of video data generated
every day. The use of human labour to monitor this data is impractical and susceptible to
human error, which reduces the efficiency of the process. In order to prevent crime and ensure
public safety, detecting and recognizing incidents of violence from video data in real-time is
a crucial task for law enforcement agencies. To tackle this challenge, there is a growing need
for automatic and effective methods that can filter out normal activities from abnormal events
in video data. These methods must be able to process large amounts of video data in a timely
manner while being able to detect events such as violence that occur infrequently. The focus of
this work is on detecting violence and other abnormal events between humans. The proposed
solution utilizes advanced artificial intelligence algorithms to process and analyze the video
data, identify anomalies, and highlight incidents of violence in real-time. This approach helps
law enforcement agencies respond quickly to potential incidents and reduce the crime rate while
improving public safety.

Video classification based on Human Activity Recognition (HAR) is a popular research
topic in recent years and is analogous to the field of violence detection. HAR methods pro-
vide information on simple or complex physical activities of humans such as standing, talking,
and cooking from incoming sensor data. Earlier methods for HAR followed the detection and
tracking of human body parts in a set of consecutive video frames using image level descriptors
such as Histogram of oriented gradients (HOG) or Histogram of oriented optical flow (HOF)
[77]. Other advanced approaches involved computing spatiotemporal descriptors for motion
[78] [79]. One of the main drawbacks of such techniques is that they often need better light-
ing conditions and good visibility for successful operation. With the advent of depth cameras,
several algorithms have emerged, that use depth measurements from sensors such as Microsoft
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Kinect [80] [81], ASUS Xtion2 [82] or Intel real sense [83] for HAR. One of the added advan-
tages of such depth sensors is that they come with Software Development Kit (SDK) containing
real-time skeleton detection algorithms [84]. Specifically, the skeleton joint coordinates can be
obtained in 3-Dimensions (3D) in real-time, and a series of these coordinates, when tracked
over time, can be used to detect and describe human actions. Following this notion, several
algorithms have been proposed in the literature for HAR using depth sensors [85] [86] [87] [88]
[89] or combining information from both colour and depth sensors [90]. However, the depth
sensors, even the most modern ones come with substantial measurement noise and thus it’s not
possible for them to yield better results. Moreover, integrating depth sensors into use-cases such
as surveillance increases the hardware costs and may not be always favourable.

Usage of Convolutional Neural Networks (CNNs) has become increasingly common in
computer vision after their exceptional success in image recognition tasks [91] [92]. CNNs
are evolving at a tremendous pace in many fields of research, and recent trends show that many
solutions are expected in the future that will enhance the spread of such solutions. With the oc-
currence of big data and the exponential growth of computing power, these learning algorithms
continue to have enormous development potential. Several successful methods have been re-
cently proposed that extend the spatial CNNs that are used for image recognition tasks along the
temporal domain for HAR in videos [93] [94] [95] [96] [97] [98] [99] [100]. One of the main
advantages of using CNNs for HAR is that these methods are able to deal with defiances, such
as changes in lighting conditions, background changes, camera movement, different dressing
styles, and varying body shapes of people. They are also able to deal with videos involving
partially or completely occluded human body parts.

It is important to note that the prevalent HAR algorithms that are based on CNNs follow
supervised learning. In particular, during the training process, for every example in training
data, CNNs are provided with the correct expected output, also known as labelled inputs and
outputs. In supervised learning, using the labelled data, CNN models constantly estimate ac-
curacy and learn over time. Given that the size of the training data is considerably large, such
CNNs are able to learn to classify videos into action classes and also use this knowledge to gen-
eralize [101] to other unseen examples. However, if sufficient data is not available for training,
generalization to new data is also likely to be poor[102].

Transfer learning or domain adaptation [103] refers to the situation where what has been
learned in one setting (i.e., distribution P1) is exploited to improve generalization in another
setting (say distribution P2) [101]. Specifically, in transfer learning, a neural network model is
first trained on another task that is similar to the current task that is being solved. Later, one
or more layers of the trained model (on another task) are used to train the problem of interest.
Transfer learning is especially useful when I have less number of samples for training CNNs
on a problem of interest. I argue that the violence detection task falls into this category where I
have relatively fewer real-world video samples available for training due to laws such as General
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Data Protection Regulation (GDPR) in Europe [104].
In this work, I address the problem of violence detection using transfer learning. Explicitly,

my contributions from the current work are:

• A deep transfer learning-based method that can be used to filter violent and normal events
from human actions in videos. The algorithm outperforms several state-of-the-art meth-
ods for violence detection and is also able to cope with video compression artefacts while
remaining lightweight enough to run in real-time on a laptop or desktop computing de-
vice.

• A comprehensive database comprising violent and normal videos that combines and ex-
tends 7 different existing video databases, captured in different locations and under dif-
ferent lighting conditions.

• An extensive evaluation of the performance of the proposed approach on collected databases
and cross-database validation to investigate model over-fitting.

• A stand-alone application that implements the proposed approach in real-time on a laptop
computing device.

The work on fast and accurate violence detection for automatic surveillance applications
has significant dual-use potential for defence and security. The proposed methodology can
be implemented in real-time surveillance systems for early warning and detection of violent
incidents, thereby enhancing security and reducing risks. Furthermore, the developed model
can be integrated into autonomous systems, such as drones and robots, to enhance situational
awareness and aid in decision-making during critical situations. The proposed framework can
also be utilized for identifying violent behaviour in mass gatherings and public events, thereby
increasing public safety. Overall, the potential dual-use applications of our work demonstrate
its relevance and importance in both civilian and defence domains.

The research work described in this section is derived from the author’s own work in this
field [105], which provides the foundation for the current study

3.2 Related Work

In this section, I describe the several classes of algorithms proposed in the literature for violence
or aggression detection using deep learning. Due to the lack of a substantial amount of labelled
data containing a large number of real-world violence samples, many results reported in the
literature used training data containing only a few videos. For some datasets, the exact time
instances when the violence happens are not available. Algorithms trained on such data often
strive to minimize unusual patterns among training samples to learn about rare violent activities
[106] [107] [108] [109] [110]. These methods are described in the subsections 3.2.1 and 3.2.2.
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3.2.1 Modelling normal patterns

This class of techniques learns patterns about normal behaviour from training videos contain-
ing no violence. Since only normal videos are used in the training phase, no specific labels are
provided. During testing, these methods are expected to find samples that deviate from normal
behaviour [111]. In [112], and [113], motion trajectories are used to learn about normal pat-
terns. In [112], the authors suggest representing motion patterns using super-trajectories that
describe the motion of local groups of similarly moving points and cluster these motion patterns
hierarchically to derive prototype patterns for normal samples.

In [114] and [115], the authors use auto-encoders to learn regularities in video sequences.
Auto-encoders are CNNs comprising of an encoder and decoder to efficiently learn about in-
trinsic and hidden patterns in the form of sparse feature representations from input data. A
common assumption in the methods employing auto-encoders for violence detection is that the
trained auto-encoder can reconstruct the motion patterns present in normal videos with low er-
ror but will not accurately reconstruct motion patterns in violent videos. As an input to the
auto-encoder, they use state-of-the-art handcrafted motion features that consist of HOG and
HOF with improved trajectory features [116]. In [117], authors used optical flows along with
video sequences and construct multiple auto-encoders using reconstruction loss [118] to detect
abnormal or violent events.

Authors in [119], [120] and [121] also incorporated auto-encoders to learn normal be-
haviours, but without explicitly computing local motion patterns. With this one-stage approach,
not needing to deal with the object and feature detection, such methods are quicker in terms of
computational speed. There were also approaches that augment memory modules [119] and/or
optical flow images [122] [123] to the auto-encoders. In [119], authors augmented the output
of an encoder, in a variation of auto-encoder CNNs, with a memory module that adaptively
records prototypical patterns of normal data for more accurate detection of violent cases in a
given database.

In [121] and [124], the authors employ a variation of auto-encoders to predict a future video
frame to a given set of consecutive video frames. Then, they compute the per-pixel difference
between predicted and ground truth frames to make a decision on whether the current video
sequence is normal or not. Future frame prediction has gained increasing attention in light of its
potential applications in unsupervised feature learning for video representation [125]. In [121],
they also quantize the output of the encoder using a predefined code book that further narrows
the explanation of normal events and aids in better future frame prediction in normal videos.
Also in these methods, abnormal or violent events are detected based on the assumption that the
trained models will find it difficult to generate future frames from given violent video sequences.
In [126], to generate more realistic and accurate future frames, the authors imposed a loss in
temporal space. In particular, they compute optical flows in video sequences using a pre-trained
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CNN [127] and formulate a loss function for an auto-encoder that ensures the optical flow of
predicted frames is consistent with ground truth. All aforementioned works focus on predicting
future frames. Apart from these, there were also efforts in literature to predict transformations
needed for generating future frames [128] [129] [130] [131].

3.2.2 Multiple instance learning

These methods also aim to learn violent actions using video-level labels that are provided in
the training phase. In contrast to the methods that are based on modelling normal patterns,
these methods employ both normal and violent data with video-level annotations for training
violent detection models [132] [133] [134]. With give video-level labels, a video belonging to a
violent class can contain several segments that do not have violence. Multiple Instance Learning
(MIL) [135] helps to model the patterns of normal and violent events in such challenging cases.
In [132], Sultani et al. proposed to divide each video (in both normal and violent videos)
into multiple temporal segments to form positive and negative bags. The positive bag contains
instances of violent events and the negative bag contains instances of normal events. Then they
extracted C3D [136] spatiotemporal features on each segment and used these features to train
three fully connected layers to derive scores for the given positive and negative bags. Due to the
absence of segment-level labels, they proposed a novel ranking loss function that encourages
the computed score in the positive bag to be higher than the score in the negative bag. They also
impose smoothness and sparsity constraints in their ranking loss to reduce false alarms. They
showed that their approach works well on their database.

By extending the approach of Sultani et al., Zhu et al. in [133] introduced temporal context
information into the MIL ranking loss to compute scores video-wise and not segment vise. They
proposed a temporal augmented network that captures motion features using pre-computed op-
tical flows. This network is similar to an auto-encoder that tries to reconstruct the input motion
patterns specified in the form of stacked optical flows. They consider the encoded motion pat-
terns (derived at the output of the encoder in their temporal augmented network) for training
their MIL ranking model for accurately localizing anomalies.

[137] proposed a two-step approach where they first detect and track humans locally across
a given segment of a video to form human tubes (spanning the entire segment) and then use
multi-fold Multiple Instance Learning (MIL) with Support Vector Machine (SVM) [138] to
learn about human tubes that contain the action described by the video-level labels. In [139],
Yan et al. proposed a multi-task ranking model. In their approach, they segmented videos
into supervoxels, using a graph-based segmentation method, to generate action tubes and ac-
tion–actor tubes. Action tubes are then used as proposals for actions, e.g., walking, adult run-
ning, and crawling. Features are extracted from each tube to train the ranking model to select
the most characteristic action tubes.
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Arnab et al. [140] proposed a probabilistic variant of MIL, where they estimate the uncer-
tainty of an instance-level prediction. They used a pre-trained person detector trained on a large
image dataset to detect persons over consecutive frames of a video to form person tubelets. A
bag for MIL consists of all tubelets within a video, and it is annotated with the video-level label.
During training, due to computational constraints, a whole bag cannot be processed simultane-
ously; therefore, they model the label noise through the uncertainty of sampling bags that do
not contain any tubelets with the labelled action.

Mettes et al. in [141], strove to find the spatiotemporal locations of actions in videos us-
ing pseudo-annotations. They investigated spatiotemporal pseudo-annotations from different
sources such as action proposals, object proposals, person detections, motion, and centre bi-
ases. Later, they combined the extracted pseudo-annotations using a correlation metric to train
a classifier using MIL.

3.2.3 Supervised learning

Since suitably annotated databases are increasingly available in the past couple of years, there
are also approaches proposed in the literature to classify violent videos using annotated databases
and extract features using learning methods. Particularly, these methods are destined to work
with well-calibrated video datasets containing precise visual information about the events for
the relevant class. For example, there are little or no normal events in the videos belonging
to the violence class. In [142], Long et al. proposed a method that employs the Motion SIFT
(MoSIFT) algorithm to extract the low-level description of a query video. Later, they investi-
gated Kernel Density Estimation (KDE) to filter any feature noise from the MoSIFT descriptor.
On the reduced MoSIFT features, they applied sparse coding using a pre-defined dictionary
to obtain a video-level feature vector. They trained an SVM using the computed video-level
feature vectors to classify videos.

In 2012, Hassner et al in [143] suggested a method for real-time detection of breaking
violence in crowded scenes. They used the Violent Flows (ViF) descriptor that captures optical
flow information between consecutive frames of a given video. They use linear SVM to classify
the videos using the computed ViF descriptors. They compared their approach to other methods
existing at that time and showed that their method is effective in classifying videos containing
crowd violence. The work of Zihan Meng[144] also follows a similar approach. They proposed
a combination of feature extraction and deep learning using CNNs for violence detection. In
particular, they use Hough Forests spatiotemporal feature extractor in combination with a 2D
CNN. Sudhakaran and Lanz [145] proposed to encode the difference between two successive
frames using a combination of CNN and LSTM. They showed that their network trained on
the frame difference has better representation and also performs better than a model trained on
raw frames. Nouar AlDahoul et al. [146] also suggested a lightweight model with less number
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of parameters using CNN and LSTM. They aimed to capture spatial features using 2D CNN
and applied LSTM block on captured spatial features for violent video classification. Fath U
Min Ullah et al. [147] proposed a Violence Detection Network (VD-Net) where they first carry
out object detection to detect humans and suspicious objects like guns to pre-filter the video
sequences for violence detection. Then they use a combination of convolutional LSTM and
gated recurrent units [148] for violence detection on filtered video sequences. Romas et al.
[149] also proposed a CNN-LSTM-like architecture that is computationally light. In particular,
they used MobileNet V2 for extracting spatial features which are used for training an LSTM
network.

Chollet et al. [150] used a trained model which is inspired by XcpetionNet [151] to extract
features and used a bi-directional LSTM, that analyses features in both temporal directions, for
classification. Khan et al. [152] proposed a method that samples a video uniformly into several
segments, and then they select a representative frame from each segment using computed levels
of saliency. They fine-tune MobileNet [153] using the representative frames to classify the
corresponding segment into violent and non-violent classes.

Li et al.[154] proposed an architecture based on DenseNet [155] 3D CNN that directly
works on the video data without explicitly computing any features. They showed that they
can achieve good accuracy on standard databases with a relatively lightweight deep learning
model. Fernando et al.[156] also proposed an architecture based on a variant of DenseNet
[157], however, they use DenseNet to extract feature maps. On the extracted feature maps, they
link different positions of a single sequence using self-attention mechanisms [158] to generate
a representation that focuses on the most relevant parts of the sequence. The output of the
self-attention layers is connected to bi-directional LSTM blocks followed by fully connected
layers for classification. They demonstrated that their method achieves good accuracy on four
different databases. As an input to DenseNet, they used optical flow information computed
from the videos. Additionally, they have also experimented with pseudo-optical flows as input
to DenseNet obtained by subtracting two adjacent frames.

In [159], Dong et al. proposed multi-stream deep convolutional neural networks consisting
of three streams - colour, optical flow, and acceleration for person-to-person violence detection
in videos. Their main hypothesis is that violent events are more intense in terms of speed
when compare to other normal events. The proposed acceleration stream aims to capture such
important intense information. Three different LSTMs are trained using the features from these
three streams and the outputs of the three streams are fused to classify a video.

Yukun Su et al. [160] followed a different approach to violence detection. They computed
3D skeleton point clouds from the human skeleton sequences extracted from videos and then
performed interaction learning on these 3D skeleton point clouds. They introduced Skeleton
Points Interaction Learning (SPIL) module that captures spatiotemporal features from extracted
point clouds to model the interactions between skeleton points. They employed multiple SPIL
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modules together with fully connected layers to classify violent videos from normal videos.
Guankun Mu et al. in [161] proposed to use both visual and audio cues to detect violent

scenes in videos. Their hypothesis is that visual information may not be always reliable for
violence detection and using audio would increase the detection accuracy. For extracting audio
features, they used a 40-dimensional Mel Filter-Bank (MFB) with a 25 ms analysis window and
10 ms shift. They used SVM in their implementation for classifying audio samples from input
videos.

3.2.4 Limitations in the state-of-the-art methods

Although methods that learn only normal patterns in training show successful results on some
databases, they are inefficient in generalizing to other databases. One of the common reasons
is that some normal actions involving close physical interaction between humans can mimic
violent actions and can mislead the deep learning algorithms to infer false negatives. Also,
some violent human actions are visually complex, and using only normal visual data for deep
learning may not be optimal. I suggest that it is important to incorporate both normal and violent
behaviours in the training data.

Violence detection methods that follow future frame prediction also fail to generalize. While
reconstructing future frames, if a current frame contains objects, for example, a bicycle, that are
not available during training, the predicted frame differs significantly from the ground truth
future frame and an anomaly is declared. Further, using memory modules, dictionaries, and
codebooks in architectures like auto-encoders for future frame prediction substantially restricts
the interpretation of normal actions by such models.

Some classes of techniques in literature use information such as optical flows or detected
objects or human skeleton coordinates. Depending on the target hardware to deploy violence
detection algorithms, computing such information is expensive. Even if sufficient hardware
resources are available for implementation and execution, tracking object coordinates frame-
by-frame to compute robust trajectories is still challenging, especially, when long trajectories
need to be extracted or difficult scenarios appear such as crowded scenes.

Table 3.1 compares different approaches for violence detection in videos proposed in the lit-
erature and lists their advantages and disadvantages. I suggest that the key aspects in developing
successful algorithms for violence detection are that these methods should be computationally
fast, achieve the best accuracy and adapt to scenarios that are not present in the training. It is
evident from several efforts in the literature that methods that employ spatiotemporal feature
detection from videos that account for both motion and appearance information can achieve
high accuracy. However, it is important to note that the cost of extracting some of those features
is still prohibitive for practical applications. In the current work, I adapt and extend X3D ex-
pandable architecture that has very few parameters and for fast and accurate violence detection.
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Table 3.1: Comparison of approaches in the state-of-the-art for violence detection in videos.

Method Strength(s) Limitation(s)
Learning normal patterns Computationally light Poor generalizability

and may not be suitable
for practical applica-
tions.

Future frame prediction Computationally light Poor generalizability,
difficulty interpreting
normal actions, sen-
sitivity to objects not
present during training
and memory modules
in some architectures
may restrict the inter-
pretation of actions.

MIL using spatiotemporal features Depending on features,
can be computationally
light

Trims videos into bags,
and focuses on predict-
ing bag-level labels,
ignoring temporal
context information
between bags, may not
achieve high classifica-
tion accuracy.

3D deep learning architectures Good classification
accuracy, adaptable to
new scenarios

Extraction of 3D vol-
umes can be memory-
intensive, computing
optical flow in some
architectures can
be time-consuming,
training can be slow,
computing some fea-
tures can be expensive,
and may not be suitable
for real-time applica-
tions.
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Although following MIL using spatiotemporal features is computationally light, these methods
cannot yield better classification accuracy since they focus on predicting segment-level labels
while neglecting to model hidden temporal context information. In this work, I focus on using
calibrated datasets to develop an efficient method for violence detection (refer section 3.3.1).

3.3 Fast and Accurate Violence Detection

ResNet [51] is a popular base architecture for image and video recognition tasks, known for
its effectiveness and state-of-the-art results on benchmarks like ImageNet [162] and COCO
[163] datasets. 3D ResNets [99] are an extension of the ResNet architecture, designed for
learning spatiotemporal features from video data. They have achieved strong performance on
various benchmarks and real-world applications, including the Kinetics-700 action recognition
dataset [164] (where a variant called I3D [165] achieved state-of-the-art performance) and the
Something-Something V2 action recognition dataset (where a 3D ResNet called R(2+1)D [166]
achieved state-of-the-art performance).

3D ResNets have higher accuracy than counterparts like 3D-MobileNet [167] due to factors
such as more layers for learning complex spatiotemporal features and skip connections between
the input and output of each layer that allow input to bypass intermediate layers. However,
they are generally more computationally intensive due to a large number of model parameters.
To improve computational efficiency, model complexity can be reduced through techniques
such as reducing the number of layers, using fewer filters in convolutional layers, and using
smaller input data, though this may decrease accuracy on complex tasks. Christoph et al. [168]
experimented with various parameters of the 3D ResNet architecture to understand the effect
of reduced model complexity on accuracy. They expanded the architecture along multiple axes
to form spatiotemporal models and selected the axis that achieved the best trade-off between
computational speed and accuracy, resulting in a series of models ranging from extra small
(XS) to extra large (XL) in increasing complexity. Using the Kinetics-400 dataset [169], they
showed that their expanded model, X3D-M, had the same accuracy as state-of-the-art video
classification networks but with a 10X reduction in model parameters.

The X3D-M model is an appropriate choice for my violence detection task due to its high
accuracy and reduced model complexity. As demonstrated by Christoph et al., the X3D-M
model achieves similar accuracy to state-of-the-art video classification networks, but with a
significantly lower parameter count. This reduction in model complexity makes the X3D-M
model more efficient to train and deploy, particularly for resource-constrained systems. Also,
the ResNet 3D backbone, which has a proven ability to learn complex spatiotemporal features, is
particularly useful for my violence detection task, as it allows the model to capture the dynamic
nature of the videos and learn robust representations of the data. The proposed system using
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X3D-M model architecture is detailed in section 3.3.2.

3.3.1 Datasets for experiments

As mentioned previously, due to laws such as GDPR, substantial real-world footage contain-
ing violence for training deep learning models is not available. In the recent past, the usage
of synthetic training data is becoming more common in computer vision. Using training data
containing pasted object patches on real images was shown to be effective in the case of 2D ob-
ject detection tasks [170] [171] [172] and human pose estimation [173]. However, for violence
detection, I postulate that such fabricated training data do not fully capture the complex and
diverse action patterns of violent actions with various nuances. Therefore, preparing and using
synthetic training data is considered to be out of the scope of the current work.
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P. Sernani et al. in [177] proposed an AIRTLab dataset that contains videos with violence
performed by non-professional actors. They studied 2D and 3D deep learning architectures for
violence detection using their dataset. Their results indicate that the studied models adapt well
to their settings where violence is mimicked by non-professional actors. However, they pointed
out that their results cannot be considered general. Their architectures are not validated on more
datasets and no cross-validation experiments were performed. Hence I also do not consider such
datasets in my experiments.

In the current work, I have considered seven different datasets that are commonly used in the
literature for experimentation with violence detection and to facilitate comparison of my results
with other methods. I have also extended some of these datasets with annotations to assist in
in-depth cross-validation experiments. These datasets are described in the following:

• Crowd Violence (CV) [143] dataset contains videos involving violence in crowds, col-
lected from YouTube.

