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GENERALIZED BARRED PREFERENTIAL ARRANGEMENTS

JOSÉ A. ADELL, BEÁTA BÉNYI, VENKAT MURALI, AND SITHEMBELE NKONKOBE∗

Abstract. We investigate a generalization of Fubini numbers. We present the combinatorial interpre-

tation as barred preferential arrangements with some additional conditions on the blocks. We provide

a proof for a generalization of Nelsen’s Theorem. We consider these numbers from a probabilistic view

point and demonstrate how they can be written in terms of the expectation of random descending

factorial involving the negative binomial process.

1. Introduction

A preferential arrangement of the set [n] = {1, 2, 3, . . . , n} is an ordered partition, i.e., a list of

pairwise disjoint non-empty subsets of [n] such that the union of the subsets is [n]. The subsets are

called blocks.

Preferential arrangements are enumerated by the Fubini numbers (ordered Bell numbers, geometric

numbers)

wn =

n∑
k=0

{
n

k

}
k!,

where
{
n
k

}
denote the Stirling numbers of the second kind.

An interesting fact is that the Fubini numbers, wn, appear in the evaluation of the series

∞∑
k=0

kn

2k
= 2wn,

and also as the n’th moments of the random variable with geometric distribution [10].
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Fubini numbers are the special values of geometric polynomials,

wn(x) =

n∑
k=0

{
n

k

}
k!xk,

that play important role for instance in combinatorics, analytics and probability theory. For this

reason several generalizations and studies from different point of views can be found in different lines

of researches. However, the connection between these lines seem to be sometimes lost. Our aim is

to provide some combinatorial and probabilistic insight for numbers that arise in some algebraic and

analytical motivated generalizations.

Pippenger [24] introduced barred preferential arrangements with a single bar. The idea is that if

candidates have been interviewed for a position, one might want to separate some who are worthy

of being hired from those who are not. This idea can be generalized assuming that there are some

ranks into which candidates may be hired. Ahlbach-Usatine-Pippenger [2] studied barred preferential

arrangements with a given arbitrary λ number of bars.

We obtain barred preferential arrangement when we insert λ bars (where λ ∈ N0 = {0, 1, 2, 3, . . . , })
in between (before or after) the blocks of a preferential arrangement. The λ bars induce λ+ 1 sections

in which the elements are preferentially arranged (see [2, 23]). For example, barred preferential

arrangements of the set [6] with two bars and three bars, respectively:

a. 35 2| |1 4 6,

b. |5 136 4 2| |.

The two bars in a. give rise to three sections; namely, the first section (from left to right) has two

blocks {3, 5} and {2}, the second section is empty, and the third section has three blocks {1}, {4}, and

{6}. Similarly, the barred preferential arrangement in b. has four sections of which three are empty.

The number of preferential arrangements with a single bar [25, A005649] counts also compatible

bipartitional partitions [13]. The number of preferential arrangements is the special value at x = 1 of

higher order geometric polynomials

w(r)
n (x) =

n∑
k=0

{
n

k

}
(r)(r − 1) · · · (r − k + 1)xk, r > 0

defined by Boyadzhiev [4].

One of the motivations of this study is to give a combinatorial explanation of an interesting identity

conjectured first by Nelsen [15].

Theorem 1.1. [20, Nelsen’s Theorem] For any real number γ and non-negative integer n it holds

n∑
k=0

k∑
s=0

(
k

s

)
(−1)k−s(γ + s)n =

1

2

∞∑
s=0

(γ + s)n

2s
.(1.1)

Nelsen-Knuth-Binz-Williams [20] provided three alternative proofs of the identity (1.1). We present

in this paper a generalized version of Nelsen’s Theorem (1.1) and show how it can be interpreted

combinatorially in terms of barred preferential arrangements.
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Nelsen-Schmidt [21] introduced the family of generating functions:

eγx

2− ex
.(1.2)

It is well known that for γ = 0 the function (1.2) is the generating function of preferential arrangements

(see [14, 18]). For γ = 2 the authors interpreted (1.2) as the generating function of the number of

chains in the power set of an n element set. Nelsen and Schmidt posed the question “could there be

combinatorial structures associated with either [n] or the power set of [n] whose integer sequences are

generated by members of the family in (1.2) for other values of γ?” (We refer to this question as the

Nelsen-Schmidt question, and to the generating function in (1.2) as the Nelsen-Schmidt generating

function.)

In order to answer the Nelsen-Schmidt question Nkonkobe-Murali [23] investigated the family of

functions given for any non-negative integers γ and λ in the form

eγx

(2− ex)λ
.(1.3)

Nkonkobe-Murali [23] showed that (1.3) enumerates the so called restricted barred preferential arrange-

ments. In this paper we study a generalization of (1.3), (hence a generalization of the Nelsen-Schmidt

generating function) given as

eγx

(2− eβx)λ
,(1.4)

where β and γ are non-negative integers and (β, γ) 6= (0, 0).

Remark 1.2. We note that the function defined in (1.4) are special cases of the higher order gener-

alized geometric polynomials introduced by Kargin-Cekim [17] as

∞∑
n=0

wλn(x;α, β, γ)
tn

n!
=

(1 + αt)γ/α

(1− x((1 + αt)β/α − 1))λ
.(1.5)

As the name indicates the family of polynomials (1.5) is also a kind of generalization of the geometric

polynomials, 1
2−ex , that are well studied objects, see for instance [3, 5, 8, 11, 19]. A combinatorial

study of the higher order generalized geometric polynomials can be found in [22].

We also study in this paper the probabilistic aspects of the polynomials (1.4). It turns out that we

can connect them to the negative binomial process which is defined for (Zλ(t))t≥0:

(1.6) P (Zλ(t) = j) =

(
−λ
j

)(
− t

t+ 1

)j ( 1

t+ 1

)λ
, j ∈ N0.

We show how (1.4) can be written as the expectation of random descending factorials.

The outline of the paper is as follows. In Section 2, we recall some important facts from the

literature, and consider barred preferential arrangements with 1 bar. In Section 3, we present results

on the number of barred preferential arrangements with arbitrary many bars. Finally, in Section 4,

we generalize the model even more using methods of the probability theory.
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2. Generalized Barred Preferential Arrangements with 2 Sections

In order to reveal the combinatorial properties of the model for the function (1.4) including three

parameters, we think it is worth to consider first the model having only two parameters in detail. For

this reason we focus in this section on the combinatorial aspects of the functions

eγx

2− eβx
.(2.1)

Let Hn(β, γ) denote the coefficients of xn

n! in (2.1), i.e.,

Hn(β, γ) =

[
xn

n!

]
eγx

2− eβx
.

Our goal is to describe a combinatorial interpretation of these numbers, Hn(β, γ) and to prove identi-

ties combinatorially using our interpretation, and so providing elementary and simple proofs for this

important class of numbers.

Let Hn(β, γ) denote the set of barred preferential arrangements on n elements with one bar (so

with two sections), such that the elements of the left hand side are labeled further with a number

between {1, . . . , γ}, while the elements right to the bar with a number from the set {1, . . . , β}. Clearly,

|Hn(β, γ)| = Hn(β, γ).

We want to highlight another aspect, showing the place of the numbers Hn(β, γ) in a bigger picture.

Hsu-Shiue [16] introduced the generalized Stirling numbers, S(n, k, α, β, γ), as follows.

Definition 2.1. [16] For n ≥ 1 an integer, α, β, γ real or complex numbers with (α, β, γ) 6= (0, 0, 0)

the generalized Stirling pair {S1, S2} = {S(n, k;α, β, γ), S(n, k;β, α,−γ)} with three parameters are

defined by

(t|α)n =

n∑
k=0

S1(n, k)(t− γ|β)k and

(t|β)n =
n∑
k=0

S2(n, k)(t+ γ|α)k,

where (t|α)n denotes the generalized factorial of t with increment α defined for any integer n ≥ 1 as

(t|α)n = t(t− α) · · · (t− nα+ α)

and (t|α)0 = 1.

The generalized Stirling pair includes several special cases, as the classical Stirling number of the

first and second kind, r-Stirling numbers of the first and second kind, Lah numbers, r-Lah numbers,

Whitney numbers, r-Whitney numbers, Carlitz’s degenerate Stirling numbers of both kinds, Howard

degenerate Stirling numbers of both kinds and so on (see [16, 17]).

One combinatorial interpretation of the numbers i!βiS(n, k;α, β, γ) was given by Corcino-Hsu-Tan

[9]. This model is a partition such that the blocks have an extra structure, so called cyclic ordered

labeled compartments. Further, the model is defined from a statistical point of view in the sense that

the way a sample is created plays a key role.
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Corcino-Hsu-Tan [9] showed that i!βiS(n, i;α, β, γ) is the number of ways to distribute n distinct

balls, one ball at a time into i+ 1 distinct blocks, first i of which has β distinct compartments and a

last block with γ distinct compartments such that

(1) the compartments in each block are given cyclic ordered numbering,

(2) the capacity of each compartment is limited to one ball,

(3) each successive α available compartment in a block can only have the leading compartment

getting a ball,

(4) the first i blocks are non-empty.

For instance, suppose the first ball lands in the 4th compartment of the 3th block. The next α

compartments, i.e., the compartments numbered 5, 6, . . ., α + 3 will be closed. Suppose the second

ball lands in compartment β − 2 in the 3th block. Then the compartments β − 1, β, 1, 2, 3, α + 4,

. . ., 2α− 3 will be closed and so on.