• Hockey Fights (HF) [174] dataset is a collection of fights between players in hockey
games from the USA’s National Hockey League (NHL).

• Movie Fights (MF) [174] dataset collects several scenes from action movies.

• Real Life Violence Situations (RLVS) [175] dataset gathered fighting videos from YouTube
and also from real street cameras that contain many real street fights.

• Real-World Fight-2000 (RWF-2K) [176] dataset is a collection of large-scale fighting
videos from YouTube. The dataset contains trimmed video clips captured by surveillance
cameras from real-world scenes.

• UCF-Crime Selected (UCFS) dataset is a subset of UCF-Crime [132] dataset. The
UCF-Crime dataset contains long untrimmed surveillance videos that cover 13 real-world
anomalies including Abuse, Arrest, Arson, Assault, Burglary, Explosion, Fighting, Road
Accident, Robbery, Shooting, Stealing, Shoplifting, and Vandalism without annotations.
Although this is a large-scale dataset, all videos in the violence class contain a mix of vio-
lent and normal actions which is undesirable. Among the anomalies, I selected the classes
- Abuse, Explosion, Fighting, Road Accident, and Shooting and manually trimmed these
videos to only contain violent parts for training and testing.

• XD-Violence Selected (XD-V) dataset contains a subset of videos from the XD-Violence
[178] dataset. XD-Violence dataset contains several untrimmed videos covering 6 anoma-
lies including Abuse, Car Accidents, Explosions, Fighting, Riots, and Shooting gathered
from action movies and YouTube. Similar to the UCF-Crime dataset, I selected a set of
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videos belonging to the classes - Abuse, Explosion, Fighting, Road Accident, and Shoot-
ing and manually trimmed these videos to only contain violent parts for training and
testing.

All of the datasets also contain normal videos for training and testing that do not involve vi-
olence. In the case of the UCFS and XD-V datasets, I trimmed the normal videos to five-second
video clips to match the average duration of normal clips in the other datasets. Additionally,
in the case of the UCFS and XD-V datasets, I limited the maximum duration of a video clip
containing violence to approximately five seconds. Table 3.2 provides more details about each
of the datasets I used in my experiments.

3.3.2 Model Architecture

For accurate violence detection, it is important to have a properly calibrated dataset containing
a large number of diverse examples for each class. Successful action recognition datasets such
as Kinetics-400 [169] contain a minimum of 400 videos for each action class such as standing,
sitting and talking, etc. All videos in Kinectics-400 dataset have a fixed time span of five
seconds. They obtained clips for each class from YouTube and then used Amazon Mechanical
Turkers (AMT) to decide if a given clip contains the desired action or not. Three or more
confirmations (out of five) were required before a clip was accepted [169]. Further, the dataset
was also de-duped to reduce redundancies in the environment.

In several cases, actions involving violence are more complex than actions like sitting and
talking and the number of examples of violent videos collected in the existing datasets may not
be enough for training a model that generalizes well and can lead to model over-fit. Also, as
shown in Table 3.2, different datasets for violence detection contain clips having different time
spans in seconds and they are not well-groomed to check for the validity of a specific action
or for redundancies. To cope with these issues with existing datasets for violence detection,
I follow training approaches that are inductive in nature. Specifically, I aim to make use of
the knowledge learned using better-calibrated action recognition datasets to solve efficient vio-
lence detection problems. To this end, I propose two different learning configurations that are
described in the following subsections.

Fine-Tuned X3D-M model

In Fine-Tuned X3D-M (hereinafter referred to as FT) model, I consider the X3D-M model ar-
chitecture initialized with weights obtained by training on the Kinectics-400 dataset. Note that
the original architecture used for training on the kinetics-400 dataset contains two fully con-
nected layers with the output of the second fully connected layer representing the classification
results for each class (the number of outputs of this layer is equal to the number of classes in the
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training dataset). Since, in my case, I aim to predict if a clip contains violence or not (binary), I
modify the architecture into a regression model to generate a violence coefficient that indicates
the probability of the existence of violence in a given video clip. Specifically, I trim the X3D-M
model until the first fully connected layer and replace the second fully connected layer to output
a floating point variable which is converted into range [0, 1] using a sigmoid function to derive
the violence coefficient. Plainly, during learning, for samples of video clips containing vio-
lence, I label the violence coefficient as 1 and for samples of video clips containing no violence,
I label the violence coefficient as 0.

The architecture of the X3D-M model follows the Fast pathway design of SlowFast net-
works [179] with down-sampled temporal input. Therefore, I pre-process the input videos as
per the requirements of the X3D-M model. In particular, for a given video clip, first, I extract
16 video frames by uniform sampling in the temporal domain. Then, I transform the pixel value
range of the extracted frames to be in between [0, 1] to obtain floating point images. Later, I
normalize the video frames using mean and standard deviation and resize the frames so that
the shortest side corresponds to 256 pixels. Finally, the resized frames are centre cropped to
obtain 16 video frames with a spatial resolution of 256 × 256. Batches of pre-processed video
frames are supplied to the FT model with corresponding labels for training. Note that here,
the X3D-M model weights obtained by training on the Kinetics-400 dataset are only used for
network initialization and these are further optimized during training datasets for violence de-
tection. My FT architecture is shown in Fig. 3.1 and Table 3.3 presents the information on the
corresponding model parameters.

Transfer-Learned X3D-M model

The Transfer-Learned X3D-M model, or TL for short, leverages the strengths of the X3D-M
model, which has been trained on the large Kinetics-400 dataset, for feature extraction. To do
this, the input video data is pre-processed and passed through the X3D-M model to extract a
feature set. The feature set is then used to train three additional fully connected layers, which
are shown in Fig. 3.2 and Fig. 3.3.
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The resulting output is a floating point variable that is transformed into a violence coeffi-
cient in the range of [0, 1] using a sigmoid function. The advantage of this approach is that it
leverages the already trained X3D-M model to extract meaningful features from the input video
data, reducing the amount of training required for the additional layers. This results in a more
efficient and effective model for violence detection in videos. The information on the TL model
parameters is presented in Table 3.4.

Table 3.3: Parameters involved in my FT model - combining the trimmed X3D-M model and
the replaced second fully connected layer, I have 2976723 parameters in this model. Since
the parameters of the trimmed X3D-M model are also optimized during training, all 2976723
parameters are trainable.

Component Output Shape Params #
Trimmed X3D-M model (2048) 2974674
Dense (”fc2” in Fig. 3.1) (1) 2049

Total Parameters 2976723

Table 3.4: Parameters involved in my TL model - I have 4040211 parameters in this model.
Since the parameters of the trimmed X3D-M model are not trained, 1065537 parameters are
trainable and 2974674 parameters are nontrainable.

Component Output Shape Params #
Trimmed X3D-M model (2048) 2974674
Dense (”fc2” in Fig. 3.2) (512) 1049088
Dense (”fc3” in Fig. 3.2) (32) 16416
Dense (”fc4” in Fig. 3.2) (1) 33

Total Parameters 4040211

3.3.3 Learning and optimization

I do not apply data augmentation techniques in the training of the proposed models. I use
Adagrad [180] to optimize my models with an initial learning rate of 1e−3. Both models are
compiled to minimize the Binary Cross Entropy (BCE) between the estimated and ground truth
violence coefficients. For training the TL model, I use a batch size of 30 samples collected from
shuffled pre-computed X3D-M feature vectors. Since the FT model takes videos as input, to
account for higher memory usage during training, I consider a batch size of 4 samples collected
from shuffled videos. For regularity, within a training batch, for both models, I concatenate a
batch of violent video clips with a batch of non-violent video clips. For ease of access, all my
hyperparameters are listed in the table 3.5
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Violence coefficient

Figure 3.3: Network graph for the additional fully connected layers in the TL model (original
illustration by Viktor Huszár).
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Table 3.5: List of hyperparameters and their corresponding values used in my training.

Hyperparameter Value
Learning Rate 0.001

Batch Size TL-30 & FT-4
Number of Epochs 50

Optimizer Adagrad
Loss Function Binary Cross Entropy loss
Dropout Rate 0.1

L2 Regularization 0.001

3.4 Results and Discussion

In this section, I present the results from my various experiments using the proposed models and
the various datasets described in section 3.3.1. Most of the datasets used in the study already
have a training and testing data split with 80% of the data as the training set and 20% as the
test set. For other datasets, for my experiments, I preserve this percentage and randomly select
20% of violent and non-violent samples to create a testing set for a fair comparison across
datasets. To facilitate fair comparison, all the models are trained for 50 epochs using a given
training dataset. I use the PyTorch [181] deep learning library to train and test my models
on a Nvidia GeForce GTX 1080 Ti GPU using the CUDA toolbox. I use the Ubuntu Linux
operating system on an AMD Ryzen Threadripper 1950X 16-core processor. To evaluate the
performance of various methods, I use the following metrics that are commonly used to evaluate
the performance of classification algorithms using deep learning.

• Accuracy (ACC) [182] is the most popular metric for evaluating deep learning models for
video classification. It is the ratio of the number of correct predictions (as violent or non-
violent video clips) to the total number of predictions. To compute the accuracy, I used the
provided ground truth binary labels - 0 (for video clips without violence) and 1 (for video
clips with violence) - that are provided during training. Since I designed my networks
to output floating-point violence coefficients, I round the predicted violence coefficients
to the nearest integer before calculating the accuracy. In line with other methods in the
literature, I report the accuracy score in percentages.

• Area Under Curve (AUC) [183] is a statistical measure to evaluate the performance of
a classification model. It represents the area under the Receiver Operating Characteristic
(ROC) curve, which graphically illustrates the effectiveness of a classifier in discriminat-
ing between the trained classes at various decision probability thresholds. Specifically,
using the predicted violence coefficients, the ROC curve shows the relationship between
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True Positive Rate (TPR) (the number of times when violence cases are correctly iden-
tified as violence among the total cases when violence cases are correctly identified as
violence and non-violence cases are correctly identified as non-violence) and False Posi-
tive Rate (FPR) (the number of times when non-violence cases are incorrectly identified
as violence among the total cases when non-violence cases are incorrectly identified as
violence and violence cases are incorrectly identified as non-violence). Higher values of
the area under the ROC curve (that are close to 1) represent the ability of a model to ef-
fectively discern between violence and non-violence cases, while lower values represent
the opposite.

I have conducted several experiments, including cross-dataset validation, to evaluate the
performance of the proposed approaches using the considered datasets and metrics. The details
and results of these experiments are presented in the following subsections.

3.4.1 Experiments on individual datasets

Table 3.6: The ACC(%) scores of my FT and TL models along with the state-of-the-art methods
on individual datasets. Based on the ACC metric, my FT method outperforms most of the state-
of-the-art methods on all datasets except HF, with relatively fewer model parameters.

Method CV HF MV RLVS RWF-2K UCFS XD-V Params #
ViF[143] 81.3 82.9 - - - - - -

3-stream+LSTM[159] - 93.9 - - - - - -
MoSIFT[142] 89 94 - - - - - -
Bilinski[79] 96.4 96.8 99 - - - - -

Sudhakaran[145] 94.5 97.1 100 - - - - 9.6M
Zihan Meng[144] - 94.6 99 - - - - -

Li et al.[154] 97.17 98.3 100 - - - - 7.4M
Akti 5-Frames[150] - 95 90 - - - - 9M

Akti 10-Frames[150] - 96 87.5 - - - - 9M
Khan et al.[152] - 87 99.5 - - - - -
Pseudo-OF[156] 94.8 97.5 100 94.1 - - - 4.5M

OF[156] 96.9 99.2 100 95.6 - - - 4.5M
CNN-LSTM-IOT[146] - - - 73.35 73.35 - - 1.266M

Romas et al.[149] - - 99.5 73.35 82.3 - - 4.074M
SPIL [160] 94.5 96.8 98.5 - 89.3 - - -

VD-Net[147] - 98.5 - - 88.2 - - 4.4M
Choqueluque-Roman et al.[184] - 97.3 - 92.88 88.71 - - above 30M

ours (FT) 99.5 97.5 100 96.7 91 90.1 93.59 2.98M
ours (TL) 92 97.5 100 95.2 85 84.2 89.31 4.04M

Most datasets already have pre-defined data splits for training and testing, with 80% and
20% of the data respectively. I used these splits without modification for unbiased compari-
son. For the remaining datasets, I maintained this proportion of training and testing data by
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Table 3.7: The AUC scores of my FT and TL models compared to various state-of-the-art
methods. According to the AUC metric, the FT model outperforms the state-of-the-art methods
on most of the datasets and has fewer model parameters.

Method CV HF MV RLVS RWF-2K UCFS XD-V Params #
MoSIFT [142] 0.935 0.96 - - - - - -

Bilinski[79] 0.87 - - - - - - -
CNN-LSTM-IOT[146] - - - 0.82 0.82 - - 1.266M

VD-Net[147] - 0.994 - - 0.91 - - 4.4M
Choqueluque-Roman et al.[184] - 0.993 - 0.913 0.914 - - above 30M

ours (FT) 1.0 0.999 1.0 0.996 0.972 0.971 0.976 2.98M
ours (TL) 0.99 0.994 1.0 0.993 0.944 0.936 0.959 4.04M

randomly selecting 20% of violent and non-violent samples for testing. I trained my models on
the training data split and evaluated their performance on the testing data split for each dataset
separately. The testing results using the ACC and AUC metrics are presented in Tables 3.6 &
3.7 respectively. The tables also show the performance of state-of-the-art methods discussed in
section 3.2 on the respective datasetes. As mentioned, I created the UCFS and XD-V datasets
and I report the results on these datasets using only my methods.

It is worth noticing that only a few studies in the literature report evaluations using the
AUC metric. I argue that in applications such as violence detection, false positives (incorrectly
reporting non-violent events as violent) should be explicitly considered when evaluating the
performance of a model and the ACC metric does not directly account for false alarms.

The experimental results on individual datasets show that both of my proposed methods
perform well on individual datasets. Overall, my FT model outperformss most of the state-
of-the-art methods, and my TL model also achieved decent performance on all datasets. I
postulate that the FT model, which optimizes the parameters of the (trimmed) X3D-M model
during learning, is more adaptable to a given dataset. On the MF dataset, the results for both TL
and FT models suggest overfitting, which is consistent with the results from most methods in
the literature. This suggests that the MF dataset may contain more regular examples with less
diversity and may be less challenging for deep learning video classification models. The Tables
3.6 & 3.7 also show the model parameter count for various models under comparison and my
models have fewer parameters than the state-of-the-art methods.

Bilinski et al.[79] achieved a higher accuracy than my TL model on the CV dataset. They
used improved Fisher vectors for spatiotemporal feature extraction, which can be context-
dependent. For example, the CV dataset only contains examples of violence involving a crowd,
and their results show that their method performs better in such scenarios. It is important to note
that statistical feature extraction methods like this can be sensitive to variations in the video cap-
ture environment and may result in false alarms. When evaluated using the AUC metric, my TL
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model performs better than the method of Bilinski et al.[79] on the CV dataset (see Table 3.7).
Sudhakaran et al. [145] used a pre-trained AlexNet model trained on ImageNet for their

method. They used the difference between consecutive video frames as input to capture tempo-
ral information. The results show that their method performs better on the CV dataset compared
to my TL model. I should note that my TL model extracts features using a pre-trained X3D-M
model trained on the Kinetics-400 dataset. This dataset contains a smaller number of examples
with several people appearing in individual frames of the videos. In contrast, the ImageNet
dataset contains a relatively higher number of examples with several people appearing in one
frame. Therefore, we suggest that the extracted X3D-M features might be noisy and result in
lower accuracy on datasets involving crowds such as the CV dataset.

Li et al.[154] used a DenseNet 3D-CNN to train and extract spatiotemporal features from
videos. Their model was initialized with parameters from a pretrianed model trained on the
Kinetics-400 dataset, similar to my FT model. However, their model had more CNN layers and
higher model parameters, which contributed to its better accuracy on the CV and HF datasets
compared to my TL model. It should be noted that DenseNet uses multi-layer feature concate-
nation for improved feature representation, but this approach requires more GPU memory and
longer training times. Choqueluque-Roman et al.[184] followed an approach that used an I3D
architecture in combination with a ResNet50 for feature extraction using human action tubes for
training a deep learning model based on MIL. Their results showed that, according to the ac-
curacy and AUC metrics, my models achieved better performance with relatively fewer model
parameters, which confirms that training based on MIL may not achieve high classification
accuracy.

Violence-Net [156] also used DenseNet for training and extracting feature maps. Accord-
ing to the ACC metric (see Table 3.6), their method using optical flow input achieved better
scores than my FT model on the HF dataset. However, their architecture contains more model
parameters and involves computing optical flow information, making it computationally more
complex than ours. When pseudo-OF was used as input in their method, the accuracy decreased
compared to my FT model. On the CV dataset, their model with more number of parameters
achieved higher accuracy than my TL model. As previously mentioned, the extracted X3D-M
features from videos involving crowds can be noisy and lead to less accurate results.

The method proposed by Romas et al. [149] used MobileNet V2 architecture for spatial
feature extraction and LSTM modules for learning about temporal associations. Despite having
a similar number of model parameters as my TL model, my methods achieved higher accuracy.
As demonstrated by my results, methods that capture 3D spatiotemporal features directly from
the video data, such as my proposed models, represent temporal associations more accurately
and are therefore more effective at detecting violence in videos. This is due to the ability of my
proposed models to accurately capture the full context and dynamics of the events depicted in
the video, leading to improved performance in violence detection tasks.
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The SPIL method [160] achieved higher accuracy scores than my TL model on the CV and
RWF-2K datasets. However, this method requires significant computational resources due to
the need to estimate 3D skeleton point clouds for interaction learning, making it impractical for
practical applications.

The Violence Detection Network (VD-Net) [147] achieved better accuracy on HF and RWF-
2K datasets compared to my TL model and has slightly more model parameters. VD-Net first
detects humans and suspicious objects such as guns, which requires more computational re-
sources than my TL model. However, the AUC scores for the TL model are comparable to
VD-Net.

Finally, the CNN-LSTM-IOT model [146] has fewer parameters than all of the models under
comparison, including ours, and it has been demonstrated that it can run on a low-cost Internet
of Things (IOT) device like a Raspberry Pi. However, the model relies on spatial features for
learning and performs poorly on the RLVS and RWF-2K datasets.

In summary, my experiments on individual datasets demonstrated that my FT model out-
performed most of the state-of-the-art methods on most datasets while having fewer model
parameters. My TL model also achieved decent performance on all the datasets, despite having
fewer trainable parameters than the FT model, as shown in Tables 3.3 & 3.4. This suggests that
the TL model is relatively less adaptable to specific scenarios.

3.4.2 Experiments about generalizability

To study the adaptability of my proposed approaches to unseen videos, I conducted cross-dataset
experiments where I trained a model on one dataset and evaluated its performance on another
dataset. Table 3.8 shows the results from such one-on-one cross-validation tests in the top sec-
tion (columns 5-8). It should be noted that, among the considered datasets, different datasets
have different numbers of videos containing instances of violence and non-violence actions. In
general, the number of samples available for training can greatly affect the learning capabilities
of a deep learning model. Few and less diverse training samples can lead to model overfitting,
where the model models some noise or random fluctuations in the training data is modelled
very well, but it cannot generalize to new data. In my case, since I follow an inductive train-
ing approach using a pre-trained X3D-M model on the Kinetics-400 data, I suggest that my
models are least influenced by the number of training samples, and my cross-validation results
essentially show the ability of my models to learn the concept of violence.

Both ACC and AUC metrics show that there are several inconsistencies in the results across
the considered datasets. To provide deeper insights into my cross-validation results, I plot the
ACC and AUC scores obtained by training on a specific dataset and averaging the testing scores
on the rest of the datasets in Figures 3.4 & 3.5 respectively for both FT and TL models. Each
plot also shows the standard deviation of the metric scores obtained from the testing datasets,
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Table 3.8: Cross dataset experiment results - One-on-one cross-validation test results are shown
in the top section, leave one out cross-validation test results are shown in the middle section, and
the bottom section shows the performance of my models on the training/testing folds used in
Violence-Net [156] . To compare, ACC scores for Violence-Net using both OF and Pseudo-OF
inputs are also provided for relevant datasets.

Dataset
Training

Dataset
Testing ACC-OF[156]

ACC-
Pseudo-OF[156]

ACC-FT
(ours)

ACC-TL
(ours)

AUC-FT
(ours)

AUC-TL
(ours)

CV HF 65.16 64.76 56.5 50.6 0.68 0.78
CV MF 60.02 59.48 56 72 0.54 0.88
CV RLVS 58.76 58.32 78.58 86.56 0.84 0.95
CV RWF-2K - - 76.05 73.05 0.81 0.87
CV UCFS - - 68.11 72.46 0.75 0.79
CV XD-V - - 53.99 64.48 0.62 0.71
HF CV 62.56 61.22 97.95 97.95 0.99 1
HF MF 65.18 64.86 45.5 76 0.55 0.86
HF RLVS 58.22 57.36 76.58 86.11 0.83 0.94
HF RWF-2K - - 69.9 78.2 0.76 0.86
HF UCFS - - 64.51 65.8 0.68 0.77
HF XD-V - - 54.09 58.7 0.51 0.66
MF CV 52.32 51.77 86.48 96.31 0.99 1
MF HF 54.92 53.5 98.3 87.8 1 0.95
MF RLVS 56.72 55.8 79.29 87.41 0.94 0.95
MF RWF-2K - - 75.6 78.35 0.84 0.86
MF UCFS - - 68.39 66.36 0.71 0.77
MF XD-V - - 55.77 59.5 0.57 0.66

RLVS CV - - 90.98 98.36 0.99 1
RLVS HF 69.24 68.86 97 84 0.99 0.95
RLVS MF 75.82 74.64 90 85.5 0.99 0.95
RLVS RWF-2K 67.84 66.68 82.2 78.55 0.9 0.87
RLVS UCFS - - 65.71 67.19 0.75 0.78
RLVS XD-V - - 64.48 62.43 0.75 0.69

RWF-2K CV - - 90.98 98.77 0.95 1
RWF-2K HF - - 87.1 81.9 0.93 0.95
RWF-2K MF - - 90.5 87.5 0.99 0.96
RWF-2K RLVS - - 96.44 92.13 1 0.98
RWF-2K UCFS - - 66.82 66.82 0.8 0.78
RWF-2K XD-V - - 66.25 61.9 0.83 0.69

UCFS CV - - 80.33 99.18 0.89 1
UCFS HF - - 64 76.5 0.92 0.95
UCFS MF - - 98 86.5 1 0.96
UCFS RLVS - - 91.47 91.73 0.99 0.98
UCFS RWF-2K - - 93.6 78.35 1 0.89
UCFS XD-V - - 82.15 66.52 0.91 0.74
XD-V CV - - 81.97 99.59 0.9 1
XD-V HF - - 54.3 69.2 0.72 0.95
XD-V MF - - 94 83 0.99 0.96
XD-V RLVS - - 93.73 90.27 0.98 0.98
XD-V RWF-2K - - 87.65 74.8 0.97 0.89
XD-V UCFS - - 87.62 76.8 0.95 0.84

HF+MF+RLVS+RWF-2K+UCFS+XD-V CV - - 88.93 72.13 0.95 0.92
CV+MF+RLVS+RWF-2K+UCFS+XD-V HF - - 96.9 97.1 1 0.99
CV+HF+RLVS+RWF-2K+UCFS+XD-V MF - - 97 99.5 1 1

CV+HF+MF+RWF-2K+UCFS+XD-V RLVS - - 99.45 90.37 1 0.969
CV+HF+MF+RLVS+UCFS+XD-V RWF-2K - - 97.25 91.45 1 0.98

CV+HF+MF+RLVS+RWF-2K+XD-V UCFS - - 75.97 92.33 0.86 0.98
CV+HF+MF+RLVS+RWF-2K+UCFS XD-V - - 70.25 93.07 0.91 0.98

HF+MF+CV RLVS 70.08 69.84 99.45 98.95 1 1
HF+MF+RLVS CV 76 75.68 77.87 80.74 0.95 0.95
HF+RLVS+CV MF 81.51 80.49 99.5 99 1 1
RLVS+MF+CV HF 79.87 78.63 61.4 97.1 0.94 0.99
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indicated by the red colour lines. According to the metric scores, the trained FT and TL models
on the CV dataset did not generalize well to other datasets (see bar plots in Figures 3.4(a)
& 3.5(a)). This is anticipated since the CV dataset contains only examples of mass violence,
and the other datasets do not contain many such examples. Also, the trained FT model on the
HF dataset poorly generalized to other datasets, indicating that the HF dataset does not contain
diverse examples of violence and contains monotonous fighting videos between hockey players.
However, the TL model trained on this dataset showed better generalization than the FT model
as indicated by the metric scores.