The number of distributions satisfying properties (1), (2) and (3), but not requiring (4), i.e., the

first i cells may be empty is given by (βi+γ|α)n [9]. We recall two explicit formulas for the generalized

Stirling numbers given in [9].

Lemma 2.2. [9] For α, β, γ ∈ N0, where (α, β, γ) 6= (0, 0, 0), we have

S(n, i, α, β, γ) =
1

βii!
∆i(βi+ γ|α)n

∣∣
s=0

,

S(n, i, α, β, γ) =
1

βii!

∑
s

(−1)i−s
(
i

s

)
(βs+ γ|α)n.

Corcino-Corcino generalized the ordered Bell numbers using the generalized Stirling numbers [7].

Definition 2.3. [7] For α, β, γ ∈ N0 with (α, β, γ) 6= (0, 0, 0) the generalized Bell numbers are defined

as

Bn(α, β, γ) =

n∑
i=0

i!βiS(n, i, α, β, γ).

We also recall the generating function of generalized Bell numbers in Lemma 2.4.

Lemma 2.4. [7] For real/complex α, β, γ such that (α, β, γ) 6= (0, 0, 0),

∞∑
n=0

Bn(α, β, γ)
xn

n!
=

(1 + αt)γ/α

2− (1 + αt)β/γ
.(2.2)

Remark 2.5. From the generating function in (2.2) the generating function of eγx

2−eβx can be derived.

The generalization of the series expression is proven in [7]

Bn(α, β, γ) =
1

2

∞∑
k=0

(βk + γ|α)n
2k

.(2.3)

In this paper we will only need the cases when α = 0, so we state explicitly some special cases

(α = β = 0 and α = 0) that follows from the results above.

http://dx.doi.org/10.22108/TOC.2022.130037.1894

http://dx.doi.org/10.22108/TOC.2022.130037.1894


52 Trans. Comb. 12 no. 1 (2023) 47-63 J. A. Adell, B. Bényi, V. Murali and S. Nkonkobe

Corollary 2.6. For i and β positive integers, βii!S(n, i, 0, β, 0) is the number of ways of partitioning

an n-element set into i non-empty blocks where each of the i blocks has β labeled compartments.

S(n, i, 0, β, 0) =
1

βii!

i∑
s=0

(−1)i−s
(
i

s

)
(βs)n.(2.4)

Corollary 2.7. The number of partitioning [n] into i non-empty blocks with β labeled compartments

and a possible empty (i+ 1)th block with γ labeled compartments is i!βiS(n, i, 0, β, γ).

Let us define the following properties.

Property 2.8. Elements are distributed into i ordered blocks such that each block has β labelled

compartments.

Property 2.9. Elements are distributed into γ labelled compartments.

The main result of this section is Theorem 2.10 which answers the Nelsen-Schmidt question in a

generalized form.

Theorem 2.10. The generating function eγx

2−eβx for β, γ non-negative integers (where (β, γ) 6= (0, 0)),

is that of the number of barred preferential arrangements with one bar such that one section has

Property 2.8 and the other section has Property 2.9.

Proof. Let r be the number of elements contained in the section with Property 1. By (2.4) and

Lemma 2.3 the number of preferential arrangements of r elements with Property 1 is Br(0, β, 0). The

remaining n− r elements are distributed in the section with Property 2 in γn−r ways. Hence,

Hn(β, γ) =
n∑
r=0

(
n

r

)
Br(0, β, 0)γn−r.(2.5)

�

Remark 2.11. Throughout the remainder of this paper in forming barred preferential arrangements

(BPAs) where applicable, the section with Property 2.9 will be the first section from the left (referred

to as the special section) the remaining sections will all have Property 2.8 unless stated otherwise.

Hn(β, γ) can be expressed with the Fubini numbers.

Theorem 2.12.

Hn(β, γ) =
n∑
r=0

(
n

r

)
βrγn−rwr.

Proof. By a similar argument as of Theorem 2.10 if the number of elements contained in the section

with Property 1 is r, there are
∑r

i=0 β
ri!
{
r
i

}
= βrwr ways to construct that part. �

The classical recursion, wn =
∑n−1

j=0

(
n
j

)
wj of Fubini numbers generalizes as given in Theorem 2.13.
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Theorem 2.13. β ≥ 0 and n, γ ≥ 1,

Hn(β, γ) = γn +

n−1∑
i=0

(
n

i

)
Hi(β, γ)βn−i.

Proof. We obtain an element of the set h ∈ Hn(β, γ) the following way: if there is no element on the

right hand side of the bar, then we need only to assign to each element of [n] a number from [γ], which

gives γn possibilities. If there is at least one element to the right of the bar, then first let us construct

the block right next to the bar in this section from (n− i) elements in
(
n
n−i
)
βn−i ways. The remainder

i elements form an element hi of Hi(β, γ). Since n − i 6= 0, we obtain the number of all elements in

Hn(β, γ) by summing up over i, where i runs from 0 to n− 1. �

The next recursion is a generalization of a convolution formula.

Theorem 2.14. For n, β, γ ≥ 0, where (β, γ) 6= (0, 0),

Hn+1(β, γ) = γHn(β, γ) + β

n∑
i=0

(
n

i

)
Hi(β, γ)Hn−i(β, β).

Proof. The recursion is based on the process of the inserting the (n + 1)th element into a barred

preferential arrangement on n elements. First, we can insert the (n + 1)th element into the block

of the left section. Then, we just need to choose a label from [γ] for this new element. Otherwise,

let B∗ denote the block into which we add (n + 1). Cut the barred preferential arrangement before

B∗ and let i denote the number of elements in the part before B∗. The first part is then a barred

preferential arrangement from Hi(β, γ), while the second part can be seen also as a barred preferential

arrangement of the rest of the elements with B∗ as the special block next to left of the bar, i.e., from

Hn−i(β, β). We choose in
(
n
i

)
ways the elements for the first part, and choose the label of (n + 1)

in β ways. Multiplying these together and summing up by letting the index i to run, we obtain the

theorem. �

Using the classical technique of inclusion-exclusion we can express the generalized Bell numbers

with the numbers Hi(β, γ).

Theorem 2.15. For n, β, γ ≥ 0, (β, γ) 6= (0, 0),

Bn(0, β, 0) =

n∑
i=0

(
n

i

)
Hi(β, γ)(−1)n−iγn−i.

Proof. Let Bi be the number of barred preferential arrangement of the set Hn(β, γ) with at least (n−i)
elements in the first, special block with γ compartments. |Bi| =

(
n
n−i
)
Hi(β, γ)γn−i. The application

of the inclusion- exclusion principle completes the proof. �

3. Generalized Barred Preferential Arrangements

In this section we consider the function

eγx

(2− eβx)λ
,(3.1)
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where γ ∈ N0 and λ, β ∈ N (positive integers).

Let Hn(λ, β, γ) denote the coefficients of xn

n! in the polynomial (3.1)

Hn(λ, β, γ) =

[
xn

n!

]
eγx

(2− eβx)λ
.

The combinatorial interpretation of the numbers Hn(λ, β, γ) is given in Theorem 3.1.

Theorem 3.1. Given λ, γ ∈ N0 such that (λ, γ) 6= (0, 0), and β ∈ N, Hn(λ, β, γ) is the number of

barred preferential arrangements of [n] such that λ of the sections have Property 2.8 and one section

has Property 2.9.

Proof. First, we write our function as an infinite sum

1

2− eβx
=

1

2

∞∑
k=0

e(βk)x

2k

Thus, the coefficients are given as [
xn

n!

]
1

2− eβx
=

1

2

∞∑
k=0

(βk)n

2k
.

The identity (2.5) implies

Hn(λ, β, γ) =
∑

r1+···+rλ+1=n

(
n

r1, r2, . . . , rλ+1

)
γr1

λ+1∏
i=2

Bri(0, β, 0).(3.2)

�

Remark 3.2. The special case λ = 1, β = 2, and γ = 0 on Theorem 3.1 is the [25, sequence A216794].

Let Hn(λ, β, γ) denote the set of barred preferential arrangements with λ bars (so λ+ 1 sections),

such that the first section includes one special block with elements labeled from the set {1, . . . , γ}, and

the elements in the rest of the blocks labeled from the set {1, . . . , β}. Next we prove some recursions

for the numbers Hn(λ, β, γ) = |Hn(λ, β, γ)|.
We express first the numbers Hn(λ, β, γ) using the Stirling numbers of the second kind.

Theorem 3.3. For γ, λ ∈ N0, where (λ, γ) 6= (0, 0),

Hn(λ, β, γ) =
n∑
r=0

βrγn−r
r∑
i=0

(
λ− 1 + i

i

)
i!

{
r

i

}
.

Proof. Let r denote the number of elements distributed into the part with Property 1, i.e., into a

preferential arrangement with λ sections created by the λ− 1 inserted bars. Construct i blocks in
{
r
i

}
ways and order it in i! ways. Now arrange bars and blocks, which can be done in

(
λ−1+i

i

)
ways. �

Theorem 3.4. For γ, λ ∈ N0, where (λ, γ) 6= (0, 0),

(3.3) Hn+1(λ, β, γ) = γHn(λ, β, γ) + λβ

n∑
i=0

(
n

i

)
Hi(1, β, β)Hn−i(λ, β, γ).
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Proof. We enumerate the set Hn+1(λ, β, γ) based on the position of the element (n + 1). It can be

included in the special first block, which gives γHn(λ, β, γ) possibilities. Otherwise, let B∗ be the block

that contains (n+1). Consider the portion of the barred preferential arrangement from B∗ till the next

bar to its right (including B∗ itself), and let i be the number of elements contained in these blocks.