FT and TL models trained individually on datasets - MF, RLVS, RWF-2K, UCFS & XD-
V performed satisfactorily in my cross-validation tests and generalized well to other datasets
with average ACC scores close to or above 80% and average AUC scores close to or above
0.8. When considering both metrics, FT and TL models trained on UCFS and XD-V datasets
exhibited the best generalization ability in my cross-validation studies. This suggests that these
datasets, which I compiled, contain the most representative and diverse samples for violent and
non-violent actions.
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For closer examination, I also conducted leave-one-out cross-validation tests where I trained
my models on all datasets except one, which was reserved for testing. The results of these
tests are presented in the middle section of Table 3.8. The tests suggest that when the CV
dataset was left out of the training, the TL model did not achieve a good ACC score. This is
expected because the TL model extracts features from training videos using a pre-trained X3D-
M model that was trained on the Kinetics-400 dataset, which does not contain many examples
involving crowd participation. However, the FT model achieved decent accuracy, indicating
that the datasets other than CV contain a sufficient number of examples for learning about
violence involving crowds. In line with the results obtained in the one-on-one cross-validation
tests, leaving out the UCFS or XD-V datasets from training resulted in poor performance for
the FT model. However, the performance of the TL model did not drop when these datasets
were left out of the training, indicating that the TL model generalizes better than the FT model.
To confirm this, I collected all instances of the one-on-one cross-validation tests when a specific
dataset was being tested for further examination. In Figures 3.6 and 3.7, I plot the ACC and
AUC scores obtained by averaging the testing accuracy scores on a specific dataset when all
other datasets were used individually for training for both the FT and TL models. Each plot
also shows the standard deviation of the metric scores obtained during testing, indicated by red
lines. Based on these plots, it is evident that overall, the TL model showed the better capability
to generalize and had lower standard deviation within the testing accuracy scores for individual
datasets when compared to the FT model.

To the best of my knowledge, results from cross-validation studies are rarely presented in
the literature for violence detection algorithms. For comparison, I have also included the cross-
validation results from Violence-Net [156] using both OF and pseudo-OF inputs (columns 2-3)
in the Table 3.8. Only ACC scores are provided since AUC scores are not presented in their
original study. Also the authors of Violence-Net only used four datasets in their experiments, so
results are presented only for these four datasets. The comparison results show that, on average,
my TL and FT models consistently outperformed Violence-Net using both OF and pseudo-OF
inputs. This suggests that my approaches are more accurate and better able to generalize to
unseen scenarios for violence detection when compared to Violence-Net.

78



(a
) 

C
V

(b
) 

H
F

(c
) 

M
F

(d
) 

R
LV

S
(e

) 
R

W
F-

2
K

(f
) 

U
C

FS
(g

) 
X

D
-V

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

FT
T
L

4
0

6
0

8
0

1
0
0

ACC (%)

Fi
gu

re
3.

6:
A

C
C

sc
or

es
fo

r
ea

ch
da

ta
se

to
bt

ai
ne

d
by

av
er

ag
in

g
th

e
te

st
in

g
ac

cu
ra

cy
sc

or
es

on
th

e
sp

ec
ifi

c
da

ta
se

tw
he

n
al

lo
th

er
da

ta
se

ts
ar

e
in

di
vi

du
al

ly
us

ed
fo

rt
ra

in
in

g.
A

ve
ra

ge
sc

or
es

ar
e

in
di

ca
te

d
fo

rb
ot

h
FT

an
d

T
L

m
od

el
s.

E
ac

h
pl

ot
al

so
sh

ow
s

th
e

st
an

da
rd

de
vi

at
io

n
in

A
C

C
sc

or
es

ob
ta

in
ed

du
ri

ng
te

st
in

g
(o

ri
gi

na
li

llu
st

ra
tio

n
by

V
ik

to
rH

us
zá
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3.4.3 Experiments with all combined dataset

In this section, I describe my experiments using combined dataset and discuss the performance
of the FT and TL models on this dataset. To ensure a fair distribution of training samples
from each dataset, I selected and grouped the predefined 80% of the data from each dataset for
training and the remaining 20% for testing. Figure 3.8 illustrates the proportion of samples from
each dataset. The ROC curves, including the obtained ACC and AUC scores are presented in
Figure 3.9. Results from both metrics suggest that my models performed satisfactorily on this
dataset, with the FT model achieving slightly better performance. It is worth noting again that
the TL model has fewer trainable parameters than the FT model.

CV

HF

MFRLVS

RWF-2K

UCFS

XD-V

Proportion of samples from each dataset

Figure 3.8: The pie chart illustrates the distribution of samples from different datasets used for
training and testing in the combined dataset experiments (original illustration by Viktor Huszár).

For further analysis, I present the confusion matrices for both models in Figure 3.10. The
rows of the confusion matrix represent the true labels, or the expected output, for the Violent
(V) or Non-Violent (NV) classes, while the columns represent the predicted labels. In my case,
the following are the four numbers presented in the confusion matrices:

• True Positives (TP) - the number of videos actually containing violence that were pre-
dicted as containing violence. TP are shown in the first row, first column of the confusion
matrix.

• False Negatives (FN) - the number of videos actually containing violence that were pre-
dicted as not containing violence. FN are shown in the first row, second column of the
confusion matrix.
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Figure 3.9: Performance of FT and TL models (left and right respectively) on all combined
dataset shown using ROC curve. Both ACC and AUC scores show that the FT model performs
better than the TL model on this dataset (original illustration by Viktor Huszár).

• False Positives (FP) - the number of videos actually not containing violence that were
predicted as containing violence. FP are shown in the second row, first column of the
confusion matrix.

• True Negatives (TN) - the number of videos actually not containing violence that were
predicted as not containing violence. TN are shown in the second row, second column of
the confusion matrix.

From the confusion matrices, it is evident that the TL model produced a greater number of
combined FP & FN than the FT model. For detailed evaluation, I also studied and presented the
metric scores and confusion matrices for individual datasets. Figures 3.11 & 3.13 show the
results from the FT model, while Figures 3.12 & 3.14 show the results from the TL model. I
note that overall, for both models, the number of FP & FN is balanced for all datasets, indi-
cating that the training samples from both the violence and non-violence classes are balanced.
Additionally, from the confusion matrices for individual datasets, it is clear that for most of the
datasets, the TL model produced a greater number of combined FP & FN. My hypothesis is that
the fixed nature of the extracted X3D-M features in the TL model does not provide sufficient
flexibility to accurately recognize the attributes of violent actions.

3.4.4 Analysis of the datasets and Challenges

Even though the CV dataset has a smaller number of examples, both models trained on the
combined dataset performed well on it. However, my leave-one-out cross-validation results
indicate that when the CV dataset was excluded from training, the models did not perform
well. This suggests that the CV dataset contains diverse and representative examples of crowd
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Figure 3.10: Confusion matrices for FT and TL models obtained after testing on all combined
dataset. Results show that the TL model produced more combined false negatives & false
positives than the FT model (original illustration by Viktor Huszár).
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Figure 3.11: ROC curves including ACC and AUC scores obtained by testing on individual
datasets using FT model trained on all combined dataset (original illustration by Viktor Huszár).
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Figure 3.12: ROC curves including ACC and AUC scores obtained by testing on individual
datasets using TL model trained on all combined dataset (original illustration by Viktor Huszár).
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Figure 3.13: Confusion matrices obtained by testing on individual datasets using FT model
trained on all combined dataset (original illustration by Viktor Huszár).
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Figure 3.14: Confusion matrices obtained by testing on individual datasets using TL model
trained on all combined dataset (original illustration by Viktor Huszár).

violence. However, it should be noted that the dataset only includes examples of violence
involving crowds and the models trained on it did not generalize well to other types of datasets.

The HF dataset, on the other hand, contains a relatively larger number of training samples,
primarily consisting of monotonous fighting videos between hockey players. Both my FT and
TL models trained on the combined dataset performed well on this dataset as well. However,
my leave-one-out cross-validation test revealed that excluding this dataset did not significantly
decrease the accuracy of my models. Additionally, the model trained solely on the HF dataset
did not generalize well to other datasets, as shown in figure 3.4. In line with my previous results
on generalizability, highly monotonic datasets like the HF dataset are less useful for developing
robust deep-learning models for violence detection.

Since my models use pre-processed input containing 16 uniformly sampled temporal frames,
the duration of a video and the number of frames per second can affect the model’s performance.
The MF dataset has significant fluctuations in the FPS values of the training videos (as seen in
table 3.2), which is not favourable for training my violence detection models. Additionally, this
dataset has the least number of training samples compared to others and models trained solely
on this dataset did not generalize well to other datasets. I hypothesize that these drawbacks of
this dataset could be the reason for the decrease in the performance of the FT model (trained on
the combined dataset) on this dataset. On the other hand, due to better generalizability, the TL
model trained on the combined dataset performed well on this dataset.

In addition, my leave-one-out cross-validation test shows that the MF, RLVS, and RWF-
2K datasets do not contribute significantly to model generalizability. The RLVS dataset mainly
contains examples of two people fighting, which are also present in other datasets such as UCFS
and XD-V. The RWF-2K dataset contains videos that are encoded at 30 frames per second, but
I have observed that there are videos captured at very low fps, resulting in repeated frames
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to create 30 fps videos. Additionally, most examples in this dataset are repetitive in terms of
environment and lighting conditions and lack diversity. However, it is important to note that the
RLVS and RWF-2K datasets contain the highest number of examples, which can lead the model
trained on the combined dataset to better represent scenarios in these datasets. I hypothesize
that due to the aforementioned drawbacks specific to each of these two datasets, my models
trained on the combined dataset did not perform very well on the RLVS and RWF-2K datasets.

Finally, my results show that models trained on my UCFS and XD-V datasets generalize
better to other datasets (as seen in figure 3.4). Also, when these datasets were excluded from
training, the performance of my models dropped significantly, indicating that these datasets
contain well-calibrated, diverse video footage, which is highly relevant for training practical
deep learning algorithms for violence detection (as seen in table 3.8). However, these datasets
contain a fewer number of training examples compared to RLVS and RWF-2K. Additionally,
the UCFS and XD-V datasets contain forms of violence such as explosions and road accidents,
which are not distinctly available in other datasets. Due to this, I hypothesize that my models
trained on the combined dataset did not perform very well on the UCFS and XD-V datasets.
Overall, with fewer false positives and false negatives, my FT model performed better on the
combined dataset than the TL model.

3.4.5 Experiments with video compression

Depending on the available hardware resources, it may be necessary to stream the surveillance
video to a remote server for actual classification and violence detection. Additionally, depend-
ing on the available network resources, there may not be sufficient bandwidth to stream the
video in its native resolution and quality. In several fields where video streaming is involved,
video compression techniques are commonly applied to reduce the video bit-rate, which can
introduce artefacts in the video. To study the effect of such video artefacts on the performance
of my TL and FT models, I generated compressed video streams with varying bit-rates - 300,
500, 1000 and 1500 Kbps.

For this experiment, I randomly selected two datasets, RWF-2K and CV and compressed the
testing videos from these two datasets. Multiple videos Ire generated with the different bit-rates
using ffmpeg [74]. I used the models trained on the combined dataset for this experiment and
the testing results are presented in Table 3.9. My study shows that both TL and FT models did
not show significant fluctuations in the performance and performed well even under extreme
compression (300 Kbps). This suggests that my trained models did not model the noise in the
training videos and focused on learning the concept of violence.
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Table 3.9: Results from video compression experiments - The top section shows results for the
CV dataset and the bottom section shows results for the RWF-2K dataset using ACC and AUC
metrics.

Dataset
(bitrate in Kbps) ACC-FT ACC-TL AUC-FT AUC-TL

CV (1500) 92.0 92.0 0.99 0.98
CV (1000) 92.0 92.0 1 0.98
CV (500) 92.0 92.0 0.99 0.98
CV (300) 92.0 92.0 0.99 0.98

RWF-2K (1500) 88.25 85.0 0.95 0.93
RWF-2K (1000) 89.0 85.0 0.95 0.93
RWF-2K (500) 88.5 84.25 0.95 0.93
RWF-2K (300) 88.5 83.0 0.96 0.92

3.4.6 Standalone implementation and performance

We have implemented a standalone application for violence detection using the PyTorch deep
learning library and using my FT and TL models that are trained on the combined dataset. The
application design is outlined in Figure 3.15 and can be easily extended for usage in surveillance
applications. The incoming video stream is divided into non-overlapping video segments of
four seconds, from which 16 video frames are extracted per segment using uniform temporal
sampling. These 16-frame blocks are pre-processed and then used as input for either the FT
model or TL model to determine a violence coefficient for the current segment. The application
was implemented on an Ubuntu Linux operating system using an AMD Ryzen Threadripper
1950X 16-core processor and a Nvidia GeForce GTX 1080 Ti GPU with the CUDA toolbox for
running my trained PyTorch models.

my results indicate that, when combined with block extraction and pre-processing, both the
FT and TL models require an average of 0.06 seconds on average to infer a violence coefficient
for each four second-video segment. The pre-processing was implemented on the CPU, con-
suming an average of 0.04 seconds. Therefore, the average time required to run the FT or TL
model is 0.02 seconds. It should be noted that, the dense or fully connected layers of the models
consume minimal computational resources in practice. As a result, even though the TL model
has more parameters than the FT model, the average time required to run both models is similar.

To give a thorough understanding of the performance of my standalone system, I have graph-
ically represented the progression of violence coefficients over time using the FT model that
showed the most optimal results on the combined dataset. In figures 3.16 to 3.20, I illustrate my
classification outcomes on selected video samples that exhibit the capability of my system in
identifying violence. Each figure comprises three sections: the top row displays the actual graph
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of violence coefficients over time, where the coefficients are set to one during the occurrence
of violence. The middle row illustrates the predicted violence coefficients by my FT model on
a series of non-overlapping video segments with a duration of four seconds. The bottom row
shows key frames extracted from the videos.

Figures 3.16 to 3.19 demonstrate the performance of my standalone system on video clips
from the testing set of the original UCF-Crime dataset. These video clips include different
scenarios such as instances of violence amidst normal events (as illustrated in figure 3.16),
multiple occurrences of violence (as illustrated in figure 3.17), a crowd engaging in violence at
a metro station (complex and long video sequence as illustrated in figure 3.18), and a single,
short instance of violence in the form of shooting (as illustrated in figure 3.19). The predicted
violence coefficients align closely with the ground truth, indicating the algorithm’s capability to
accurately identify and predict instances of violence in video segments of various lengths and
complexities.

To further evaluate my system, I also created a video sequence by combining random video
clips from the Smart-City CCTV Violence Detection Dataset [185], which was not used in my
study. As shown in figure 3.20, my results exhibit outstanding performance on this compiled
sequence as well. This illustrates the adaptability of my algorithm and its capability to perform
well on new and unseen data.
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Figure 3.15: Schematic diagram of my standalone application. 16 frame-blocks are extracted
from each four-second video clip which are pre-processed and input to FT or TL model (original
illustration by Viktor Huszár).

87



0 4 8 12 16 20 24 28 32 36
Time (s)

0.0

0.5

1.0
Vi

ol
. C

oe
ff.

Violence Coefficients over Time

Grount truth

0 4 8 12 16 20 24 28 32 36
Time (s)

0.0

0.5

1.0

Vi
ol

. C
oe

ff.

Predicted

Figure 3.16: Results of my standalone system using FT model on a video clip from the testing
set of the original UCF-Crime dataset. The video clip includes an instance of violence between
two normal events. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted
violence coefficients on 4-second video segments. Row 3: Keyframes extracted from the video
(original illustration by Viktor Huszár).

Figures 3.16 to 3.20 also demonstrate the areas where my standalone system falls short,
which require further improvement in future research. I have noticed certain situations where
my tested FT model triggers false alarms in the standalone implementation. For instance, when
a person suddenly starts running or crawling (as shown in the keyframes from the 28th second
in figure 3.16), it is detected as violence, but with a lower level of violence coefficient. In the
original UCF-crime dataset, activities such as crawling or sudden fleeing are not considered vi-
olence. Nevertheless, in real-world surveillance scenarios, such actions may appear suspicious
and require more investigation.

In situations where there is occlusion and the individuals or objects engaged in violence
are only partially visible, the model may have difficulty identifying the violence. This can be
observed in the predicted violence coefficients between the 32nd and 36th second in figure 3.17,
where a person is holding a gun in his hand which is partly visible and hidden by his body.

As previously noted, videos that include people in crowds situated closely together can
lead to inaccuracies in my system. Figure 3.18 between seconds 76 and 80 illustrates this
scenario, where the predicted violence coefficient suddenly falls to zero even though violence
is happening during this time. As mentioned earlier, my training dataset has limited examples
of crowds, and including more such examples in future work is suggested.

It is important to note that when it comes to creating a dataset for video classification based
on actions, there are several factors to consider, such as the number of classes, the diversity of
actions, and the quality of the videos. One important consideration is the complexity of the
movements included in the dataset. For instance, if the dataset only contains videos of violent
scenes, such as fighting or punching, the deep learning models trained on this dataset may not
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Figure 3.17: Results of my standalone system using FT model on a longer video clip from the
testing set of the UCF-Crime dataset with two instances of violence. Row 1: Ground truth
of violence coefficients over time. Row 2: Predicted violence coefficients on 4-second video
segments. Row 3: Keyframes extracted from the video (original illustration by Viktor Huszár).
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Figure 3.18: Results of my standalone system using FT model on a complex and longer video
sequence from the testing set of the UCF-Crime dataset, showing a crowd involved in violence
at a metro station. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted
violence coefficients on 4-second video segments. Row 3: Keyframes extracted from the video
(original illustration by Viktor Huszár).
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Figure 3.19: Results of my standalone system using FT model on a video clip from the testing
set of the UCF-Crime dataset that contains a single and short instance of violence in the form of
shooting. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted violence
coefficients on 4-second video segments. Row 3: Keyframes extracted from the video (original
illustration by Viktor Huszár).
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Figure 3.20: Results of my standalone system using FT model on a video compiled from 3
random videos of Smart-City CCTV Violence Detection Dataset, one violent and two non-
violent videos concatenated in such a way that the violent video is placed in between two non-
violent videos. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted
violence coefficients on 4-second video segments. Row 3: Keyframes extracted from the video
(original illustration by Viktor Huszár).
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perform well on more complex movements such as dancing or sports activities. This is because
the violence and non-violence classes are too distinct, making it easier for the model to distin-
guish between the two. To address this issue, it could be interesting in future to include videos
with a separate label in the dataset that account for such activities. These videos would help to
capture the diversity of movements that can occur in real-world scenarios and would allow the
algorithms to be evaluated using these videos as well. The creation of such datasets with multi-
ple classes of violence and objective activity measurements is not within the scope of the current
work. This would require a detailed analysis and annotation of a large number of videos, which
is beyond the scope of the current research. The developed video classification methods use
spatio-temporal features for inference and do not track any key points such as human skeleton
joints. In military applications, the effect of texture variations such as variations in uniforms,
helmets, and camouflage overtime on the performance of the developed models is not evaluated
in the current study. It would be also interesting in future to validate the significance of such
interesting texture patterns.

3.5 Concluding remarks

I proposed two violence detection architectures, FT and TL, for automated surveillance ap-
plications using the computationally light X3D-M deep learning architecture. I evaluated the
models using seven annotated video datasets, including Kinetics-400 and UCF/XD-Violence.
My experiments showed that both models performed well, with FT outperforming most state-
of-the-art methods on popular datasets. Cross-dataset validation showed that TL generalized
better to unseen scenarios but had a higher number of false positives/negatives compared to FT
on the combined dataset. My results indicate a need for diverse and representative large-scale
violence datasets for practical applications. I also presented a computationally light system
architecture for implementing the proposed models in practical surveillance, with a focus on
optimizing computational speed and accuracy. In the future, I plan to construct a large-scale
dataset and improve the system by handling scenarios where violence spans multiple video
segments.

3.6 Applications in defence and security

The current research on violence detection in surveillance videos has many potential applica-
tions in the defence and security sectors. The ability to automatically detect violent behaviour
in surveillance videos can enhance situational awareness, prevent potential threats, and reduce
response time in emergency situations. One of the practical applications of the work is in secur-
ing critical infrastructure, such as airports, train stations, and government buildings. Violence
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detection models can be deployed at these sites to monitor crowds and identify potentially vio-
lent behaviour before an incident occurs. Another application is in military installations, where
your models can be used to detect violent activity in real-time, providing critical information
for military personnel to take immediate action.

Moreover, current research can be extended to use in border security to monitor and prevent
violent behaviour at borders, ensuring public safety and national security. The ability to detect
violent behaviour in real-time can also be used in law enforcement to monitor high-risk areas,
such as public events, protests, and crime-prone areas, to prevent violent incidents.

To further improve the results, future work in this area could focus on developing robust and
efficient algorithms that can handle scenarios where violence spans multiple video segments.
Specifically, large-scale datasets that are diverse and representative can be constructed to en-
hance the performance of violence detection models. Collaborations with practitioners in the
defence and security sectors to collect and annotate these datasets are crucial for the develop-
ment of such models. Another potential area of research is the integration of violence detection
models with other surveillance systems, such as facial recognition and object detection, to en-
hance overall situational awareness and threat detection capabilities. Furthermore, the use of
advanced sensors, such as thermal imaging and LiDAR, can also be explored to improve the
accuracy and robustness of the models in diverse scenarios.