This portion can be seen as a barred preferential arrangement from the set Hi(β, β) = Hi(1, β, β).

Ignoring this portion of the barred preferential arrangements, the remaining elements form a barred

preferential arrangements from Hn−i(λ, β, γ). For this construction we need to choose the i elements

out of the n elements in
(
n
i

)
ways, the section in that B∗ is placed in λ ways and finally, the label of

(n+ 1) in β ways. Multiplying these together and summing up completes the argument. �

Theorem 3.5. For γ, λ ∈ N0, where (λ, γ) 6= (0, 0),

(3.4) Hn+1(λ, β, γ) = γHn(λ, β, γ) + λβHn(λ+ 1, β, γ + β).

Proof. Again, the left hand side is the size of the setHn+1(λ, β, γ). Consider the (n+1)th element. If it

is contained in the first section, (let’s denote this block by Γ), then there are γHn(λ, β, γ) possibilities

to obtain such a barred preferential arrangement on n+1 elements from a one on n elements. Assume

now that the (n + 1)th element is in a block, say B∗, with β compartments. Decompose the section

including B∗ as B1B
∗B2, where B1 and B2 are ordered partitions with the extra structure of having

a label for each element from [β] on each block. We reorder the parts of this barred preferential

arrangement as follows: Move the block B∗ to the left of the first block, and merge Γ and B∗ into one

block. Insert instead of the block B∗ a bar between the sequences of blocks B1 and B2, and finally,

delete (n+ 1). We obtain this way a barred preferential arrangement on n elements, with (λ+ 1) bars

and (γ + β) compartments in the first, special block. Hence, the number of such barred preferential

arrangements is Hn(λ+ 1, β, γ + β). There are two information that we have to keep in track: which

β compartment was the (n+ 1)th element assigned to, and which bar is the inserted bar. Hence, we

have λβHn(λ+1, β, γ+β) as total number of barred preferential arrangements on n+1 elements such

that the (n+ 1)th element is not in the first, special block. �

Theorem 3.6. For γ, λ ∈ N,

(3.5) Hn(λ, β, γ + β) = 2Hn(λ, β, γ)−Hn(λ− 1, β, γ).

Proof. Consider the set Hn(λ, β, γ + β). In these barred preferential arrangements the elements in

the first block are labeled from the set {1, 2, . . . , γ, γ + 1, . . . , γ + β}. The number of such barred

preferential arrangements that have only labels from the set {1, . . . , γ} is Hn(λ, β, γ). If there is at

least one element with a label from {γ + 1, . . . , γ + β}, then move these elements to the right of the

first bar, to create the first block in the ordered partition of the second section. We obtain this way

a barred preferential arrangement with γ compartments in the first, special block and at least one

block in the second section with β compartments. How many such barred preferential are there?

Hn(λ, β, γ) − Hn(λ − 1, β, γ), since we need to exclude the barred preferential arrangements that

do not have any block in the second section, which are clearly in bijection with barred preferential

arrangements with one less, i.e., (λ− 1) bars. �
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Theorem 3.6 is a generalization of [23, Theorem 9]. The next theorem is a generalization of [2,

Theorem 1].

Theorem 3.7. For β ∈ N, and λ ≥ 2,

Hn(λ, β, β) =
1

2
Hn(λ− 1, β, β) +

1

2β(λ− 1)

n∑
i=0

(
n

i

)
Hi+1(λ− 1, β, 0)βn−i.(3.6)

Proof. First, we write the formula in a combinatorially nicer form.

2β(λ− 1)Hn(λ, β, β) = β(λ− 1)Hn(λ− 1, β, β) +

n∑
i=0

(
n

i

)
Hi+1(λ− 1, β, 0)βn−i

Consider the set of elements of Hn(λ, β, β) such that one of the β compartments is colored red and one

of the λ bars, except the first one, is marked with a 0 or a 1. We let H∗n(λ, β, β) denote the set of the so

obtained decorated barred preferential arrangements. The left hand side of the equality enumerates

this set. We describe a map, that associates to each decorated preferential arrangement of H∗n(λ, β, β)

another barred preferential arrangement so that the image of the map is a set enumerated by the right

hand side. Consider the label of the chosen bar. If the bar has a 0, delete the bar and insert a block