In short, the research on violence detection in surveillance videos has many practical ap-
plications in the defence and security sectors. Collaborations between researchers and prac-
titioners are crucial for the development of large-scale datasets and efficient algorithms that
can handle diverse scenarios. Further research in this area can enhance situational awareness,
prevent potential threats, and improve public safety and national security.
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Chapter 4

Blockchain in AI

4.1 Introduction

Military defence areas for blockchain-based applications and solutions pose several scientific
questions that need to be explored. Governmental development emphasizes the importance
of hybrid warfare, and research and development in this field are funded more substantially
globally. Blockchain technology enables voluntary, distributed networks created for military
purposes to cooperate with a cryptographic process without central and state control, resulting
in a digital paradigm shift characterized by decentralization, blockchain technology, machine
learning, and artificial intelligence.

The potential applications of blockchain technology raise numerous military technical chal-
lenges, such as the need for centralized data storage and an uncontrolled security management
system for efficient resource use. Additionally, there is a need to investigate the artificial iso-
lation of such systems and the military risks of ”awakening” machine learning or programmed
artificial intelligence. Science should explore how to achieve data security, data integration,
isolation of the artificial intelligence decision-making environment, and the framework for au-
thorization levels in such an automated distributed network-based military environment.

Currently, breakable data communication between military and police departments is a sig-
nificant problem in less developed countries due to centralized data storage and central control.
The activity of the user or organization and the value of their data determine the degree of
vulnerability, with financial institutions and organizations dealing with state or classified docu-
ments being particularly popular targets of attackers.

User profiling is another issue raised by blockchain technology, as long-term use may allow
monitoring of user behaviour and the use of profiling. Government regulations require data
protection measures based on the complete knowledge of a specific system, the personal data it
processes, and the related data processing operations.

Police forces aim to reduce illegal activities through appropriate regulations as traditional
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means of payment transition to blockchain-operated cryptocurrencies. Central authorities, in-
cluding the central bank of a country, may find it easier to filter the purpose of the cash flow,
so money laundering, illegal substances, or weapons will not be completed with cryptocurrency
payments. The transparency of blockchain transactions, which are all public, is the main argu-
ment supporting blockchain and cryptocurrencies like Bitcoin. However, the analysis of public
blocks lacks any KYC process increasingly propagated by regulators to allow the identification
and exclusion of prohibited operators. [186, 187, 188]

4.2 Cyberspace

Cyberspace is a domain characterized by interconnected systems and their physical attributes,
where data is stored, exchanged, and modified. The emergence of new technologies on the
network has the potential to revolutionize many industries, including military defence. Two
disruptive innovations that pose scientific challenges to the military are Artificial Intelligence
(AI) and computer vision. These technologies create new platforms for hybrid warfare, but very
few scientific articles have explored the combination of AI and computer vision applications on
blockchain networks. Research in this area can result in a fault-tolerant, real-time, and cost-
efficient military use of existing governmental computing power. However, to achieve this, it
is essential to develop organic expertise in blockchain technologies within the Central Defense
Management Authorities.

Further scientific research is needed to investigate the potential military applications of AI
and computer vision on blockchain networks. The development of such applications presents
unique challenges, such as the need to ensure data security, privacy, and resilience against cyber-
attacks. In addition, the development of AI algorithms that can operate in a decentralized, dis-
tributed computing environment requires new approaches to data analysis and decision-making.
These challenges require interdisciplinary collaboration between computer science, cyberse-
curity, and military experts. The successful implementation of AI and computer vision on
blockchain networks can significantly enhance the capabilities of military defense and facilitate
the transition to a more digital, automated, and efficient defense administration.

4.3 Hybrid warfare in cyberspace

Hungary’s Zrı́nyi 2026 Defense and Armed Forces Development Program has acknowledged
the need for enhanced cyber defence capabilities to address new challenges [189]. To this end,
the Cyber Training Center was established in June 2019 as a crucial element in Hungary’s hy-
brid force development strategy. The cyber defence force focuses on developing the appropriate
infrastructure and equipment, as well as establishing a Hungarian cyber academy to train dig-
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itally adept soldiers. The Cyber Training Center has a dual purpose, supporting both cyber
defence capability development and institutionalized military technology research and develop-
ment [190]. Previous studies suggest that Hungary should specialize in electronics and software
development, particularly in areas such as blockchain-based military applications. Distributed
Ledger Technology (DLT) can take advantage of new innovations like artificial intelligence
and machine vision [191]. A distributed general ledger is a decentralized database shared and
synchronized across multiple geographic locations, countries, or institutions. The use of deep
neural network learning on a general ledger presents a new platform for cyber operations and
poses military scientific challenges. Countries like Hungary can gain a globally competitive
military advantage with superior computer science knowledge, promoting government-civil-
military interoperability, and generating educational, economic, and social value. Developing
hybrid warfare aligns with key national objectives.

Security camera feeds have long supported the everyday work of military and police forces.
Computer vision and automated image analysis could save military resources by transforming
images into descriptions that can be classified into groups and creating 3D models based on
images or videos [192]. However, high computing power is required for data processing, analy-
sis, and image recognition, and current image analysis methodologies are often slow and do not
operate in real-time. Blockchain-based networks, on the other hand, have achieved outstand-
ing computing power capabilities. All mining computers in 2013 had a combined computing
capacity of 250 times the capacity of the 500 largest supercomputers [193], and the mining com-
munity’s aggregate consumption in 2017 was higher than the average annual electricity demand
of 159 countries [194]. Hence, using blockchain-based technologies to help machine vision
could reduce expensive hardware and resource requirements. However, without a resource-
efficient IT backend, computer vision research expenses can get out of control, as evidenced
by the price of the first Hungarian 5G automotive test track [195]. To fully understand the ad-
vantages and disadvantages of decentralization, it is necessary to study international military
applications that have already been implemented or are currently under development, despite
blockchain technology is a revolutionary research field for military engineering.

According to Hungary’s National Security Strategy 2020, supporting the domestic defence
industry, including R&D and innovation, can reduce import dependence, increase the security
of supply, and modernize defence equipment with domestically produced products [195]. Al-
though machine vision and related artificial intelligence research are a priority for the defence
sector and are widely used in technologically advanced countries, their use is still rudimen-
tary in the Hungarian law enforcement and defence environment. Nonetheless, information
technology has been disrupting many industries and providing unique opportunities for growth
and development in the last few decades. Machine learning and artificial intelligence offer the
military and law enforcement the chance to transform and retain their respective industries by
addressing a multitude of military engineering science challenges.
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The United States of America has been using digital technology since the 1990s, such as
network-centric operations that combine tactics, technologies, and procedures to gain a decisive
battlefield advantage [196]. Bower and Christensen highlighted the importance of ”disruptive
technologies” in helping companies stay ahead of their competition in 1995 [197]. These tech-
nologies are focused on meeting the next generation of their customers’ needs, ranging from
step-by-step developments to progressive, industry-wide approaches. Blockchain technology
emerged around the same time, capable of storing data securely without central control and
modification [198]. Over the years, blockchain DLT has greatly impacted many sectors, in-
cluding economic systems, legal frameworks, and information technologies [199]. However,
the potential of blockchain technology and its vulnerabilities in military intelligence and law
enforcement have received less attention compared to commercial industries. In the following
subsections, we define blockchain technology broadly and anticipate the possible links between
the technologies in terms of their potential applications in the military intelligence and law
enforcement sectors.

In the realm of hybrid warfare, cyberspace is a dynamic and elusive entity that thrives on
innovation and digital advancements. Unlike the conventional civilian interpretation of cy-
berspace, the military definition encompasses network systems and their physical attributes,
such as data storage, exchange and modification. According to the 2013 National Cybersecurity
Strategy, cyberspace constitutes a globally interconnected, decentralised network of information
systems. While the physical domains of land, air, sea and space have been established, the true
intentions of data and information activity in cyberspace remain a crucial area of military en-
gineering science research. The emergence of new technologies on networks has the potential
to revolutionize the military industry, with blockchain technology providing a fresh perspec-
tive on cyberspace through its distributed ledger technology (DLT). This technology is capable
of efficiently utilizing resources, and can even incorporate artificial intelligence and machine
vision. A distributed ledger functions as a decentralised, replicated, shared and synchronised
digital data database spread across multiple geographic locations, countries or institutions. The
incorporation of deep neural network learning capabilities that can operate on such a ledger
presents several military science challenges and offers new platforms for cyber operations.

4.4 Blockchain in cyberspace

Blockchain technology has the potential for various military engineering science applications,
but it also raises multiple problems. It allows for voluntary distributed networks to act together
using cryptographic techniques, without the need for state control. While smart contracts [186]
have opened up new opportunities for real estate and asset exchange, the technology’s potential
military applications are even more interesting due to the critical importance of data security in
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defence management and government communication.
To make blockchain-based military applications efficient and secure, scientific problems re-

lated to the protocol must be explored. This includes justifying centralized data storage, devel-
oping an uncontrolled defence management system, and ensuring military risks are minimized
if machine learning and programmed artificial intelligence become active. The science must
investigate how to isolate such a system and make it data secure and integrated while separating
it from the AI decision environment through the use of privilege levels.

Currently, hackable data communication between departments is a significant problem due
to central data storage and central control. The level of vulnerability depends on the user or
organization’s activity and the value of their data. Attackers often target financial institutions
and organizations handling state or official secrets.

Blockchain technology poses another problem: user profiling. Long-term use of blockchain
could enable monitoring of user behaviour and profiling. This issue can only be assessed in the
context of a specific system, the personal data it processes, and the related processing opera-
tions.

Regulating the shift from conventional to cryptocurrency could reduce illegal activities and
filter the purpose of the money flow. However, there are different views on the privacy of
blockchain and cryptocurrencies like Bitcoin. One side argues that they should be fully public
but anonymous, while the other side advocates for coupling public blockchain analysis with
banks and KYC processes to flag and exclude prohibited actors from the market [200]. From a
national defence perspective, appropriate regulation could help reduce illegal activities associ-
ated with cryptocurrencies such as obtaining illegal drugs or weapons.

4.5 Scientific problem

Blockchain technology integrated with artificial intelligence (AI) and computer vision raises
various complex issues in military, technical, scientific, and legal areas. Collecting data from
various sources such as air, land, sea, and space is crucial for cognitive processes and data stor-
age, modification, or exchange. However, obtaining military data can be challenging as it is
often classified and secret, posing legal and financial difficulties. The use of AI and computer
vision in military applications require high computational power and poses additional chal-
lenges, such as the source of data, encryption algorithms, AI modelling structure, and real-time
processing. The centralised data storage and lack of control over security management also
raise concerns. Science must explore the possibility of achieving data security, integration, and
separating decision-making environments in a distributed network-based military environment.

Communication between departments can be challenging due to centralised data storage,
making it vulnerable to attackers, particularly financial institutions and organisations dealing
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with state secrets. The use of manually obtained data can also conflict with regulations, such as
the GDPR, which limits the use of personal data.

In image analysis, images become data descriptions for shape recognition, and computer
vision aims to create 3D models from images or videos. Current methodologies are slow and
inefficient due to the high computational power required, and energy resources can also be a
challenge. The cost of implementing new machine vision-based R&D outcomes can also be
expensive. Distributed network systems offer solutions but also bring about new dimensions of
cyber warfare.

Blockchain technology can aid in the utilization of AI and computer vision in military intel-
ligence and law enforcement sectors. AI systems rely on deep neural network computations, and
faster results can mean more efficiency. Combining AI, computer vision, and data-encrypted
computation with distributed ledger technologies (DLTs) and blockchain seems like an obvious
choice. Data has always been sourced from cyberspace, independent of the source of the data
coming from the domains of air, land, sea, and space. Cyber superiority can be achieved by
capturing data, as emergent AI systems need data feeds for faster learning curves. The potential
applications of AI and computer vision in obtaining data raise numerous military, technical,
scientific, and legal issues.

…
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Figure 4.1: Structure of Blockchain (Based on the work of Pinna and Ruttenberg [201]).
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4.6 Blockchain technology defined

Blockchain is a distributed data storage approach where data clusters (blocks) are organized into
an unlimited chain to create a distributed database. Each block contains a link to the preceding
block on each node (participant) that stores the blockchain. Blockchain systems store nodes
in sorted entries with unified agreement on the current state using a consensus approach. Al-
though blockchain technology was popularized through Bitcoin’s distributed “cryptocurrency”
framework, many alternative systems follow the same principle but differ fundamentally in their
purpose and key technology. As it stands, these systems are collectively and improperly referred
to as “blockchain technology” (Tapscott and Tapscott 2016 [202]).

Blockchain decentralizes transactions while increasing security, making it the likely next
technological revolution that will greatly impact and transform society, economies, and the in-
ternet. The military sector has already recognized the importance of blockchain’s distributed
fault tolerance and seamless transaction, and research is underway to determine whether exist-
ing systems can be successfully migrated to the blockchain (Pinna et al. 2016 [201]).

The ledger is an entry repository where entries can be stored without modification once
they become part of the database. Blockchain technologies expand a distributed ledger through
continuous synchronization with nodes in the distributed network. Any additions to the ledger
require agreement by other nodes, followed by the verified block’s appearance within minutes
or seconds on other nodes, depending on the solutions used. Any trusted central monitoring
body can access the information stored in the entries, without involving said body’s internal
processes and rules.

The ledger is maintained by distributed network nodes based on several consensus algo-
rithms employing cryptography to store and verify transactions. This allows the network to
remain functional even with a large number of defective nodes, provided that the number of de-
fective nodes is below the maximum allowed. Different blockchain technologies utilize several
consensus protocols, but the problem of distributed consensus is addressed by some protocols.

Blockchain has a common structure and can be viewed as a transaction log whose data clus-
ters are stored in blocks in chronological order. These blocks are time-stamped and identified
by a selected cryptographic hash. Each block contains a reference to the block preceding it, and
in this way, the blocks are organized into a backwards-chained list which can be processed from
the first block to determine the current state of the distributed database. If inconsistent copies
of a chain begin to spread within the network, the discrepancy is typically resolved through
one of the following consensus protocols applied via mining nodes: proof-of-work (POW),
proof-of-stake (POS), or round-robin (mining diversity) (Pinna et al. 2016 [201]).

The decentralized nature of blockchain technology (figure 4.2) removes the need for a cen-
tral authority or checkpoint, which ultimately creates a fairer, more secure system. The way
data is recorded on the blockchain reflects the value of decentralization (Dwyer 2014, [204]).
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Figure 4.2: Centralized vs Decentralized Data Distribution (Based on the work of Perera et al.
[203]).

Instead of relying on a central authority to secure transactions with other users, blockchain uses
innovative consensus protocols on the node network to authenticate transactions and record data
in an unbiased manner. Thus, the blockchain is not stored by a central data controller but by
numerous computers.

The unbiased manner of recording and distributing secure, immutable data makes blockchain
an asset capable of limitless potential with regard to cyber security and other military applica-
tions. To understand the range of blockchain technologies for tactical sustainment challenges,
László Kovács suggests the military examines the potential of blockchain solutions to chal-
lenges associated with in-transit visibility, data integrity, reporting, operational contracting, and
logistic estimation (Kovács 2019 [205]).

Authors McAbee, Tummala, and McEachen [206] undertook the survey of several examples
of “military intelligence-specific guidance” frameworks considering the adoption of blockchain
technology. The authors identified a key quality they deemed mandatory, that being the col-
laborative process in which several authors shared control. Peck’s model illustrated flexibility
“in potential employment, which suggests that even in the presence of other disagreeable fac-
tors blockchain technology may be worth considering in cases where the database is likely to
be attacked.” Military intelligence would benefit keenly during periods of worst-case scenarios
“when cyber, electromagnetic and physical attacks attempt to disrupt system operations when
they will be needed most”.
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Birch, Brown, Parulava 
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Meunier Blockchain 
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Lewis Blockchain 
Development C 17  X X      X  X        
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Figure 4.3: Trends in specific consideration points regarding blockchain applicability, high-
lighted columns indicate those of particular interest in military intelligence applications (based
on the work of Ashley McAbee et al. [206]). Examples in the survey include Greenspan [207],
Birch, Brown, Parulava [208], Meunier [209], Lewis [210], Peck [211], Wüst-Gervais [212]
and Mulligan [213] (Based on the work of Perera et al. [203]).

4.7 Computer security: Data integrity

Cyber defence is the closest low-cost, but high-payoff application of blockchain technology.
Blockchain technology is independent of secrets and trusts, unlike the systems that have been
based on it. The blockchain preserves its authenticity in two ways. First, it ensures that dig-
ital events are widely distributed, forwarding them to other nodes in the network. Then, by
using consensus, these events are stored in databases that can never be altered by an external
party. In addition, blockchain enhances the perimetric security strategy of cyber defence, not by
maintaining walls, but by constantly monitoring the walls and all the information inside. The
increasing complexity of modern systems, including weapon systems, makes vulnerabilities
more likely and less detectable.

A typical US warship like an Arleigh Burke-class destroyer combines more than ninety
missile launching cells with its radar systems, two independent Phalanx defence systems and
six torpedo launchers, not to mention a number of other weapon systems [214]. The challenge
is to get all these combat systems to work together. The secret to the US Navy’s success is
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systems integration, which is currently being accomplished by the Aegis Combat System. It
is a centralised command and control system (CCS), making the right connections between
sensors and weapons, like a boxer’s brain connecting eyes and fists. But it’s the centralisation
that’s the weak point - if the brain goes off, the whole system fails. That is why the possibility
of using blockchain arises.

The Navy can structure its next-generation combat systems around decentralized decision
nodes using a blockchain database architecture. This will speed up fire control, thereby (greatly)
improving survivability. Artificial intelligence processors loaded into different weapon systems
can coordinate their activities and check that they are working from the same data. In the 20th
century, processing power was expensive, but data was cheap. So in 1969, it made sense to
centralise on-board decision-making in a single Aegis brain. Today, processing power is cheap
and data is more expensive. It is therefore likely that the Navy’s twenty-first-century combat
systems will use blockchain technology [215].

4.8 Supply chain management

Many industry organisations are working to use blockchain technologies in supply chain logis-
tics and management. A growing concern is the supply chain management of defence systems
which increasingly uses commercial off-the-shelf (COTS) components for embedded software
systems. The problem is that these components may contain intentional vulnerabilities that an
adversary can exploit at a time of his choosing. This threat was sensationalized by the recent
Ghost Fleet incident, in which China disabled its entire fleet of F-35 aircraft with a deliberately
embedded flaw in a commodity circuit card [216].

Blockchains offer a solution that traces the life of every circuit board, processor and software
component from manufacturing to the user. A card design company can use blockchains to log
the design iteration of each circuit. Manufacturers can log every model and the serial number
of every card produced. Finally, distributors can report the sale of circuits to system integrators,
who can log the distribution of circuits to a specific aircraft assembly, etc. In this context,
blockchains create a permanent record of the transfer of assets between owners, thus creating a
derivation. Many weapons systems are designed with a lifetime of 30 years or more. However,
the computing technologies used in these systems are rarely produced for more than a decade.
As a result, it becomes more difficult to replace obsolete components over time. Furthermore,
in many countries, laws prohibit the use by public authorities of components whose origin
cannot be established. Disruption of ownership renders some parts unusable, even if they are
functional and in high demand. Thus, resellers would also have an economic incentive to track
their identified commercial off-the-shelf components in a block to preserve their provenance,
which in turn increases their value.
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In the Hungarian Defence Forces, decentralised technologies are not yet specifically ad-
dressed, but international research and development on the subject have already started. How-
ever, NATO C4ISR and the US Department of Defense (DoD) have already started their own
blockchain programmes [217], and are developing a secure decentralised messaging application
for the military called SBIR 2016.2.

4.9 Flexible communication

Bitcoin uses a peer-to-peer messaging model, which sends each message to every active node
in the world within seconds. All nodes in the Bitcoin network contribute to this service, includ-
ing smartphones. If a node’s terrestrial, wireless or satellite Internet service is interrupted, a
bitcoin message can be sent via alternative channels such as high-frequency radio, fax, or even
barcoded and handwritten. Upon receipt, the service node checks the message and forwards it
to each connected participant. Nodes can independently aggregate messages into new blocks
[218]. Finally, the consensus mechanism ensures that invalid messages and blocks generated
by dishonest actors are ignored. Together, these protocols ensure that authenticated message
traffic can be reliably transmitted around the world, despite attacks on communication paths,
individual nodes, or the blockchain itself.

4.10 Identification of vulnerabilities within military intelli-
gence systems

Sam Mire, Market Research Analyst at Disruptor Daily, stated that there is a belief the US
military’s supply chains, cyber security and internal communications could benefit from imple-
menting aspects of blockchain technology.

“With the world seemingly on edge and America’s military manpower seemingly on the
decline, exploring how blockchain can be used for defence purposes is a worthwhile pursuit”
[219]. With the United States military’s inability to create a “perfect” communication system
thus far and ambitious communication programs like the Joint Tactical Radio System (JTRS)
failing to live up to its potential in more ways than one [220], further exploration into blockchain
technology’s potential military applications include the improved visibility and traceability of
expenditure, shipments, and contracts – through blockchain’s usage of transparent Distributed
Ledger Technology, the military can eliminate fraud, waste, and reduction of losses. The United
States Pentagon is worth an estimated $2.7 trillion dollars and failed its first official audit in
2018. Ernst & Young, among other private firms hired to perform the audit, could not complete
the job due to the “DoD’s financial records were riddled with so many bookkeeping deficiencies,
irregularities, and errors that a reliable audit was simply impossible” [221]. Another application
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possibility of the technology is securing battlefield messaging – as late as 2017, United States
Senator Ron Wyden expressed his concerns over the Defense Information Systems Agency’s
(DISA) lack of implementing encryption technology in daily communications, further noting
that tech giants such as Google and Facebook employ standard STARTTLS encryption tech-
nology [222]. Using Bitcoin as an example of a peer-to-peer messaging model that delivers
every message to every active node in the world in seconds, all nodes in the Bitcoin network
contribute to this service, including smartphones. If a node’s terrestrial, wireless, or satellite in-
ternet service is interrupted, a bitcoin message can be sent through alternative channels such as
high-frequency radio, fax, or even barcode-based and manually. Upon receipt, the service node
checks the message and forwards it to each associated participant. Nodes can independently
aggregate messages into new blocks [223]. Finally, the consensus protocol ensures that invalid
messages and blocks generated by rogue operators are ignored. Together, these protocols ensure
that authenticated traffic can be reliably relayed anywhere in the world, even if communication
paths, individual nodes, or the blockchain itself are attacked. Cyber superiority is not individ-
ually maintained by the nodes, but the network system can be kept controlled with current and
expected data [224].

The technology can mean increased protection and preparedness against Cyber Warfare - the
Defense Advanced Research Projects Agency (DARPA) is currently looking into blockchain’s
distributed consensus protocols to “evolve Cybersecurity for an Agile and Resilient Defense
Posture” [225]. United States President Donald Trump signed a bill in December 2017 that
includes a mandate for a blockchain-based cyber security assessment “of efforts by foreign
powers, extremist organizations, and criminal networks to utilize such technologies;. . . [and]
an assessment of the use or planned use of such technologies by the Federal Government and
critical infrastructure networks” [226].

It is also expected, that DLTs will result in Improvements to the military’s manufacturing
processes – the Naval Additive Manufacturing department was a perfect use case for blockchain
technology to illustrate its “ability to secure and securely share data throughout the manufac-
turing process (from design, prototyping, testing, production, and ultimately disposal)” [227].
Each key phase in Additive Manufacturing revolves around the use of data or a “Digital Thread:
a single, seamless strand of data that stretches from the initial design concept to the finished part,
constituting the information that enables the design, modelling, production, use, and monitoring
of an individual manufactured part” [228].

Blockchain technology’s ability to highlight and detect hacking and network penetration
attempts has led to an international arms race between China, the United States, and Russia all
vying to solve vulnerabilities within supply chains and data integrity. Protecting and promoting
data integrity of military supply chains can be therefore another application of DLTs. Ex-DISA
Director Army Lt. Gen. Alan R. Lynn stated, “A few years ago, getting a 1-gigabyte or 2-
gigabyte attack at the internet access point was a big deal. Now, we get 600-gig attacks on
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the internet access points and unique, different ways of attacking that we had not thought of
before. There’s now, we would call it the ‘terabyte of death’ – there is a terabyte of death that
is looming outside the door” [229] Many weapon systems are designed with a life span of 2-3
decades or even more. However, the computing technologies used by these systems have a short
shelf life, rarely lasting more than a decade. As a result, replacing obsolete parts becomes more
difficult over time. Furthermore, in several countries, it is prohibited by law to use a component
whose origin cannot be ascertained. Loss of ownership renders parts unusable, even if they are
functional and in high demand. This would give the resellers an economic incentive to track
their identified off-the-shelf commercial components in a block to retain their origin, which in
turn adds value.

Decentralized technologies are not dealt with separately in the Hungarian Defense Forces,
but international research and development are already underway. NATO’s C4ISR and the US
Department of Defense (DARPA - DoD) have already launched their own blockchain programs,
developing a secure, decentralized messaging application for the military under the name SBIR
2016.2 [218].

All armed forces thrive to protect the weapon systems. The US Navy’s’ Aegis Weapon
System (AWS) is a “centralized automated, command-and-control (C2) and weapons control
system” that is vulnerable to cyber hacks and other threats. The challenge in controlling such a
powerful weapon arises when you consider exactly what the system is meant to handle simulta-
neously: A typical destroyer like the “Arleigh Burke Class includes an upgraded SPY-1 multi-
function, phased-array radar, Mk 41 Vertical Launching System, an advanced anti-submarine
warfare system, advanced anti-air warfare missiles, and Tomahawk land-attack cruise missiles”
[215]. Much like the British proved superior weapons integration outguns greater firepower in
Jutland, 1916 during World War 1, blockchain technology can seamlessly integrate and operate
multiple weapons’ systems through its decentralized and distributed architecture [216] DARPA
awarded Galois and Guardtime Federal a $1.8 million contract in 2016 to “verify the correct-
ness of Guardtime Federal’s Keyless Signature Infrastructure (KSI), a formal verification tools
and all blockchain-based integrity monitoring systems” [230]

According to McAbee, Tummala and McEachen [206], figure 4.4 can act like a checklist
if the military is interested in adopting blockchain. The authors propose the following: “If a
system meets the first, mandatory tenet identified in bold and at least one of the others, it may
be a reasonable candidate for a permissioned blockchain technology model”. The authors also
state that such a model will evolve during the study.

Kovács brings to light several challenges in his paper, National Cyber Security as the Cor-
nerstone of National Security, including that of “the rapid modernization of infrastructure” and
whether this exacerbates the “vulnerability of critical infrastructures” as well as the joint roles
played by both private and public sectors (Kovács 2018). To solve these challenges, Kovács
quotes from the national cyber security strategy of the United Kingdom, “Government has a
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Figure 4.4: Critical factors in determining when blockchain technology might apply to military
intelligence processes (based on the work of Ashley McAbee et al. [206]).

clear leadership role, but we will also foster a wider commercial ecosystem, recognizing where
the industry can innovate faster than us. This includes a drive to get the best young minds into
cyber security”.

4.11 Machine learning and Artificial Intelligence (AI)

Project Maven, also known as the Algorithmic Warfare Cross-Function Team, was launched in
April 2017 and was overseen by Air Force Lt. Gen. Jack Shanahan. The main goal of Project
Maven is to “integrate artificial intelligence and machine learning” with DoD operations and,
in particular, to “turn the enormous volume of data available to the DoD into actionable intelli-
gence and insights at speed” [231], “Project Maven and Some Reasons to Think About Where
We Get Our Funding.”) Maven was designed to “interpret video imagery, which could, in turn,
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be used to improve the targeting capability of drone strikes” and employs deep learning, and
neural networks to constantly improve. Technologies developed through Maven have already
been successfully deployed. Though the Project has received critical acclaim, “enormous or-
ganizational, ethical, and strategic challenges” remain where Maven soon became shrouded in
controversy when over 3,000 Google employees signed a petition in protest against the com-
pany’s involvement with a U.S. Department of Defense Artificial Intelligence study [232]. The
project has since been taken over by Palantir.

One of the main challenges faced by governments across the world amounts to traditional
legacy management and operational frameworks integrating with newer technologies. An exam-
ple of this is military tanks developed in the first quarter of the 20th century, ultimately leading
to the development of “stealth and precision-guided weapons technology in the 1970s. Such
technologies created the “foundation for a monopoly, nearly four decades long, on technologies
that essentially guaranteed victory in any non-nuclear war [233]. The amount of footage drones
carry is so vast that human analysts can no longer cope with the sheer volume. Therefore, artifi-
cial intelligence is being harnessed, and thanks to machine learning, AI will constantly improve
at recognizing and classifying objects.

Today, at least 90 countries have drones, including many non-state groups. While most
of them will not be classified as sophisticated within the field of robotics, many are remotely
controlled with operators hundreds, if not thousands of miles away. Autonomy is becoming
increasingly apparent in the management of different vehicles, especially those used by the mil-
itary. For example, the Guardium, developed by G-NIUS, is an Israeli unmanned ground vehicle
(UGV) that “carries more than 660-pounds of cameras, electronic sensors, and weapons” and
is used for combat and defence along the Gaza border. Though the vehicle is self-propelled,
soldiers continue to be responsible for the weapons on board [234].

US Security Expert, Paul Sharre believes that Artificial Intelligence applications do not
require major modifications to military tasks and can be integrated into weapon systems just as
easily as civilian solutions [235]. According to General Shanahan, the United States intends to
stand apart from Russia and China. Both countries are currently testing their uses of Artificial
Intelligence technology for military purposes, but raise ”serious concerns about human rights,
ethics, and international norms” [236].

4.12 Artificial intelligence and law enforcement

In July 2018, Daniel Faggella, Head of Research and CEO of Emerj AI Research Institute, spoke
at the Interpol/UNICRI Global Meeting on the potential and risks of AI and robotics for law
enforcement. This marked the start of a dialogue on the use of AI in law enforcement, security
and policing. The following Figure 4.5 is taken from a UNICRI report on the integration of AI
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into the law enforcement sector.
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Figure 4.5: Artificial Intelligence and Robotics for Law Enforcement - UNICRI Global Meeting
on the Potential and Risks of Artificial Intelligence and Robotics for Law Enforcement (Based
on the work of [237]).

Kevin McCaney writes in Law Enforcement Using Analytical Tools to Predict Crime that
law enforcement agencies are increasingly relying on predictive analytical software to prevent
crime. Until recently, these technologies have typically been used by large companies in the
competitive sector. An example is IBM’s Blue Crush (Criminal Reduction Utilizing Statistical
History) software, which is used by the Memphis, Tennessee police department to ”analyze
crime and arrest data, compare it to weather reports, economic factors and information related to
events such as paydays or concerts to create a predictive model” [2]. Police, courts and criminal
justice institutions are working together to shape the criminal justice system. To achieve optimal
levels of performance, these organisations need to have experts who can analyse crime data and
simulate scenarios that can increase the accuracy of programmes using artificial intelligence.
An example of this is the National Intelligence Model (NIM) in the UK, which is designed to
improve and support police forces that rely on intelligence.

The UNICRI report concludes that AI and robotics can be used for weaponisation just as
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they can be used for the public good in policing and crime prevention, stating that ”a recent
report by 26 authors from 14 institutions (academia, NGOs, industry) has looked at the issue in
depth and concluded that many of the features that would make AI and robotics attractive to law
enforcement (such as scale, speed, power and distance) make AI and robotics just as attractive
to criminals and terrorist groups [4].

The report meticulously analyzed the various domains of attack and culminated in the iden-
tification of three crucial attack vectors that are of paramount importance. The first vector of
attack is what we refer to as digital attacks. This category encompasses a wide array of ma-
licious activities that leverages technological means to perpetrate cybercrime. This can be in
the form of automated spear phishing techniques aimed at extracting sensitive information or
exploiting vulnerabilities present in cyber systems.

The second vector of attack is political attacks. These attacks often have a more strategic
objective in mind and can be used to sow the seeds of discord and sow chaos. The dissemination
of false news and misleading media material, and the manipulation of videos through deep fakes
and other fake means are examples of political attacks. Such tactics can be used to undermine
the trust of political actors and even call into question the credibility of evidence presented in
court.

The final vector of attack is physical attacks. This type of attack exploits the vulnerabilities
in the physical domain. For instance, the usage of facial recognition capabilities by armed
drones or smuggling drones is an example of physical attacks. The report also mentions that
Artificial Intelligence can be used as a weapon in itself, as it can carry out harmful actions
directly or can be used to corrupt other AI-based systems with malicious data sets.

It is imperative to take a multi-disciplinary approach to combat the threats posed by these
three vectors of attack and protect our digital, political, and physical domains from malicious
actors.

4.13 Efficient distributed deep learning with blockchain for
data privacy and security

I propose a concept of efficient distributed deep learning with blockchain for data privacy and
security. The concept is outlined in Algorithm 1 and a schematic diagram is illustrated in Figure
4.6. At the core, the concept is aimed at addressing the challenges of data privacy and security
in distributed deep learning, which is a key concern in the military context where sensitive data
is often involved.
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4.13.1 Consensus protocol for Military Blockchain Applications

Consensus protocols are the backbone of blockchain networks that help to maintain the integrity
and consistency of the ledger. There are several popular consensus protocols in blockchain-
based applications, including Proof-of-Work (PoW) [238], Proof-of-Stake (PoS) [239], Proof-
of-Authority (PoA) [240], and Proof-of-Elapsed-Time (PoET) [241].

PoW is the most widely used consensus protocol in popular blockchain networks like Bit-
coin and Ethereum. It involves solving complex mathematical problems to verify transactions
and add them to the blockchain. While PoW is known for its high level of security, it is also
energy-intensive, time-consuming, and expensive. PoET, on the other hand, uses a trusted ex-
ecution environment (TEE) to randomly select nodes to add new blocks to the blockchain.
However, the use of TEE makes it unsuitable for use cases that require high security, such as
military applications.

PoA is another consensus protocol that uses a limited number of trusted nodes to validate
transactions and add new blocks to the blockchain. This protocol is often used in private or
consortium blockchains, where the participants are known and trusted. However, it is vulnerable
to collusion and centralization.

Proof-of-Stake (PoS) is a consensus protocol in which nodes that are chosen to create new
blocks are determined based on the amount of stake, or investment, they hold in the system. In
PoS, the chances of a node being chosen to create a new block are proportional to the amount
of stake it holds. This makes PoS more energy-efficient compared to other consensus protocols,
such as Proof-of-Work (PoW), which requires miners to perform intensive computations to
validate transactions and create new blocks.

In a military context, the suitability of PoS is increased due to its energy efficiency, but
also because it does not rely on the assumption that the honest nodes control the majority of
computing power in the network. In other protocols like PoW, it is assumed that the malicious
nodes control less than 51% of the total computing power, and the honest nodes are in control
of the majority of computing power ( ¿51%). However, in military settings, it is possible that
an adversary could gain control of a significant portion of the computing power, making the
assumption invalid. PoS does not have this vulnerability, as the adversary would have to control
a significant portion of the total stake in the network, which is much more difficult to achieve
than controlling a significant amount of computing power. This makes PoS a more reliable
choice for military applications, where security and resilience are of utmost importance.

4.13.2 Algorithm description

The proposed algorithm involves a central computing resource, a main data provider, and a
group of additional data providers. The central computing resource initializes the global model
and selects the top K nodes using Proof of Stake (PoS) to ensure efficient utilization of com-
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puting resources. The central resource receives data from both the main data provider (always
trusted) and an additional data provider group.

To address the issue of data privacy, the algorithm uses a public key scheme to encrypt the
data and distributes it to the selected nodes. Additionally, cross-validation and cross-dataset
validation tests are performed to assess the quality of the data provided by the additional data
providers. Quality scores are assigned to each additional data provider based on accuracy im-
provement, and the nodes are selected based on the computing resources.

The algorithm uses the quality threshold to select data providers with quality scores above
a certain level. Expert judgement is also applied to ensure that only trusted data is added to
the training process. This ensures that only data of the highest quality is used for training the
model, leading to an accurate and reliable global model.

In the military context, this algorithm provides a secure and efficient way to train models on
distributed data while ensuring data privacy and security. The use of PoS ensures that computing
resources are used effectively, and the quality threshold ensures that only high-quality data is
used in the training process. With this algorithm, sensitive data can be used in the training
process without compromising privacy and security.
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Figure 4.6: Schematic representation of the proposed algorithm for secured and distributed
deep learning with blockchain for efficient and private data collaboration. (original illustration
by Viktor Huszár).

4.13.3 System requirements

It should be noted that there are also other traditional approaches to implementing AI in military
contexts, such as using embedded systems. Embedded systems involve deploying local hard-
ware and software to support AI applications, while block-chain based distributed systems rely
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Algorithm 1: Secured distributed Deep Learning with Blockchain
Input : Main data provider D0, additional data provider group {D1, D2, ..., Dn},

quality threshold Q, number of nodes K, number of training epochs E
Output: Global model M
Global model instantiation and hyper-parameter initialization on the central computing
resource;

Use PoS to select the top K nodes with the best computing resources;
Prepare folds for training and validation using the gathered data from the main data
provider and data combinations from additional data providers to perform
cross-validation and cross-dataset validation tests;

for each fold do
split data into K parts, encrypt with the public key scheme, and distribute to nodes;
for e← 1 to E do

Compute local gradients at each node, send to central resource;
Central resource aggregates gradients updates global model M ;
Test global model on the validation set, compute accuracy;

Update quality score to ith additional data provider, Di based on accuracy
improvement;

Use PoS to select top K nodes for next fold based on computing resources;
Using threshold Q, do PoS selection using computed quality scores and using expert
judgement, add data from selected additional data providers to trusted data.;

on a decentralized network of nodes to process data and transactions, which involves complex
cryptographic calculations and consensus mechanisms. These calculations require significant
amounts of distributed computing power, which in turn requires transfer time and energy to
operate.

Transfer time refers to the time it takes for data to move between different components of
the system, such as between sensors and the main processing unit. Energy consumption, on the
other hand, refers to the amount of power required to run the system and perform AI computa-
tions. Embedded systems are designed to perform specific functions within a larger electronic
system, such as a military vehicle or drone. These systems typically have a microprocessor or
microcontroller that is integrated into a device, along with the necessary software and hardware
to perform their functions.

It is known that due to their local availability of resources, embedded systems generally have
faster processing speed and lower power consumption when compared to blockchain-based sys-
tems. However, in a military context, it is often necessary to access and process information
from remote locations and have consensus between multiple parties. This is where blockchain-
based systems can offer advantages over embedded systems. Furthermore, blockchains can
offer enhanced data security, as the technology utilizes advanced cryptographic algorithms to
ensure that data is tamper-proof and immutable. In contrast, in embedded systems, informa-
tion security and integrity are not of utmost importance. Also, block-chain based distributed
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systems offer a higher degree of scalability and interoperability, making them ideal for mili-
tary applications that require real-time data processing and sharing across multiple units and
agencies.

One example use-case where blockchain-based distributed systems are highly preferred in
the military is in supply chain management. By using blockchain technology to create a trans-
parent and auditable record of supply chain transactions, the military can reduce fraud, waste,
and abuse in the procurement process. This ensures smooth flow in military operations without
any supply chain disruptions which can have significant operational and strategic implications.
Therefore, while embedded systems offer advantages in terms of processing speed and power
consumption, blockchain-based systems can provide valuable benefits in terms of remote ac-
cess, consensus between multiple parties, and data security in military applications.

Similarly, the system cost of embedded systems is often lower than that of blockchain-based
systems due to the availability of local resources. Embedded systems can be designed to have a
smaller footprint and lower hardware requirements, making them a more cost-effective solution
in some cases. In blockchain-based systems, the cost of hardware and energy consumption can
be higher when compared to embedded systems due to the need for multiple nodes to reach
a consensus on transactions and data sharing. However, the use of distributed nodes and the
added security benefits of blockchain technology can justify the increased cost.

The cost of a blockchain system can vary depending on several factors, such as the com-
plexity of the system, the number of nodes in the network, and the level of security required.
Developing a blockchain system from scratch can be expensive, as it requires significant exper-
tise in cryptography, distributed systems, and blockchain technology. The proposed concept of
efficient distributed deep learning with blockchain for data privacy and security offers benefits
in terms of transfer time, energy consumption, and system cost. The Proof of Stake (PoS) based
selection ensures good efficiency as computing nodes are selected based on their computing
capabilities and network resources. This results in faster transfer time and lower energy con-
sumption compared to other methods that do not take into account these factors. Furthermore,
the proposed concept allows for the utilization of several unused computers in places such as
governmental offices or other institutions. This reduces the need for purchasing additional com-
puting hardware, lowering the system cost. This cost-effective approach enables the widespread
deployment of the proposed system.

4.14 Concluding remarks

Distributed ledger technology (DLT) and blockchain technology will be priority areas for force
development. International examples show that decentralised military solutions are responsible
for the cybersecurity paradigm shift. New cyber operational dimensions and military-technical
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concepts are emerging as a consequence of decentralised digital interactions. The distributed
ledger is trusted, transparent, encrypted and, depending on its type, the consensus is reached
between users on the network. DLT is transparent and therefore secure, cryptographic solutions
ensure that no network manipulation is possible. The best-known type of DLT is the blockchain.
Blockchain networks are fault-tolerant, with trusted nodes being aligned and untrusted nodes
being discarded. The Zrı́nyi 2026 force development research and development programmes
should focus on developing special capabilities because Hungary can be internationally com-
petitive in this area. R&D support for new types of cyber defence challenges can be an essential
and one of the best investments in force development. The institutional framework described in
this thesis can provide the infrastructure and tools to enable the development, maintenance and
training of cyber operational intellectual capability at a high level. On the other hand, there is
little chance that Hungary can become and remain a world leader in weapons or military vehicle
production: this would require a lot of money and expertise, as well as access to closed data. It
would place an unfair burden on force development reform and would not result in a particular
specialisation opportunity globally. The military development potential of decentralisation and
blockchain requires further serious and deeper research. The full range of applications of the
technology is constantly changing, and it is therefore recommended to develop organic exper-
tise and monitor and process international results. Artificial intelligence and machine vision can
link civil-military partnerships, resulting in professional collaborations for the development of
DLT and blockchain-based technologies. Hungary is already one of the leading countries in the
application of machine learning, machine vision and artificial intelligence. A success story for
Zrı́nyi 2026 could be the specialisation of military capability in cybersecurity.

The effective military application of blockchain will be the subject of further research. The
current utilisation and connectivity of state IT apparatus to a distributed ledger infrastructure
raise technical and cyber security issues. International practical examples show that for data
analysis tasks that challenge human capacity, machine learning and the network-based applica-
tion of artificial intelligence are the designated research directions. In hybrid warfare, Hungary
can gain a regional competitive advantage, develop cyber defence and offensive capabilities, and
create internationally significant knowledge assets and scientific, institutionalised IT research
workshops. Government-free IT computing capabilities can be pooled into decentralised sys-
tems in a resource-efficient manner. Such a decentralized system, defined in its objectives, can
do in a secure environment what humans cannot: make decisions accurately, quickly, without
error, and produce informed objective military leadership decision points.
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Chapter 5

Summary of new scientific results

The new scientific results presented in this dissertation have significant implications for the de-
fence sector, AI and computer vision (CV) researchers, and policymakers shaping the future of
these technologies. While the results do not directly contribute to the field of machine learn-
ing and artificial intelligence, they provide valuable insights into the development of AI-based
solutions for real-world challenges. Specifically, the novel approaches to spoof detection and
violence detection using deep learning techniques, as well as the use of Distributed Ledger
Technology for decentralized processing of large datasets, have the potential to significantly
improve military efficiency in accordance with public safety and security. Below, these new
scientific results are presented in a concise numbered list and the main findings and contribu-
tions from this work are detailed in the following subsections.

1. I discovered that deep learning-based methods are highly effective in detecting spoof at-
tacks in human video frames, providing a practical tool for identifying fake video footage
that fools smart digital systems.

2. I created a novel approach to violence detection using deep learning-based methods for
real-time detection of violent behaviour, with the potential to significantly improve public
safety and security.

3. I investigated the use of distributed ledger technology (DLT) for the decentralized pro-
cessing of large datasets and high computational tasks, providing insights for improving
the scalability and efficiency of AI and deep learning algorithms in military contexts.

5.1 Thesis Group I - Live spoof detection for Human Activity
Recognition (HAR) applications.
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• I created a deep learning architecture for detecting spoofing attacks in videos using
replay techniques.

• I discovered the effectiveness and generalizability of the proposed architecture through
comprehensive evaluation and testing.

Relevant publications: [27] [28]

5.1.1 Novel deep learning architecture for spoofing detection

I created an ensemble multi-stream model that detects spoofing cases arising from video replay

attacks. The model inspects distinct regions of human faces and combines these observations to

provide robust classification between spoof and genuine cases.

• Frames are extracted and fed to the pre-trained YOLO model to extract windows corre-
sponding to the human head region on the image. Each detected head bounding box on
a video frame is resized to 64 × 64 × 3 pixels and processed in three different streams
that use CNN architecture inspired by VGG16 net as a baseline model. The output of
the three streams is combined using the obtained classification probabilities following
majority voting to classify spoof and genuine cases. The three streams process:

– Predicted and resized head bounding box of size 64× 64 pixels.

– Cropped lower 64× 32 pixels from the resized image.