with a single extra (n+ 1)th element. If the bar is labeled by 1, consider what is right next to the left

of the bar. If there is a block, insert (n + 1) into this block, if it is another bar, delete this bar. In

each cases when inserting (n+ 1), it is also colored red, i.e., receives the same β-compartment that is

chosen. The number of barred preferential arrangements that we obtain by deleting a bar, (and not

inserting (n + 1)) is β(λ − 1)Hn(λ − 1, β, β), since one β-compartment is still colored red, and we have

only λ − 1 with a 1 marked bar left. In the other cases, we obtain a barred preferential arrangement

on n + 1 elements, i.e., elements of the set Hn+1(λ − 1, β, β), such that the first special section does

not contain the (n + 1)th element. This is, because the first bar was not marked, hence during the

insertion process (n + 1) was never put into the section left to the first bar. The number of these

barred preferential elements is
∑n

i=0

(
n
i

)
Hi+1(λ− 1, β, 0)βn−i. We obtain this formula according to the

enumeration of the following pairs: choose the n− i elements for the first special block and construct

it in βn−i ways. Combine these blocks with barred preferential arrangements on (i+ 1) elements with

λ− 1 sections and empty first, special section, for which we have Hi+1(λ− 1, β, 0) possibilities. �

Theorem 3.8. For β ∈ N,and λ ≥ 2,

(3.7) Hn(λ, β, 0) =
1

2β(λ− 1)
Hn+1(λ− 1, β, 0) +

1

2
Hn(λ− 1, β, 0).

Proof. This proof is similar to that of Theorem 3.7. We rewrite the identity as

2β(λ− 1)Hn(λ, β, 0) = β(λ− 1)Hn(λ− 1, β, 0) +Hn+1(λ− 1, β, 0)

The left hand side is the number of decorated barred preferential arrangements of H∗n(λ, β, 0), (with

empty first section). Inserting n+1 according to the above rule, the deletion of the marked bar without

inserting n + 1 leads to barred preferential arrangements on n with one β compartment chosen and

one of its λ − 1 bars marked. This gives β(λ − 1)Hn(λ − 1, β, 0) possibilities. Deleting the marked
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bar and inserting (n+ 1) leads to barred preferential arrangements on n+ 1 elements, λ− 1 bars, and

empty first section, for which we have Hn+1(λ− 1, β, 0) possibilities. �

The following theorem offers a generalization of Nelsen’s Theorem discussed in (1.1).

Theorem 3.9. For β, γ, λ ∈ R, and n ∈ N0, where (λ, γ) 6= (0, 0),

n∑
k=0

k∑
s=0

(
k

s

)
(−1)k−sHn(λ− 1, β, γ + βs) =

∞∑
s=0

Hn(λ− 1, β, γ + βs)

2s+1
.(3.8)

Proof. We use the analogue argument as Gross [14] in proving Equations 2 and 4.

eγx

(2− eβx)λ
=

eγx

(2− eβx)λ−1

∞∑
k=0

(eβx − 1)k.

This implies [
xn

n!

]
eγx

(2− eβx)λ
=

n∑
k=0

k∑
s=0

(
k

s

)
(−1)k−sHn(λ− 1, β, γ + βs).

Also,

eγx

(2− eβx)λ
=

1

2

eγx

(2− eβx)λ−1

∞∑
s=0

exsβ

2s
.

This gives [
xn

n!

]
eγx

(2− eβx)λ
=

1

2

∞∑
s=0

Hn(λ− 1, β, γ + βs)

2s
.

�

Finally, we show that the left hand side of the Equation (3.8) is the number Hn(λ, β, γ), hence, the

number of barred preferential arrangements.

Theorem 3.10.

Hn(λ, β, γ) =
n∑
k=0

k∑
s=0

(−1)k−s
(
k

s

)
Hn(λ− 1, β, γ + βs).(3.9)

Proof. Consider the first, special section with γ compartments and the second section with β compart-

ments as one section. (Ignore the first bar.) One can consider then this merged section as a special

section with γ + kβ compartments, where k denotes the number of blocks that were in the second

section. The number of such preferential arrangements is given by Hn(λ−1, β, γ+kβ). Now we apply

the inclusion-exclusion principle based on the property how many blocks of the second section were

empty. �

As a final remark we mention how the symbolic method [12] interprets the generating function (1.4)

formally. The construction that translates to (1.4) is

[SET(X )]γ × [SEQ([SET(X )]β)>0]
λ.

http://dx.doi.org/10.22108/TOC.2022.130037.1894

http://dx.doi.org/10.22108/TOC.2022.130037.1894


58 Trans. Comb. 12 no. 1 (2023) 47-63 J. A. Adell, B. Bényi, V. Murali and S. Nkonkobe

Combinatorially, this is a pair of objects (O1,O2), where O1 and O2 are the following. O1 is a

γ-tuple of sets, that may be empty. O2 is a tuple of λ non-empty sequences of β-tuples of sets.

Equivalently, O2 is an arrangement of non-empty subsets such that each subset has β compartments.

The pair (O1,O2) is clearly equivalent to the set Hn(λ, β, γ).

4. Probabilistic Interpretation

The number of barred preferential arrangements Hn(λ, β, γ) considered in the previous section can

be further generalized in a natural way from a probabilistic perspective. In fact, for any λ ∈ N, denote

by (Zλ(t))t≥0 the negative binomial process defined as

(4.1) P (Zλ(t) = j) =

(
−λ
j

)(
− t

t+ 1

)j ( 1

t+ 1

)λ
, j ∈ N0.

Let τ > 0 be such that

(4.2) τ < log(1 + 1/t).

Observe that for any λ ∈ N, t ≥ 0, and τ > 0 satisfying (4.2), we have

(4.3) EeτZλ(t) =
∞∑
j=0

(
−λ
j

)(
− eτ t

t+ 1

)j ( 1

t+ 1

)λ
=

1

(1− t(eτ − 1))λ
<∞,

where E stands for mathematical expectation. Denote by Eτ the set of functions φ : N0 → R such that

|φ(j)| ≤ Aeτj , j ∈ N0,

where A > 0 and τ > 0 satisfies (4.2). For such functions, the following crucial formula was shown in

[1, Theorem 8.1]

(4.4) Eφ(Zλ(t)) =
∞∑
j=0

φ(j)P (Zλ(t) = j) =
∞∑
k=0

(
λ− 1 + k

k

)
∆kφ(0)tk.

Finally, the following auxiliary result will be very useful.

Lemma 4.1. Let λ, ν ∈ N, t ≥ 0, and φ ∈ Eτ . Then,

(4.5) Eφ(Zλ+1(t)) =
1

λ(t+ 1)
Eφ(Zλ(t))(Zλ(t) + λ)

and

(4.6) Eφ(Zλ+ν(t)) =

∞∑
j=0

Eφ(Zλ(t) + j)

(
ν − 1 + j

j

)(
t

t+ 1

)j ( 1

t+ 1

)ν
.

Proof. From (4.1), we see that

P (Zλ+1(t) = j) =
j + λ

λ(t+ 1)
P (Zλ(t) = j), j ∈ N0.

We therefore have

Eφ(Zλ+1(t)) =

∞∑
j=0

φ(j)P (Zλ+1(t) = j)
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=
1

λ(t+ 1)

∞∑
j=0

φ(j)(j + λ)P (Zλ(t) = j),

thus showing (4.5). As follows from (4.3),

EeτZλ+ν(t) = EeτZλ(t)EeτZν(t).

By the uniqueness theorem for Laplace transforms, this means that the law of Zλ+ν(t) is the same as

the law of Zλ(t) +Zν(t), where the random variables Zλ(t) and Zν(t) are supposed to be independent.

Hence, we have from (4.1)

Eφ(Zλ+ν(t)) = Eφ(Zλ(t) + Zν(t))

∞∑
j=0

Eφ(Zλ(t) + j)

(
ν − 1 + j

j

)(
t

t+ 1

)j ( 1

t+ 1

)ν
.

This shows (4.6) and completes the proof. �

From now on, we assume that n ∈ N0, λ ∈ N, β, γ ∈ R (β 6= 0), and t ≥ 0. Let Hn(λ, β, γ, t) denote

the expectation value of (βZλ(t) + γ)n,

(4.7) Hn(λ, β, γ, t) = E(βZλ(t) + γ)n.

The generating function of such numbers is given in the following result.

Theorem 4.2. We have

∞∑
n=0

Hn(λ, β, γ, t)
xn

n!
=

eγx

(1− t(eβx − 1))λ
, |x| < 1

|β|
log(1 + 1/t).

Proof. Replacing τ by βx in (4.3) and recalling (4.7), we have

eγx

(1− t(eβx − 1))λ
= Eex(βZλ(t)+γ)

=
∞∑
n=0

E(βZλ(t) + γ)n
xn

n!
=
∞∑
n=0

Hn(λ, β, γ, t)
xn

n!
.