– Cropped central 32× 32 pixels from the resized image.

• The effectiveness of the proposed ensemble method is assessed using state-of-the-art
methods in the literature for spoofing detection applications using facial image data: Lo-
cal Binary Pattern (LBP) histograms, Local Binary Pattern histograms from Three Or-
thogonal Planes (LBP-TOP), Statistical Binary Pattern histograms (SBP) and Statistical
Binary Pattern histograms from Three Orthogonal Planes (SBP-TOP). Experimental re-
sults show that the proposed EM method outperformed other methods considerably.

5.1.2 Temporal analysis for real-time spoofing detection

I formulated a strategy to combine multiple detections of the proposed deep learning network

temporally on a captured video or on a live video stream to systematically detect video replay

spoof attacks while maintaining real-time performance.

• Chunks of overlapping video clips, each containing several frames (depending on the
model under testing) with an overlap of 15 frames are defined.
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• Within a considered clip, the proposed deep learning models are run on three frames
that are 15 frames apart and the obtained predictions are combined to derive a single
prediction for this clip. Following this method, the first prediction is made after 31 frames
and thereafter, predictions are made every 15 frames.

5.1.3 New database for spoofing detection

I created a new database comprising real and spoof videos captured from 38 different users in

different locations and under different lighting conditions. The database is diverse and precisely

captures the required features for training the proposed deep learning network.

• A diverse database consisting of almost 50,500 full HD images of 38 users (both male
and female) between the ages of 8 and 40 juggling a football in different backgrounds
and lighting conditions are collected. These are extracted from several videos shot using
various iPhones — iPhone 6, 6S, SE, 7, 8, X, and XS.

• These images are manually labelled with bounding boxes that encapsulate the following
data: human body parts — head, left shoulder, right shoulder, left elbow, right elbow, left
hand, right hand, left hip, right hip, left knee, right knee, left foot, right foot and also the
bounding box of the football.

• YOLO deep learning CNN architecture is trained using the captured and labelled database
and used for detecting the required body parts together with the ball from the video frames
in a single shot.

• This database is also used to learn the genuine and spoof cases. To this end, an additional
50,500 Full HD spoofed images were generated using the original images by capturing
the same videos on several monitors: a 27-inch Dell 4K monitor, a 15-inch Full HD
Lenovo laptop monitor, and a 13- inch MacBook Pro monitor with a resolution of 2560 ×
1600.

• Before training the networks, all video frames are pre-processed to extract the head region
using the previously trained YOLO model and resize the head image to 64 × 64 pixels.

• Data augmentation techniques are also used to reduce problems from overfitting including
increasing and decreasing the pixel brightness by a value of 50, doubling and halving the
image contrast, and adding Gaussian noise with variances of 50 and 100.

• The pre-processing steps were consistently added to all the video frames. Finally, before
training, data was also shuffled. Further, all the pixel intensities are scaled to the range
[0, 1] for training.
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5.1.4 Analysis about model generalizability

I created empirical evidence through additional evaluation of the performance of the proposed

approach in the context of biometric recognition applications, demonstrating its applicability

in other domains.

• To evaluate the ability of the proposed spoofing detection model to generalize to other
domains such as face recognition systems, I have experimented with two widely known
datasets in this context: Idiap REPLAY-MOBILE and CASIA Face AntiSpoofing.

– The REPLAY-MOBILE dataset consists of 1190 video clips of photo and video
presentation attacks (spoofing attacks) to 40 clients, under different lighting condi-
tions. These videos were recorded with an iPad Mini2 (running iOS) and an LG-G4
smartphone (running Android) in full HD resolution.

– The CASIA Face AntiSpoofing Database consists of 600 video clips of 50 subjects.
Out of the 600 video clips, 150 clips represent video replay attacks. Compared to the
Idiap database, the CASIA DB provides images captured using a variety of cameras
(Sony NEX-5-HD, two low-quality USBs) to capture replay attacks displayed on
an iPad. However, a significant deficiency of this database is that the video replay
attacks are captured in very low resolution (640 × 480).

• Results show that the proposed ensembled approach performs very well on the REPLAY-
MOBILE database irrespective of the fact that the users are located very close to the
camera (higher IPD values than that of my database).

• Even though, the CASIA database consists of low-resolution images, the proposed method
performed reasonably well also on this database.

5.1.5 Prototyping and stand-alone implementation

I created a solution by designing an IOS mobile application that implements the proposed ap-

proach in real-time, bringing the technology to the convenience of mobile devices.

• I have implemented the proposed Ensemble multi-stream model in swift for IOS. The
application is standalone and tested on iPhone 8 released in 2017 and has a 2.39 GHz
hexacore 64-bit.

• The developed models as well as the YOLO model for head bounding box detection are
converted to CoreML API for running on the IOS device. The application takes as input
incoming frames from the on-device-camera and runs my trained YOLO model to detect
head bounding box information.
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• The algorithm works in real-time. The proposed method can run on an iPhone 8 and
processes a single frame on an average of 4 ms. This translates to a frame rate of about
250 frames per second.

• Following the proposed testing scheme, running the proposed model every 15 frames
further ensures that there are enough resources left on the device to run the activity recog-
nition applications.

5.1.6 Experiments with video compression

I created empirical evidence by simulating and evaluating the performance of the proposed

ensemble model under extreme video compression (300 kbps) and discovered its robustness.

• Video compression techniques are applied to reduce the video bitrate to facilitate efficient
streaming which introduces video artefacts. To evaluate the ability of the proposed en-
semble model to correctly classify the spoof cases, I have generated compressed video
streams with varying bitrates from 300 kbps to 1500 kbps. Multiple videos were gener-
ated with different bitrates using FFmpeg to experiment with video compression.

5.2 Thesis Group II - Violence Detection for automated video
surveillance applications

• I created a solution for automatic violence detection in video surveillance by explor-
ing smart networks.

• I discovered a novel deep learning-based approach for violence detection that out-
performs existing methods with fewer model parameters and demonstrated robust
performance under compression artefacts commonly encountered in remote server
processing.

Relevant publications: [105]

5.2.1 Efficient deep learning architecture for violence detection

I created a deep learning-based method that can be used to filter violent and normal patterns

videos. Considering the popular video classification metrics for evaluation, the method outper-

forms several state-of-the-art methods for violence detection and is also able to cope with video

compression artefacts, while remaining computationally lightweight.
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• I have explored X3D-M deep learning architecture that is computationally lightweight to
learn and detect violence patterns from videos. I proposed two architectures - fine-tuned
and transfer-learned models for classifying video clips containing violence, which lever-
age action recognition features learned from the Kinetics-400 dataset. For both models, I
have modified the architecture into a regression model to generate a violence coefficient
that indicates the probability of the existence of violence in a given video clip.

– The fine-tuned model trains all the parameters of the adapted X3D-M model on the
datasets for violence detection. The second fully connected layer of the X3D-M
model is replaced to output a floating point variable which is converted into range
[0, 1] using a sigmoid function to derive the violence coefficient.

– The transfer learned model uses X3D-M for inferring video features and does not
retrain the parameters of the original X3D-M model. Pre-processed videos con-
taining both violence and no violence are inputted into a pre-trained X3D-M model
for feature extraction. Three additional fully connected layers are trained using the
extracted features to obtain the violence coefficient.

• The experimental results on individual datasets show that the fine-tuned model performed
better than the state-of-the-art methods on most datasets with relatively fewer model pa-
rameters.

• Transfer learned model also achieved decent performance on all the datasets given that, it
has less trainable parameters than fine-tuned model and thus relatively less adaptable to
specific scenarios.

• When testing on all combined datasets, the fine-tuned model achieved better performance
and the transfer learned model produced more combined false positives and false nega-
tives.

• Further tests on individual datasets show that models trained on all combined datasets did
not perform well in several cases when compared to the performance of models trained
on individual datasets. This shows that there are multiple inconsistencies in the publicly
available datasets for violence detection.

5.2.2 Comprehensive database for violence detection

I created a comprehensive database of violent and normal videos by combining and extending

seven existing video databases, providing a robust resource for violence detection research

across various contexts.
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• For experimenting with violence detection and to facilitate comparing the results with
other methods, I have considered seven different datasets that are commonly used in lit-
erature. I have also extended some of the datasets with annotations to assist in-depth
cross-validation experiments. These are described in the following:

– Crowd Violence (CV) dataset contains videos involving violence in crowds, col-
lected from YouTube.

– Hockey Fights (HF) dataset is a collection of fights between players in hockey
games from the USA’s National Hockey League (NHL).

– Movie Fights (MF) dataset collects several scenes from action movies.

– Real Life Violence Situations (RLVS) dataset gathered fighting videos from YouTube
and also from real street cameras that contain many real street fights.

– Real-World Fight-2000 (RWF-2K) dataset is a collection of large-scale fighting
videos from YouTube. The dataset contains trimmed video clips captured by surveil-
lance cameras from real-world scenes.

– UCF-Crime Selected (UCFS) dataset is a subset of the UCF-Crime dataset. The
UCF-Crime dataset contains long untrimmed surveillance videos that cover 13 real-
world anomalies including Abuse, Arrest, Arson, Assault, Burglary, Explosion,
Fighting, Road Accident, Robbery, Shooting, Stealing, Shoplifting, and Vandalism
without annotations. Although this is a large-scale dataset, all videos in the violence
class contain a mix of violent and normal actions which is undesirable. Among
the anomalies, I selected the classes - Abuse, Explosion, Fighting, Road Accident,
and Shooting and manually trimmed these videos to only contain violent parts for
training and testing.

– XD-Violence Selected (XD-V) dataset contains a subset of videos from the XD-
Violence dataset. XD-Violence dataset contains several untrimmed videos cover-
ing 6 anomalies including Abuse, Car Accidents, Explosions, Fighting, Riots, and
Shooting gathered from action movies and YouTube. Similar to the UCF-Crime
dataset, I selected a set of videos belonging to the classes - Abuse, Explosion, Fight-
ing, Road Accident, and Shooting and manually trimmed these videos to only con-
tain violent parts for training and testing.

• All datasets also contain normal videos for training and testing that have no violence
involved. In the case of UCFS and XD-V datasets, normal videos are trimmed to five-
second video clips to match the average duration of normal clips of other datasets. Also
in the case of UCFS and XD-V, the maximum duration of a video clip containing violence
is limited to approximately 5 seconds.
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5.2.3 Analysis on the generalizability of proposed models

I discovered high-performance results through a thorough evaluation of the proposed approach

on a comprehensive database of violent and normal videos, including cross-database validation

to assess the generalizability of the methods.

• According to the metric scores trained fine-tuned and transfer-learned models on the CV
dataset did not generalize well to other datasets. This is anticipated since CV contains
only examples of mass violence and the other datasets do not contain plenty of such
examples. Also, the trained FT model on the HF dataset has poorly generalized to other
datasets indicating that the HF dataset does not contain diverse examples of violence and
contains monotonous fighting videos between hockey players. However, the TL model
trained on this dataset showed generalized better than the FT model as indicated by the
metric scores.

• Both models trained individually on datasets - MF, RLVS, RWF-2K, UCFS & XD-V
performed satisfactorily in the cross-validation tests and generalized decently to other
datasets with average accuracy scores close to or above 80% and average AUC scores
close to or above 0.8. Considering both metrics, models trained on UCFS and XD-V
datasets exhibited the best generalization ability in the cross-validation studies. This in-
dicates that the datasets, that are gathered in this study, have the most representative and
heterogeneous samples for actions involving violence and non-violence.

• Overall, the transfer learned model showed a better capability to generalize and has less
standard deviation within testing accuracy scores for individual datasets when compared
to the fine-tuned model.

5.2.4 System implementation

I discovered the high performance of the developed approach through extensive evaluation on

collected databases, including cross-database validation to assess the generalizability of the

methods. I created a standalone functional system for automated violence detection, implement-

ing the proposed methods using the PyTorch deep learning library. The resulting application

can easily be adapted for use in surveillance applications.

• From the incoming video stream, non-overlapping video segments having a duration of
four seconds are extracted. From each segment 16 video frames are extracted into a block
following uniform temporal sampling. These blocks are pre-processed and then used as
input to the trained models to get a violence coefficient for the current segment.
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• This application is implemented on the Ubuntu Linux operating system using AMD
Ryzen Threadripper 1950X 16-core processor. I have used Nvidia GeForce GTX 1080 Ti
GPU using CUDA toolbox for running my trained PyTorch models.

• Implementation results show that together with block extraction and pre-processing, for
each four-second video segment, both models require 0.06 seconds on average to infer a
violence coefficient. The pre-processing is implemented on the CPU and this consumes
0.04 seconds on average. Therefore, the average time of running the proposed model is
0.02 seconds.

5.2.5 Video compression experiments

I uncovered the impact of video compression artefacts commonly encountered in video stream-

ing fields on the performance of proposed models through comprehensive experiments and pre-

sented the results.

• For experiments, I have generated compressed video streams with varying bit-rates - 300,
500, 1000 & 1500 Kbps. Two datasets - RWF-2K and CV are used for the experiment and
corresponding testing videos from these two datasets are compressed. Multiple videos are
generated with the considered bit rates using FFmpeg.

• Results from the study pointed out that the proposed models did not show greater fluctu-
ations in the performance and performed decently even under extreme compression (300
Kbps). This shows that the proposed models did not model the noise in the training videos
and were precisely directed to learn the concept of violence.

5.3 Thesis Group III - Applicability of DLT and blockchain
technologies in military

I created a system that leverages DLT technologies with a focus on blockchain as a compu-
tational data resource for training machine learning and deep learning algorithms while
prioritizing data privacy through the use of specialized neural networks. Relevant publi-
cations: [242] [243] [244] [245] [246]

5.3.1 Data privacy, sharing, and tracking

I designed a concept where blockchain can be used to secure and encrypt data used for deep

learning, making it more difficult for unauthorized parties to access or tamper with the data.
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• Data privacy is ensured by using blockchain to encrypt and secure sensitive data, such
as intelligence or surveillance data, that is collected by military assets. The data can be
stored on the blockchain and is only accessible to authorized parties with the appropriate
encryption keys. This can help to prevent unauthorized access or breaches of sensitive
data.

• Secured data sharing in real-time between multiple parties, such as different military units
or coalition partners, can also be facilitated by the use of blockchain to improve situational
awareness and decision-making capabilities.

• The blockchain can also be used to track the origin and handling of data, providing trans-
parency and accountability. For example, the blockchain can be used to record the prove-
nance of intelligence data, such as the sources, handling, and analysis. This allows for
the verification of data authenticity and integrity, and can also aid in the investigation of
data breaches.

5.3.2 Model training and decentralized decision making

I formulated a concept where blockchain can be used to train machine learning models in a

decentralized way, using distributed computing power and data, providing a more secure and

transparent way of training large and complex models. While running the trained deep learning

models, blockchain-based smart contracts can enable decentralized decision-making based on

consensus among multiple parties.

• Blockchain can be used to secure and track the data used to train machine learning mod-
els for military applications. The data collected by military sensors can be encrypted and
stored on the blockchain, ensuring that only authorized parties have access to it. Addition-
ally, distributed computing power and data can be used to train models in a decentralized
way, providing a more secure and private way of training models.

• Decentralized decision-making using smart contracts can be used to ensure that actions
taken by military assets, such as unmanned aerial vehicles (UAVs) or autonomous weapons
systems, are based on a consensus among multiple parties. For example, a smart con-
tract could be used to ensure that a UAV only fires a weapon if a consensus is reached
among multiple operators, or if certain predetermined conditions are met. This can help
to prevent unauthorized or accidental use of weapons, and can also improve the overall
situational awareness and decision-making capabilities of military assets.
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Chapter 6

Application of the work

6.1 Practical applications of spoof detection [scientific result
5.1.1]

Video replay spoof attack detection in biometrics recognition and in gaming is a crucial aspect
of ensuring the security and integrity of systems. Deep learning algorithms have been used
to develop video replay spoof attack detection systems that are able to accurately identify and
prevent fake video replays, prevent fraud or cheating, and protect personal information.

• Biometrics Recognition: In biometrics recognition systems, such as facial recognition,
video replay spoof attacks can be used to gain unauthorized access or to steal personal
information. Video replay spoof attack detection can prevent such unauthorized access
by detecting fake video replays and denying access to the system.

• Gaming: In gaming, video replay spoof attacks can be used to cheat or manipulate the
outcome of games. Video replay spoof attack detection can prevent cheating by detecting
fake video replays and taking appropriate action, such as banning the player or resetting
the game.

• Real-Time Monitoring: Video replay spoof attack detection can be used to monitor video
replays in real-time, providing instant alerts if a fake video replay is detected. This can
help to prevent fraud or cheating in real-time.

• Improved Accuracy: Traditional methods of video replay spoof attack detection, such as
manual review, can be time-consuming and prone to human error. Deep learning algo-
rithms, on the other hand, can analyze footage more accurately and quickly, reducing the
likelihood of missed attacks.

125



6.2 Divergent applicability of violence detection [scientific re-
sult 5.2.1]

The primary objective of HAR is the analysis of activity patterns of humans from digital videos.
At border crossings, in prisons, at military camps, there is no current system that can automat-
ically identify the variables that determine the activity of a person and determine whether the
given human activity is otherwise correct/incorrect, normal or abnormal, or how much it de-
viates from a given pattern and, based on the classification of the difference, how much the
volatility of the activity is considered illegal or dangerous, risky.

The essence of the proposed deep learning application for violence detection is that it can
inform the designated decision makers (military staff, guard/reception service, security service,
law enforcement authority, armed forces) in real-time about possible risk events that can be
classified on the basis of a risk scale.

• Law Enforcement: The use of deep learning algorithms can assist law enforcement in
identifying and preventing acts of violence before they occur. This can be especially
beneficial in high-crime areas where the volume of footage can be overwhelming for
human review.

• Security: In public spaces such as schools, malls, and airports, automatic violence de-
tection can help to quickly identify and respond to potential threats, allowing security
personnel to take appropriate action and potentially prevent a dangerous situation from
escalating.

• Public Safety: In crowded public spaces, automatic violence detection can also play a crit-
ical role in ensuring public safety by detecting potential dangers and alerting authorities
in real-time. This can help to reduce the risk of harm to innocent bystanders.

• Real-Time Monitoring: By using deep learning algorithms to automatically analyze large
amounts of surveillance footage in real-time, automatic violence detection systems can
identify and alert authorities of potential threats before they escalate.

• Improved Accuracy: Traditional methods of violence detection from surveillance footage
often involve the manual review, which can be time-consuming and prone to human error.
Deep learning algorithms, on the other hand, can analyze footage more accurately and
quickly, reducing the likelihood of missed threats.

Based on sensor fusion theory, events can be classified based on multiple inputs. Demon-
strated through examples, in a military institution, at a border, aggressive patterns of behaviour,
fights, other than average movements, misbehaviour, dressing, and inappropriate objects (e.g.,
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knife, or even a weapon) are all considered risk events that security or military personnel may
not / cannot physically realize. Computer image processing systems can see what humans may
not see, and with algorithms running on camera systems, the analysis can have a frame ‘depth’
precision of detection.

Certainly, a trigger event can be either a fire or an explosion, or smoke as well. Data from
digital smoke detectors can be processed at the same time as camera image analysis, allowing
complex information to be communicated to the authority based on the most efficient result.
This increased accuracy can determine the risk level of the event as well.

AI health monitoring of military crews can save lives. It is possible to analyze the activity
of a person with machine vision in real-time based on the information collected by different
devices. A school porter, or even a stationed soldier, a police officer, or even the university
security service, is usually at a workstation monitored by a camera, so from a physiological and
safety point of view, every second can count in the event of a malaise. Malaise, such as a heart
attack, is unfortunately preceded in many cases by a pattern of movement, but their course is
not necessarily the same. In addition, if a person is alone, there is an additional risk that the
’trigger’ event, the form of movement to be assessed, is not treated in real-time. This can cause
tragic events, even death. An attempt to extract and analyze the spatiotemporal features from
videos capturing such events could be a route of future research.

Based on the results of international public research, examining the DARPA / Air Force
Research Laboratory’s Mobile and Stationary Target Acquisition and Detection (MSTAR) pro-
gram, Automatic Target Recognition (ATR) research, experimental results based on the MSTAR
data set showed that a proposed research method is expected to be more efficient and accurate
than existing manual systems.

6.3 Definition of development and the areas of use [scientific
results 5.1.1 & 5.2.1]

This research also demonstrates the development of machine vision and competence supported
by artificial intelligence. In the military, such a development is based on machine vision and
artificial intelligence, which I achieve by developing neural networks and a teaching-learning
methodology that enables us to achieve a more serious event marking of the critical information
infrastructure.

Consequently, areas of application can be any camera-equipped unit, such as a university
campus, or school area, or portable devices, such as smart glasses or robotic law enforcement
technologies, as well as UAV/drone competence, as well as facility security, personal security,
and personnel surveillance. The application may lead to further syntheses that may result in a
public interest digital data reporting application, thereby multiplying knowledge transfer due to
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development.
The European Union and the EU Strategy for the Security Union state that the creation of

security is a common European goal, and that artificial intelligence will value new opportunities
and innovations that can address these Security Union issues more effectively. Machine vision
is a modern technology that can also develop existing competencies in quality control.

In the EU, research and development and innovation have played a key role in guaranteeing
security, which can be brought into line with the EU Artificial Intelligence Strategy.

Many member countries established National Innovation Associations and the Artificial In-
telligence Coalition, so government and commercial and non-profit industry players can actively
participate in the continuous monitoring and regulation of Artificial Intelligence. Software de-
velopment also provides an opportunity to help develop tool and method-specific requirements
for security management hardware developments. With further development, a nation may be
able to achieve a breakthrough and pioneering results in automating discovery, object detection,
and object tracking. It can provide automatic transmission of image information in addition to
the future 5G technology.

A very relevant area of use of the new technology could be military guarding (border con-
trol, institutional security, etc). The ‘digital guard’ project is a suggestion for further in-depth
research. There is still a shortage and many vacancies in the traditional military/security guard
positions. The military guard program builds on a living force of people who have a govern-
ment, military, or a public task with special rights with or without the right to use weapons,
but with coercive means. A military/security guard ensures that the members of the designated
institution, the border of a country, and the institutional military staff / civilian employees who
directly assist the work, can perform their duties without interruption. A ‘digital guard’ can be
a real-time holistic supervisor: it prevents and interrupts acts that violate or endanger the safety
of soldiers stationed at the military site, alerts decision-makers about endangered employees of
the institution, and prevents illegal acts committed to their detriment. There are thousands of
military sites, and guarded institutions in the EU where military guards could have been placed,
but there is a limited number of guards, as many are not filled in roles, even though in most
EU member states, this position is constantly being searched for, and according to the Crime
Department of the member states Police Criminal Directorate, there are always vacant police,
military, law enforcement guard positions open.

However, there are plenty of existing conflicts where the guardianship office questions the
job competence of the School Guard, most of the time due to under-performance or just over-
competence. The Digital School Guard provides an objective decision-making opportunity,
so it is not a development aimed at replacing the School Guard, but a development aimed at
filtering out violations, guardianship, and supporting law-abiding School Guards, which can
significantly reduce the number of objectionable measures.

These statistics support the need for a “digital school guard” program, which will of course
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be able to be extended to other areas later than the “digital guard” program (universities, insti-
tutions, municipalities, etc.). The technology would not replace the existing stock but would fa-
cilitate efficient, real-time decision-making, and in places where there are no human resources,
a ‘digital’ alert would be given to a central decision-making unit to signal a possible illegal
activity.

During the development, a tool- and methodology-specific system of requirements will be
developed with the involvement of person and object-tracking NKE and designated depart-
ments, from which I can determine more precisely on the basis of the feasibility study which
area can most effectively achieve development results during the development cycle. Thanks to
visual analysis, it may become possible to establish an intelligent university institutional sys-
tem in Hungary that can alert competent managers responsible for university security in advance
and in a preventive manner with motion and object detection and real-time background analysis
supported by artificial intelligence. This increases the institutional security of the university,
and in the event of an incident, the reaction time can be significantly reduced. In addition to
proper training, the system can even be used in other areas, so it can increase public safety in
order to increase criminal effectiveness, as depth checks can be performed even on images from
surveillance cameras.

One of the most important security challenges is that so-called fraud detection must be built
into the system, as anyone planning an illegal activity may have solutions to bypass machine
vision, which could basically bypass the simplest security gates and possibly break through
computer vision. Therefore, it is very important for development that you can effectively filter
out such potential frauds and even be able to predict them using the integrated system. The
challenge is that the capabilities of existing cameras may not be able to provide high-quality
data at all times due to weather and visibility conditions. It is a challenge that it is naturally
difficult to involve large amounts of data for teaching and artificial intelligence support due to
GDPR and other regulations. It is expected that the image data obtained in a natural way will
be supplemented with a hybrid methodology and synthetic data.

Therefore, by using artificial intelligence, profiling competencies based on pre-defined risk
criteria can be developed by processing and analyzing image information from existing installed
cameras. Image analysis is based on object analysis and motion analysis. The verification of
the data is carried out by the competent authorities e.g. police, NAV, and NKH, which is also
defined in the national strategies. Defining the professional requirements and methodology of
the development during the project and processing the results of the feasibility phases is the
task of the NKE as a consortium partner. The brand name “Digital School Guard” is also a
conceptual element related to NKE.
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6.4 Human activity recognition for public safety [scientific
results 5.1.1 & 5.2.1]

With the availability of ubiquitous computers and smart portable sensors, computer vision-based
technologies create a next-level opportunity for armed forces to be further researched and to be
exploited. Artificial intelligence acts as a main driver for innovation in several industries and
computer vision-based military applications can provide efficient decision-making support and
reduce human error and bias. Computer image processing usually focuses on object detection,
however, Human Activity Recognition (HAR) has become one of the most popular research
topics in recent years. The purpose of HAR algorithms is to present information about simple
or complex physical activity in humans. More generally, these algorithms take data from a va-
riety of sensors and use machine learning and computer-based, machine vision techniques to
extract information about human activities. Consequently, HAR can be widely used in many
applications, such as medical diagnoses, elderly tracking, smart homes, and automated driv-
ing, but it’s military and defence applications remain to be explored, and additional civilian
applications can be included in the research.

Motion-driven virtual games have helped market research accelerate R&D projects on the
usability of HAR, however, the civilian application of computer vision in military/educational
institutions as well as its school usability is special because access to data is limited. Addi-
tionally, military data access is further limited due to its nature (classified, limited access data).
In educational institutions, only data with certain permissions are available due to the GDPR
regulations and students ’privacy rights; it is very difficult to implement effective computer vi-
sion and object detection and HAR research development projects worldwide due to strict legal
restrictions on the processing of personal data and the related social sensitivity.

However, military usability can be researched by creating artificial laboratory environments
such as a border crossing zone, or controlled military campuses/institutions. More and more
commercial, global technology companies have a set of competencies that can respond to
the challenges posed by the current digitalization process in the defence forces with practi-
cal research. Technology-based security issues affecting competence development capabilities
should be supported by research and development that ensures the practical and independent
applicability of independent military developments. Self-defence competence is not only a na-
tional defence but also a general national interest for every sovereign nation, but development
that can be combined with the international interest of NATO membership and EU membership
requires innovative thinking and pragmatic, goal- and solution-oriented research and develop-
ment projects by each Central – European country.

With the arrival of 5G and other new innovations, divergent military applications are facing
a technological revolution and an explosion, so countries like Poland and Hungary need to
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develop their own capacity to automate decision-making with research that can either make a
decision on its own or a system to support human decision making in real-time in assessing
objects, human activity patterns, trigger events (such as explosion, smoke, etc).

The Visegrádi 4 countries handle developments related to their own security with due care
due to classified data management. Therefore, it is essential that R&D projects will be launched
in the region as well, which can provide an independent capability for the defence forces and
law enforcement and any other regional educational institution, the National Armed Forces,
the Ministry of the Interior, and the National Service Agencies, regardless of exterior targeting
authority and foreign developments. To support the objectives of the Police Headquarters, the
expected results of my research can be utilized from a social, economic, and environmental
point of view and are in line with the policy directions of NATO and the EU.

6.5 Practical use of AI and DLTs [scientific result 5.3]

There had been enough development which had occurred in DLTs and blockchain technology
use cases beyond cryptocurrency. It is evident, that these technologies can be combined with
other emerging ones, and an examination is required to understand, how the new technologies
might be applied in the profession of arms. International research found that the armed forces
of the most powerful countries, such as the US, China, and Russia have all publicly discussed
the military applications of blockchain [247].

Hungary, being the gate for the European Union and Schengen zone, there are numerous
challenges in monitoring the border. These challenges could be tackled by using distributed
network-based computer vision detection tools, such as UAVs (drones) for the lengthy border
and fence monitoring. The captured images of the UAVs could be automatically classified
and analyzed using AI algorithms, which would improve the decision-makers to send human
resources (military) for further investigation of the designated border zone. Illegal migration
and border trespassing could be also monitored in an automated way.

Another smart application of the technology would be to monitor human activity patterns at
the borders. Computer vision-based Human Activity Recognition (HAR) is therefore a research
area for the future, as it could provide relevant information to the authorities about abnormal
activities and events.

A crucial feature of such recognition systems in these VUCA ( volatile, uncertain, complex,
and ambiguous) environments [248] is object detection. For law enforcement, manual video
review can take enormous manpower and time, while human error is at a higher possible rate
at these manual reviews. Using a distributed network for secure data storage, and artificial
intelligence algorithms to detect different types of objects (with customization options, such as
type of object, the colour of the object, etc) the armed forces, police, and other units could save
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significant time because of the improved accuracy of object detection.

6.6 Relevance of the project [scientific results 5.1.1, 5.2.1 &5.3]

The primary goal of artificial intelligence-assisted background analysis is to be able to predict
and alert competent authorities in real-time in situations other than normal for any reason. NKE
can provide a laboratory environment in both artificial and natural ways. As an institution itself,
the university, and within the university, an artificial laboratory environment can be created that,
by learning from empirical examples, facilitates experimental development. The analysis of the
image information of the installed cameras with the help of artificial intelligence can perform
both quality and internal control tasks. This risk analysis can be linked to jobs. HAR can
even function by detecting gestures and forms of movement, and other movements can alert the
competent control body in real-time. In order to ensure a safe university institution, it may be
important to detect persons and clothing and to screen out unauthorized persons in a place that
can only be accessed by certain persons or persons. Unauthorized access can be detected much
more effectively. The sensor fusion system can also be used here, as the use of an unauthorized
access system (eg unauthorized card use) can also be supported by the image information of the
cameras. If someone has obtained an unauthorized card, the portrait of the unauthorized entrant
currently using the card can be compared to the portrait assigned to the card.

The NKE and its departments provide effective support in defining professional require-
ments, because the university is an extensive institution with many locations and many loca-
tions, and is the best simulation area for the school environment. In the vicinity of the NKE, the
security camera system installed for the laboratory test, as well as additional laboratory tests can
be performed in the NKE partner institutions and partner branches. The cooperation between
the NCU and the ORFK ensures the possible national integration of the finished system.

The traditional modal analysis includes physically connected wired or wireless sensors for
the analysis of structures and objects. However, this method has certain drawbacks due to the
accuracy of the sensors, possibly the weight and low spatial resolution of the sensors, which lim-
its the accuracy of the analysis, but also the high cost of optical sensors. In addition, installing
and calibrating sensors is a time-consuming and labour-intensive process in itself.

Machine vision-based technologies can address these shortcomings. In my research, I want
to develop the Convolutional Neural Network using residual modules as a small part of applied
research and largely as an experimental development, which can serve as the backbone of the
technology for machine vision-based decision support systems.

The challenge of the technology is that it is not enough to analyze individual pixels as a
frame in the image of a camera, for the most accurate analysis, it is necessary to extract and
process the time-spatial information in parallel with the data of the sensors. Therefore, time-
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space information can actually be recorded as a result of a separate sensor (e.g., in the case of a
vibrating structure, its modal frequencies can be recorded). As a summary of sensors and data
extracted from machine vision, more accurate image analysis systems can be built with proper
training and support of artificial intelligence.

Demonstrating through the example of a smartphone, in addition to the image of the high-
resolution camera built into the phone, in addition to the fixed-frame spatial-temporal informa-
tion, much more accurate results can be obtained by extracting additional sensor data from the
hardware device (in my example, the phone). Such sensors may be, without claiming to be
exhaustive, a hardware device such as a smartphone:

• ISO: current iso value of the camera (sensor sensitivity), the ”unit” of light sensitivity.
For film machines, the film determined the ISO value. In today’s digital cameras, we can
set the sensitivity we want to work with without having to swap a film for it. In the case of
a film or digital camera, the sensitivity of a light sensor circuit (CCR) (light) determines
the lighting conditions under which you can shoot.

• MaxIso: maximum iso value that can be reached (this already indicates that the camera is
trying to overcompensate for the dark)

• Expo: shutter time

• Expo bias: this sensor helps where the sensor wants to be corrected compared to the
metering to make the image bright or dark enough (if it can no longer compensate because
we have reached the hardware limit)

• BackFacingCamera: we use a front or back camera, as the hardware and optics between
the cameras are also defined, measurable

• FPS: frame per second, how many frames per second a given movie contains.

• FOV: field of view

• GravX-YZ: direction of gravity vector on three axes

• Heading: a compass that faces the hardware device (in my case the smartphone, but it
could also be a well-equipped drone) to the north.

A system specializing in computer vision-based deep learning can only be developed in
the course of research using reliable empirical results, which are more efficient, accurate, and
autonomous than previous image analysis systems. The robustness of the deep learning model
requires a wealth of measurement, and teaching, using different ‘patterns’, with varying sizes
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and outcomes. This is the only way to achieve a high level of sensing accuracy at the end of
experimental development for more complex systems, e.g. for the analysis of security systems.

In such security systems, the analysis of more complex events may require more automated
and diverse solutions than the analysis of individual images in a separate unit. Analyzing each
frame separately does not clearly allow us to detect events where the object of the analysis is a
shape or sequence of movements that cannot be identified from each frame.

In artificial intelligence neural network teaching, numerical data are generated using the
artificial intelligence algorithm and other simulation algorithms. These are based on individual
frames that exist as separate units and extract the coordinates of the objects on them. The
chronological sequence of coordinates is given to the learning system.

6.7 Market and social innovation relevance of the project [sci-
entific results 5.1.1, 5.2.1 &5.3]

The research and development activities resulting from this work hold the potential to greatly
enhance the safety of educational institutions. The ultimate goal of this technological advance-
ment is to provide Hungary with a competitive advantage on a global scale, allowing the country
to more effectively ensure its security through the implementation of cutting-edge, innovative
solutions in line with its National Security Strategy. Despite the presence of limited security
research initiatives in the EU, there is a lack of involvement from Hungarian partners and in-
ternational market participants in these projects. This is a trend that is not expected to change,
given the current trend in EU strategy papers and calls for proposals. This highlights the cru-
cial importance of this research, which seeks to fill the gap in security research initiatives and
provide Hungary with the necessary tools to address the challenges of modern security threats.

6.8 Hungarian applications of automated recognition tech-
nologies [scientific results 5.1.1 & 5.2.1]

In Hungary, automated recognition technologies are almost exclusively purchased from abroad,
with limited in-house development in recent years. Although the Zrı́nyi 2026 Defence and Mil-
itary Development Programme recognised that new types of challenges require special attention
for Hungary to build, maintain and develop its cyber defence capabilities [249], the focus has
not been on automation. In June 2019, the Cyber Training Centre of the Hungarian Defence
Forces was inaugurated [250], which serves as a key pillar of my hybrid force development
strategy, but this centre does not deal with machine vision-based detection, i.e. the categorisa-
tion of machine vision-based defence itself is questionable: Which force would be the category
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of a revolutionary new technology that can be used not only for the military but also for domes-
tic purposes, and that could be useful not only for the police, border guards and secret services
but also for the Hungarian defence forces? [251]

Hungary should specialise in IT fields such as electronics and software development be-
cause this is where the MH has a chance to play a special role, which could be internationally
meaningful even as a NATO member [252]. Such a breakout point could be R&D on new types
of challenges, automated machine vision-based recognition. In terms of value, this could also
be a technological investment in which Hungary can be competitive in the military dimension,
analysing the global situation, and which will result in government-civil-military interoperabil-
ity, educational, economic and social added value. Supporting R&D of revolutionary technolo-
gies and the safe harmonisation of hybrid warfare is therefore in Hungary’s national interest
[253]

The military operational domains define the four possible physical domains (land, air, sea,
and space), [254] but in general, machine vision is more appropriately classified in the fifth
force domain, cyberspace, but the technology can be applied universally. The main strategic
question is whether Hungarian innovations can be used in a resource-optimised way by the
Defence Forces, whether the combination of artificial intelligence and machine vision can be
developed cost-effectively in Hungary, or whether it is better to buy foreign solutions, including
their software risks. The potential use of deep neural network learning capabilities poses several
military science challenges and consequently creates new platforms for the armed forces.
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Chapter 7

Conclusion

Detection and prevention can now almost always be linked to some kind of camera system.
The use of machine vision-based artificial intelligence to analyze the behaviour of individuals
and groups can provide a new opportunity to prevent and respond more quickly to conflict
situations. This requires R&D to leverage advances in machine vision using image recognition
and image analysis, both of which require high computational power, current image analysis
methodologies are often slow and do not work in real-time. With PAR, the causes of suspicious
events or activities can be easily grouped (mass brawl, preparation of a terrorist act, smoke,
weapons, etc. ), thus making the prevention of border violations, terrorist acts, or other crimes
and other national security tasks more efficient. Identification of criminals and wanted persons
would not require as much time and resources, but the tracing of lost persons could be done
more efficiently.

The security systems of the future will have to address new types of challenges that will
drive automation, software solutions, and cybersecurity. The next generation of combat sys-
tems may be based on automated, decentralized decision-making mechanisms, which will in
all cases be based almost entirely on machine vision and artificial intelligence, and will there-
fore be the technologies used in decision preparation. The human-added value may possibly
be preserved in the final decision-making, but the depth of learning to make decisions will be
another scientific question. An automated system can make a decision faster in a crisis situ-
ation, improving the chance of survival, but can a machine decide on people’s lives without
human approval? The potential for error can be filtered out if artificial intelligence processors
loaded into various weapons systems can coordinate their actions and check the validity of the
data. In the 20th century, military forces still used expensive computing power but cheap data.
Centralized decision-making was justified. New challenges emerged because processing power
became cost-effective, but the data itself became much more expensive. 21st-century militaries
will use machine vision-based, artificial intelligence-based, and decentralized technologies.
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7.1 HAR - Spoof detection

In this work, I studied video replay spoofing detection in applications where human activity
recognition using RGB sensors plays a crucial role. Outdoor weather and visibility conditions
are not controllable and therefore spoofing detection under such circumstances is a tedious task.
I believe that, to the best of my knowledge, the problem in this background is studied for the
very first time in HAR domain. In particular, I considered the virtual football game - SQILLER
application [24] [68] for experimenting with various designed models. I formulated an ensemble
multi-stream model that detects spoofing cases arising from video replay attacks. My model
inspects distinct regions of the human face and combines these observations to provide robust
classification between spoof and genuine cases. I collected a database comprising 38 subjects
in widely varying lighting conditions and backgrounds. I also generated corresponding spoof
videos using several monitors for training and testing my models.

I showed that my model provides robust results even if the face of the subject is partially
visible. I also evaluated the performance of my trained model on compressed videos at different
bitrates and the ability to generalize to face recognition systems. However, face recognition
may need fine-tuning of my model to better fit such cases where IPD at full HD resolution is
higher than that of my training images.

I also implemented and validated my algorithm on a mobile device and showed that my ap-
proach can work in real-time with minimal memory footprint, leaving enough room for running
the activity recognition algorithms alongside. In the future, my method can be easily adapted to
mobile devices containing advanced sensors like depth sensors and this would further improve
the performance of my spoof detection approach. In addition to replay attacks, in the future,
I also intend to study and explore algorithms for detecting masks or hoodies covering the face
and/or other clothing that cover body parts and are designed for confusing spoof detection sys-
tems.

7.2 Panoramic HAR

A more comprehensive understanding of the activities in a crowd requires the development of
a Panoramic Human Activity Recognition (PAR) system, which aims to simultaneously detect
individual actions, social group activities, and universally patterned human activities. Such a
recognition system is challenging, but it can answer practical problems in real-world appli-
cations. Such problems could be a crowd scene in the case of demonstrations or rallies, a
dangerous situation with migratory groups at the border, or a sudden crowd scene in a public
place. The paper describes the concepts and analyses a novel hierarchical graph neural network
approach to represent and model progressively human activity and mutual social relations in a
crowd, how they look like to a human participant, from a machine vision perspective.
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The 21st century has brought a digital technology revolution in military engineering and in-
formation science research topics. The digital paradigm shift is being completed by decentral-
ization and automated processes, mainly defined by machine learning and artificial intelligence.
Thanks to machine vision, human face and human activity recognition are now commonplace
worldwide (Human Activity Recognition), but the accuracy of recognition of human activities
and abnormal human activities is far from perfect. In addition to the recognition of individuals,
another research challenge is the recognition of the behaviour of crowds, because in a crowd
the individual often loses his ’face’ and the collective consciousness overrides the individual
behaviour pattern.

A more comprehensive understanding of crowd activities, therefore, requires the develop-
ment of a Panoramic Human Activity Recognition (PAR) system, which aims to simultaneously
detect individual actions, social group activities, and universally patterned human activities.
Such a recognition system is challenging but can answer practical problems in real-world ap-
plications. Such problems could be an emerging crowd scene in the case of demonstrations or
rallies, a dangerous situation with a migratory grouping at the border, or a sudden crowd scene
in a public space in an observed environment. The research aims to develop a new hierarchi-
cal graph neural network approach to propose a progressive representation and modelling of
human activities and mutual social relations in a crowd, what they look like to a human partici-
pant, from a machine vision perspective, and whether there are recognizable patterns of human
behaviour in the crowd.

Machine vision is a ”disruptive” technology that represents a revolutionary new solution,
capable of taking an existing technological paradigm to the next level, the technology of au-
tomated cognition [197]. Internationally, several research and development programmes have
already been launched in this field. NATO’s C4ISR (Command, Control, Communications,
Computers, Intelligence, Surveillance & Reconnaissance) and the US Department of Defense
(DoD) have already launched their own automated, decentralized development programmes
[217] because they recognize that they cannot analyze and process the vast amount of incoming
data on a human scale.

The research aims to focus on a more comprehensive understanding of human activity in
crowded crowd scenes. The practical benefits of such research are prevention, the development
of automated video surveillance for crime prevention, and the enhancement of the effectiveness
of warning systems because such a system can predict dangerous crowd scenes in time. Fur-
thermore, the movements of individuals in a crowd can be interpreted, and individuals or small
groups can be analyzed to see how their actions affect the crowd. Understanding video-based
human activity is an important computer vision task, but also a major challenge in terms of
accurate recognition performance.
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7.3 Machine vision-based activity recognition

Machine vision technology has a crucial role in analyzing human activity in crowded envi-
ronments. In order to understand the patterns of human behaviour, it is important to analyze
individuals’ actions, group activity, and the overall recognition of human activity.

HAR recognition focuses on the recognition of the global activity of a group of people. In
other words, it aims to understand the interactions between individuals in a crowd. This type of
recognition can be divided into three categories.

The first category is the recognition of the category of activity in a machine vision video.
This involves recognizing the type of activity being performed by individuals in a crowd. The
second category is the recognition of human interaction and activity in a crowd. This is a more
comprehensive and multifaceted approach, known as panoramic human activity recognition,
which aims to better understand human behaviour in crowded environments.

The third category is the recognition of social activity, which is part of a larger social activity
analysis. This involves analyzing the behaviour of individuals in a crowd as they interact with
one another, in order to gain insights into group dynamics and social patterns.

Overall, HAR theory is a crucial component of machine vision technology, as it allows for
the simultaneous analysis of individual actions, group activity, and the overall recognition of
human activity in crowded environments.

7.4 Violence Detection

In this work, I addressed the problem of efficient violence detection for automated surveillance
applications. I adapted X3D-M deep learning architecture that is computationally lightweight
to learn and detect violence patterns from videos. I proposed two architectures - FT and TL, for
classifying video clips containing violence, which leverage action recognition features learned
from the Kinetics-400 dataset.

For detailed analysis and performance evaluation of the proposed approaches, I collected
and extended seven different datasets in my study. In the past, several deep learning-based
methods for violence detection focused on datasets involving mostly fighting between two or
more people for experiments. I remind that the spectrum of actions and visual patterns repre-
senting violence is far wider, for example, violence happening between a group of people in the
form of a fight is visually very different from violence using objects such as guns or violence
involving explosions. To also incorporate such cases, I annotated several videos from UCF and
XD-Violence datasets for my experiments.

Using my collected videos, the FT model optimizes the X3D-M parameters learned from the
Kinetics-400 dataset, while the TL model extracts spatiotemporal features first without modi-
fying the X3D-M parameters (trained on the Kinetics-400 dataset) to train multiple fully con-
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nected layers. My experiments with individual datasets show that both models performed de-
cently in terms of ACC and AUC scores on the collected datasets. However, the FT model
performed better than most of the state-of-the-art methods on popular datasets with relatively
fewer model parameters.

In the previous works for violence detection, cross-dataset evaluations are not thoroughly
studied and I argue that these evaluations are very important for understanding the prominence
of various datasets as well as deep learning models. In this work, I bridge this gap by providing
a comprehensive evaluation including one on one cross dataset validation and leave one out
cross-validation. My cross-dataset tests showed that the TL model generalizes better to unseen
scenarios than the FT model. However, when testing on the combined dataset, the FT model
achieved better performance and the TL model produced more combined false positives and
false negatives. Further tests on individual datasets show that models trained on the combined
dataset did not perform well in several cases when compared to the performance of models
trained on individual datasets. This shows that there are multiple inconsistencies in the publicly
available datasets for violence detection. Also, results from comparisons with several methods
in the literature have shown limitations of both the developed methods and existing datasets.

I point out that the existing public datasets for violence detection are incoherent in terms of
the video duration, FPS, number of videos available for training and testing as well as the forms
of violence. Furthermore, existing datasets are not particularly representative of surveillance
applications. My results show that, in the future, there is a great need for the development of
diverse and meaningful large-scale datasets also involving footage from real-world surveillance.
In the future, I plan to make steps toward constructing such a large-scale dataset. Once such
datasets are available, I also plan to re-validate the models presented in the current work for
more general results.

I also presented a computationally light and functional stand-alone system architecture for
implementing the proposed models in practical surveillance applications. In this architecture,
from the incoming video stream, I extracted and evaluated non-overlapping video segments hav-
ing a duration of four seconds. Such a strategy fails to work in cases when an event of violence
begins at the end of a segment and ends before the end of a consecutive segment. While pro-
cessing such segments, my proposed models may not report accurate violence coefficients. In
the future, I also plan to develop smart strategies to handle such scenarios, following techniques
such as reducing the size of video segments adaptively and/or using overlapped segments. The
main focus in developing such strategies will be on achieving the best computational speed and
accuracy trade-off.
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7.5 DLT + AI + BLOCKCHAIN

The integration of blockchain and AI technologies in the military sector is a rapidly evolving
field. While blockchain-based applications in the military are not yet combat-ready, AI tech-
nologies are being widely used in various industries. This is largely due to the advancements in
computer vision and machine learning, which have led to a revolution in biometric identification
techniques such as face recognition.

The use of blockchain technology in defence logistics is already seeing significant bene-
fits, as reported by Accenture in a research report. The report states that 86% of aerospace
and defence companies plan to integrate blockchain within three years. Additionally, 93% of
aerospace and defence executives believe that the next generation of intelligent solutions is
moving into physical environments.

However, the integration of these technologies in the military sector also raises several chal-
lenges and dilemmas. When a nation decides to upgrade its cyber security strategies at a federal
level, it must consider the recommendations made by international organizations and how these
cyber challenges will be addressed. Kovács [255] emphasizes the importance of a country’s na-
tional cyber security strategy being built on the basis of recommendations made by international
organizations and the key regulatory issues that must be considered.

The rapidly evolving nature of cyberspace has prompted NATO and the European Union to
develop individual policies and regulations regarding cyber security. NATO, in particular, views
cyberspace as a domain of warfare and recognizes its far-reaching consequences for member
states. This has led to a range of cyber security measures being put in place, including the
delegation of cyber defence tasks to the army, the development of cyberattack capabilities, and
the establishment of cyber commands.

Another key aspect of NATO’s Cyber Pledge is to address the varying levels of cyber defence
capabilities among its member states. These disparities highlight the importance of NATO’s
Cyber Operation Centre in not only the military sector but also the civil defence sector [256].
The Centre plays a crucial role in helping to bridge these gaps and strengthen the overall cyber
defence capabilities of NATO member states.

NATO also recognizes the importance of international cooperation in the development and
implementation of innovative technologies. To that end, the Alliance promotes collaboration
between its member states and non-NATO countries in the field of cyber security. This coop-
eration can help to advance the state of the art in cyber security technologies and improve the
overall defence against cyber threats.

Blockchain technology offers a number of unique advantages that make it a highly reli-
able and secure technology. One of the key features of blockchain technology is its reliability.
Blockchain networks require the agreement of both internal and external users in order to oper-
ate effectively. This consensus mechanism ensures that the network is secure and tamper-proof,
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as any attempted breaches are immediately apparent and can be dealt with promptly. Another
key advantage of blockchain technology is its transparency. Unlike traditional computer secu-
rity systems that rely on the functioning of individual nodes, blockchain networks are based
on a cryptographic data structure that makes manipulation extremely complex. This structure
ensures that the network is secure, even if some of the nodes within it are malfunctioning. Fi-
nally, blockchain networks are highly fault-tolerant. They coordinate trusted nodes to reject
any untrusted entities, reducing the likelihood of failure and significantly increasing the cost
of attempted breaches by foreign parties. This makes blockchain technology an ideal solution
for organizations and institutions that require highly secure and reliable technology for their
operations.

The development of in-house expertise in blockchain technologies within the Central De-
fense Management Authorities is deemed essential. This is because blockchain technologies
have the potential to offer numerous benefits to the defence sector, and a strong understand-
ing of these technologies will ensure that the defence sector can take full advantage of them.
In order to further the development of blockchain-based technologies, it is recommended that
the Central Defense Management Authorities look for strong partnerships with the industry.
This will not only result in the development of cutting-edge technologies but will also result in
mutual benefits for both parties.

The Hungarian Defense Forces could potentially adopt artificial intelligence-powered de-
tections for applications such as border protection, institutional security, and public safety. This
could be achieved by utilizing the existing infrastructure of CCTVs, thereby reducing the need
for significant investments. Further research could be conducted into the use of unmanned aerial
vehicles (UAVs) and portable optical infrastructures (such as self-driving cars used for Google
Street View).

The rapidly evolving cyberspace requires more stringent regulations and accountability.
While developed nations are struggling to keep up with the influx of cyber-related challenges,
it is imperative that underdeveloped nations also prepare themselves to defend against these
threats. Blockchain technology and Artificial Intelligence offer a way to develop smarter and
more secure cyber defence systems. By developing a strong understanding of these technologies
and leveraging their capabilities, countries can safeguard their citizens from cyber threats.

7.6 PAR - Overview of Human Activity Recognition and new
types of challenges

Human interaction recognition by machines remains a complex challenge, with less attention
paid to it compared to human action recognition. Previous research in the field of human inter-
action recognition has primarily focused on two-subject interactive activities, such as hugging,
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and has relied heavily on data samples collected from movies and TV shows [257]. While
these sources provide an ample supply of data, they also present an artificial view of human
interactions and may not accurately represent real-world interactions.

More recent studies have started to address human interaction recognition in multi-subject
scenes [258], such as crowd scenes [259], to better understand the differences in spatiotem-
poral perception of human-human interactions. This is an important area of investigation as
the perception of human interactions can vary greatly in crowded versus two-subject scenes.
Additionally, there is a need to understand if traditional human interactions follow the same
pattern across different cultures, for example, do Koreans hug in the same way as Brazilians?
To fully address the challenges posed by human interaction recognition, it is important to con-
tinue conducting research in this area, exploring both two-subject and multi-subject interactions
and considering cultural differences in human interactions.

The field of Panoramic Activity Recognition (PAR) aims to offer a comprehensive under-
standing of human recognition technology through the representation and modelling of human
activities in crowd scenes. The focus is on capturing multiple individuals and their interrelated
activities with a high level of detail and accuracy. While previous attempts have been made to
recognize individuals in a crowd scene, they are often impractical and result in high error rates.
To overcome this, it is suggested that research be conducted to investigate the feasibility of im-
plementing a hierarchical graph network that integrates individual, pair, and crowd recognition
technologies. This network would effectively combine existing technologies to achieve a more
accurate recognition of human activities in a crowded scene.

The methods of analysis for Panoramic Activity Recognition (PAR) involve the implemen-
tation of complementary tasks aimed at accurately identifying individuals and their respective
activities. These tasks can range from the recognition of individual activities to the recognition
of social and societal interactions between individuals. For example, recognizing social activity
in a conversation can help to determine when two individuals are facing each other, thereby
providing valuable information about their interaction. Additionally, an understanding of in-
dividual actions and social group activities in a crowded scene can enhance the recognition of
general activity in a group. These methods of analysis work in tandem to provide a comprehen-
sive overview of human recognition technology, effectively representing and modelling human
activities at various levels of detail and interrelationships within crowded scenes.

7.7 Global Activity Recognition or Group Activity Recogni-
tion (GAR)

Group Activity Recognition (GAR) is a task in the field of human activity understanding that
aims to recognize the collective activity performed by a group of individuals. Early research in
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this field focused on classifying recorded video frames into predefined activity categories. How-
ever, recent studies have demonstrated that considering individual actions and human-human
interactions can greatly enhance the performance of GAR systems.

Several recent works have proposed incorporating individual action recognition labels as
an additional supervision signal for GAR [260]. Other methods [261, 262] have focused on
modelling the relationships between multiple individuals to better represent the group activity.

The PAR (Parallel Activity Recognition) framework aims to provide a comprehensive un-
derstanding of human activity by addressing the three tasks of individual action recognition,
social group activity recognition, and global activity recognition simultaneously. Unlike previ-
ous works which deal with these subtasks separately or sequentially, PAR seeks to develop a
unified framework that can handle all of them in parallel.

However, developing such a framework poses several technical challenges, as it requires
the integration of multiple models and the consideration of various factors such as individual
actions, human-human interactions, and global context. This requires the integration of multiple
recognition models, as well as the consideration of various factors, such as individual actions,
human-human interactions, and the global context. It is an open research problem and requires
extensive experimentation and validation to ensure its effectiveness.

7.8 Using machine vision and artificial intelligence in PAR

The integration of Artificial Intelligence (AI) and Machine Vision into the Panoramic Activ-
ity Recognition (PAR) process introduces a multitude of technical, scientific, legal, and social
implications that require examination. The collection of reconnaissance data from machine
vision-based software, regardless of the platform - airborne, land, maritime, or space - high-
lights the need for proper evaluation of the potential consequences. The deployment of AI-
controlled cameras equipped with machine vision capabilities presents a new challenge in the
decision-making process, as the camera would be responsible for selecting which street cluster
to analyze by processing input data in real-time, without the need for central decision-making.
Furthermore, the processed data would be transmitted through encrypted systems, with the AI
determining which recognition data to transmit. The learning process of the deep neural net-
work used by the AI-controlled cameras also presents a concern, as the processed data may not
always infer the complete information of the input data, as seen in the example of a crowd fight.
The ethical implications of AI-controlled cameras processing, learning from and transmitting
data require further examination to ensure data privacy and ethical usage.

AI is based on learning, so these systems need continuously available data and data feeds to
achieve faster learning curves. Obtaining data is expensive, as military information is classified
and secret, so obtaining data for military applications of AI systems is increasingly difficult,
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a legal concern, and overall a very costly process. Intelligent solutions exist where encrypted
data can be obtained from unverified or open source sources available in [263] form (e.g. the
publicly available University of Central Florida offender video database), but the data can still
generally be subject to human error and require secondary evaluation and confirmation. Data
on military applications is even more interesting, as data security should be a priority in defence
administration and in the daily communication of authorities. The use of manually obtained data
may conflict with the use of processed personal data and related data processing operations. The
GDPR and other regulatory policies, therefore, limit the source of data use [200]. In the near
future, it is proposed to support research and development even with synthetic data, because data
that can be applied in a given situation and cannot be obtained directly by other measurements
will be needed to develop more efficient artificial intelligence algorithms for accurate machine
vision-based activity recognition.

The use of machine vision and artificial intelligence in civil and military applications raises
many questions [264]. While real-time analysis is not necessarily required for PAR, it would
be an ideal preventive activity in terms of its usefulness. Computing real-time results require
significant resources, as scarce capacity can make computing operations costly. However, hard-
ware capabilities have improved rapidly in recent times, so the software solution for PAR will
depend more on R&D results in the future. The scientific challenge extends to the artificial
isolation of such a system and the military risks of machine learning or programmed AI awak-
ening.

The practical international examples are also a guideline for Hungary, possibly also for
the Zrı́nyi 2026 Force Development Programme. America is leading the way in automated
development, such as the Maven project in the United States [265]. This programme is a sub-
programme of the Algorithmic Warfare Cross-Functional Team (AWCFT) programme, aimed at
maintaining the competitive advantage of the US military through the use of automated machine
learning and machine vision. The U.S. Department of Defense (DARPA) recognized years ago
that they could not process the gigantic amount of data collected or acquired by the services
and the military in a human capacity, and could only interpret it through machine learning. The
process has been defined as Process - Exploit - Disseminate [266] and any digital photos and
videos (Mid-Altitude Full Motion Video) taken by machine vision are being processed in this
way. By applying artificial intelligence, data tagging, and algorithmic selection can be achieved,
which speeds up the military decision mechanism. The HAR, PAR and all other systems that
predict and recognise human activity can be applied to this data, and the efficiency of recogni-
tion will be improved thanks to machine learning, not only for individual ad hoc activities, and
group activities but also for the recognition and classification (labelling) of objects and objects.
Thanks to artificial intelligence, this technology has been more efficient than humans for years.
In Hungary, such a recognition system could have helped in many cases: in the search for miss-
ing people, in the search for the perpetrator of the Béke Square bombing in the 13th district, or
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in the search for the perpetrator of the attack on police officers in Oktogon.
The Russian-Ukrainian conflict has also accelerated the development of UAV-UAS (Un-

manned Aerial Vehicle and Unmanned Aircraft System) reconnaissance. It is currently esti-
mated that more than 100 countries have military drones, of which 20 have used armed drones
(not necessarily by state-affiliated organisations). Unmanned Aerial Systems (UAS) are often
not yet very sophisticated in terms of robotics but are almost all remotely piloted. Autonomy
is becoming increasingly important in the management of different vehicles. An example is the
Guardium, an Israeli Unmanned Ground Vehicle (UGV) developed by G-NIUS, which is used
for combat and defence along the Gaza border. The vehicle is self-driving, but the weapons
on board are still operated remotely by humans. Machine vision-based artificial intelligence
applications can be easily integrated into weapon systems for military missions [235] but also
into civilian applications [267] (In the health sector I already see many examples of this, e.g.
more accurate ECG results prediction and analysis [268]).

7.9 Summary

Detection and prevention can now almost always be linked to some kind of camera system. The
use of machine vision-based artificial intelligence to analyse the behaviour of individuals and
groups can provide a new opportunity to prevent and respond more quickly to conflict situa-
tions. This requires R&D to leverage advances in machine vision using image recognition and
image analysis, both of which require high computational power [193], current image analysis
methodologies are often slow and do not work in real-time. With PAR, the causes of suspicious
events or activities can be easily grouped (mass brawl, preparation of a terrorist act, smoke,
weapons, etc.), thus making the prevention of border violations, terrorist acts or other crimes
and other national security tasks more efficient. Identification of criminals and wanted persons
would not require as much time and resources, but the tracing of lost persons could be done
more efficiently.

With the Zrı́nyi programme, the research and development direction of Hungarian force
development is partly following the traditional direction. The research and development pro-
grammes of the Zrı́nyi 2026 force development programme should also focus on the develop-
ment of special capabilities because Hungary can be internationally competitive in this field.
R&D support for new types of cyber defence challenges could be an indispensable and one of
the best investments in force development. The Hungarian institutional background may be able
to provide the infrastructure and tools to enable the development of automated systems, and the
development, maintenance and training of Hungarian intellectual capability at a high level, but
it will be more a question of money and a strategic issue of allocation of material resources.
On the other hand, there is little chance that Hungary can become and remain a world leader in
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weapons or military vehicle production: this would require a lot of money and expertise, as well
as access to closed data. In Hungary, conventional weaponry is the direction of development
(drone and other purchases are those from outside contractors), because the existing stock of
equipment is insufficient in quality and quantity for the current situation. Hungary is close to
NATO requirements in terms of expenditure, but it is questionable whether the burden on the
reform of the force development is proportionate to the results that can be achieved. Hungary’s
research direction could be the military applicability of specific specialisations, and one of the
clearest areas of specialisation is machine vision and artificial intelligence.

This is underpinned by the fact that the military of the future will have to address new types
of challenges that will drive automation, software solutions and cybersecurity. The next gen-
eration of combat systems may be based on automated, decentralised decision-making mecha-
nisms, which will in all cases be based almost entirely on machine vision and artificial intelli-
gence, and will therefore be the technologies used in decision preparation. The human-added
value may be preserved in the final decision-making, but the depth of learning to make deci-
sions will be another scientific question. An automated system can make a decision faster in
a crisis, improving the chance of survival, but can a machine decide on people’s lives without
human approval? The potential for error can be filtered out if artificial intelligence processors
loaded into various weapons systems can coordinate their actions and check the validity of the
data. In the 20th century, military forces still used expensive computing power but cheap data.
Centralised decision-making was justified. New challenges emerged because processing power
became cost-effective, but the data itself became much more expensive. 21st-century militaries
will use machine vision-based, artificial intelligence-based, decentralised technologies [215].
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Lewis [210], Peck [211], Wüst-Gervais [212] and Mulligan [213] (Based on the
work of Perera et al. [203]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Critical factors in determining when blockchain technology might apply to mil-
itary intelligence processes (based on the work of Ashley McAbee et al. [206]). 106

4.5 Artificial Intelligence and Robotics for Law Enforcement - UNICRI Global
Meeting on the Potential and Risks of Artificial Intelligence and Robotics for
Law Enforcement (Based on the work of [237]). . . . . . . . . . . . . . . . . . 108

4.6 Schematic representation of the proposed algorithm for secured and distributed
deep learning with blockchain for efficient and private data collaboration. (orig-
inal illustration by Viktor Huszár). . . . . . . . . . . . . . . . . . . . . . . . . 111

152



List of Tables

2.1 Performance of published methods on face spoofing detection. Please refer to
the text concerning the metrics used for evaluation. . . . . . . . . . . . . . . . 35

2.2 Results (%) on my testing database . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Results of existing baseline spoofing detection methods (%) on my testing database

after training using my training database. . . . . . . . . . . . . . . . . . . . . . 47
2.4 Results (%) on considered face recognition databases . . . . . . . . . . . . . . 49

3.1 Comparison of approaches in the state-of-the-art for violence detection in videos. 60
3.2 Overview of the datasets used in my experiments. Apart from the existing

databases in the literature (CV, HF, MF, RLVS, RWF-2K, UCFS and XD-V),
I have annotated parts of two other datasets (UCFS and XD-V). . . . . . . . . . 63

3.3 Parameters involved in my FT model - combining the trimmed X3D-M model
and the replaced second fully connected layer, I have 2976723 parameters in this
model. Since the parameters of the trimmed X3D-M model are also optimized
during training, all 2976723 parameters are trainable. . . . . . . . . . . . . . . 68

3.4 Parameters involved in my TL model - I have 4040211 parameters in this model.
Since the parameters of the trimmed X3D-M model are not trained, 1065537
parameters are trainable and 2974674 parameters are nontrainable. . . . . . . . 68

3.5 List of hyperparameters and their corresponding values used in my training. . . 70
3.6 The ACC(%) scores of my FT and TL models along with the state-of-the-art

methods on individual datasets. Based on the ACC metric, my FT method out-
performs most of the state-of-the-art methods on all datasets except HF, with
relatively fewer model parameters. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 The AUC scores of my FT and TL models compared to various state-of-the-art
methods. According to the AUC metric, the FT model outperforms the state-of-
the-art methods on most of the datasets and has fewer model parameters. . . . . 72

153



3.8 Cross dataset experiment results - One-on-one cross-validation test results are
shown in the top section, leave one out cross-validation test results are shown
in the middle section, and the bottom section shows the performance of my
models on the training/testing folds used in Violence-Net [156] . To compare,
ACC scores for Violence-Net using both OF and Pseudo-OF inputs are also
provided for relevant datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9 Results from video compression experiments - The top section shows results
for the CV dataset and the bottom section shows results for the RWF-2K dataset
using ACC and AUC metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

154



Abbreviations

4K 4-Kilo.

5G 5th Generation mobile network.

ACC Accurcy.

AI Artificial Intelligence.

AIRT Artificial Intelligence and Real-Time system.

AMD Advanced Micro Devices.

AMT Amazon Mechanical Turkers.

API Application Programming Interface.

ATR Automatic Target Recognition.

AUC Area Under Curve.

AWCFT Algorithmic Warfare Cross-Functional Team.

AWS Aegis Weapon System.

C2 Command -and-Control.

C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance Recon-
naissance).

CASIA Institute of Automation, Chinese Academy of Sciences.

CCTV Closed-circuit Tele-Vision.

155



CD Compact Disc.

CEO Chief Executive Officer.

CF Concatenated Frames Model.

CNN Cellular Neural Network.

COCO Common Objects in Context.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

CV Crowd Violence.

DARPA Defense Advanced Research Projects Agency.

DB Data Base.

DF Delayed Frames Model.

DISA Defense Information Systems Agency.

DLT Distributed Ledger Technology.

DoD Department of Defense.

ECG ElectroCardioGram.

EER Equal Error Rate.

EM Ensemble Multi-Stream Model.

EU EUrope.

FAR False Acceptance Rate.

FASD Face Anti-Spoofing Database.

FFMPEG Fast Forward Moving Picture Experts Group.

FOV Field Of View.

FPR False Positive Rate.

FPS Frames Per Second.

156



FRR False Rejection Rate.

FT Fine-Tuned.

GAR Group Activity Recognition.

GDPR General Data Protection Regulation.

GHz GigaHertz.

GPU Graphics processing unit.

Grav Gravity vector.

GTX Giga Texel shader eXtreme.

HAR Human Activity Recognition.

HD High Definition.

HF Hockey Fights.

HOF Histogram of Oriented optical Flow.

HOG Histogram of Oriented Gradients.

HSV Hue Saturation Value.

HTER Half Total Error Rate.

IBM International Business Machines.

IMU Inertial Measurement Unit.

IOS iPhone Operating System.

IOT Internet Of Things.

IPD Inter-Pupillary Distance.

ISO International Standards Organization.

IT Information Technology.

JTRS Joint Tactical Radio System.

Kbps Kilobit per second.

157



KDE Kernal Density Estimation.

KSI Keyless Signature Infrastructure.

KYC Know Your Custormer.

LBP Local Binary Patterns.

LBP-TOP Local Binary Pattern histograms from Three Orthogonal Planes.

LG Lucky Goldstar.

LiDAR Light Detection and Ranging.

LSTM Long Short-Term Memory.

MF Movie Fights.

MFB Mel Filter-Bank.

MFSD Mobile Face Spoofing Database.

MIL Multiple Instance Learning.

MoSIFT Motion Scale-Invariant Feature Transform.

ms milli seconds.

MSTAR Mobile and Stationary Target Acquisition and Detection.

MSU Michigan State University.

NATO North Atlantic Treaty Organization.
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no. 1.-SI, pp. 4–14, 2020.

[247] B. Lilly and S. Lilly, “Weaponising blockchain: Military applications of blockchain tech-
nology in the us, china and russia,” The RUSI Journal, vol. 166, no. 3, pp. 46–56, 2021.

182

https://www.analyticssteps.com/blogs/what-proof-elapsed-time-poet
https://www.analyticssteps.com/blogs/what-proof-elapsed-time-poet
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