Note that the interchange of sum with expectation, whenever |βx| ≤ log(1+1/t), follows from Fubini’s

theorem. The proof is complete. �

This result shows that the numbers defined in (4.7) extend the numbers Hn(λ, β, γ). More precisely,

Hn(λ, β, γ, 1) = Hn(λ, β, γ),

giving in this way a probabilistic meaning to such numbers. In addition, such extended numbers can

be expressed in terms of the classical Stirling numbers of the second kind
{
n
k

}
, as the following result

shows.

http://dx.doi.org/10.22108/TOC.2022.130037.1894

http://dx.doi.org/10.22108/TOC.2022.130037.1894


60 Trans. Comb. 12 no. 1 (2023) 47-63 J. A. Adell, B. Bényi, V. Murali and S. Nkonkobe

Theorem 4.3. We have

Hn(λ, β, γ, t) =
1

(t+ 1)λ

∞∑
j=0

(
λ− 1 + j

j

)(
t

t+ 1

)j
(βj + γ)n

=

n∑
r=0

(
n

r

)
βrγn−r

r∑
k=0

(
λ− 1 + k

k

)
k!

{
r

k

}
tk.

Proof. The first equality readily follows from (4.1) and (4.7). Applying formula (4.4) to the polynomial

φ(x) = pn(x) = (βx+ γ)n, we obtain

(4.8) Hn(λ, β, γ, t) = Epn(Zλ(t)) =

n∑
k=0

(
λ− 1 + k

k

)
∆kpn(0)tk,

since ∆kpn(0) = 0, k > n. On the other hand, denote by Ir(x) = xr, r ∈ N0, the rth monomial

function. Applying the operator ∆k to the formula

pn(x) = (βx+ γ)n =
n∑
r=0

(
n

r

)
βrγn−rIr(x),

we see that

(4.9) ∆kpn(0) =
n∑
r=k

(
n

r

)
βrγn−r∆kIr(x) =

n∑
r=k

(
n

r

)
βrγn−rk!

{
r

k

}
.

Consequently, the second equality in statement of the theorem follows from (4.8) and (4.9) by inter-

changing the order of summation. �

Theorem 4.3 may be seen as an extension of known identities. In first place, choosing λ = β = t = 1,

we obtain

(4.10) Hn(1, 1, γ, 1) = E(Z1(1) + γ)n =
1

2

∞∑
j=0

(j + γ)n

2j
=

n∑
k=0

∆kp̃n(0),

where p̃n(x) = (x+ γ)n. Identity (4.10) is known as Nelsen’s Theorem.

In second place, the polylogarithm function of order −n is defined as

Li−n(z) =
∞∑
j=1

jnzj , 0 ≤ z < 1.

It is well known that

(4.11) Li−n(z) =
n∑
k=0

k!

{
n+ 1

k + 1

}(
z

1− z

)k+1

, 0 ≤ z < 1.

Setting λ = β = 1 and γ = 0 in Theorem 4.3, we have from (4.7)

(4.12) Hn(1, 1, 0, t) = EZ1(t)
n =

∞∑
j=1

jn
(

t

t+ 1

)j 1

t+ 1
=

n∑
k=0

k!

{
n

k

}
tk.

Making the change z = t/(t+ 1) in (4.12), we obtain identity (4.11).

Finally, using the probabilistic representation given in (4.7), we can derive in an easy way various

kinds of identities involving the generalized numbers Hn(λ, β, γ, t), as done in the following two results.
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Theorem 4.4. We have

Hn(λ+ 1, β, γ, t) =
Hn(λ, β, γ, t)

t+ 1
+

1

βλ(t+ 1)

n∑
i=0

(
n

i

)
Hi+1(λ, β, 0, t)γ

n−i.

In particular,

Hn(λ+ 1, β, 0, t) =
Hn(λ, β, 0, t)

t+ 1
+

1

βλ(t+ 1)
Hn+1(λ, β, 0, t).

Proof. Applying (4.5) with φ(x) = (βx+ γ)n, we obtain

Hn(λ+ 1, β, γ, t)− Hn(λ, β, γ, t)

t+ 1
= E(βZλ+1(t) + γ)n − 1

t+ 1
E(βZλ(t) + γ)n

=
1

λ(t+ 1)
E(βZλ(t) + γ)nZλ(t).(4.13)

The right-hand side in (4.13) equals to

1

λ(t+ 1)

n∑
i=0

(
n

i

)
βiEZλ(t)i+1γn−i =

1

βλ(t+ 1)

n∑
i=0

(
n

i

)
Hi+1(λ, β, 0, t)γ

n−i.

This, together with (4.13), shows the first identity in Theorem 4.4. The second one follows from (4.13)

by setting γ = 0. The proof is complete. �

Theorem 4.5. We have

Hn(λ+ 1, β, γ + β, t) =
n∑
i=0

(
n

i

)
Hi(1, β, β, t)Hn−i(λ, β, γ, t).

Proof. As in the proof of Lemma 4.1, the law of the random variable Zλ+1(t) is the same as the law

of Z1(t) +Zλ(t), where the random variables Z1(t) and Zλ(t) are supposed to be independent. Hence,

Hn(λ+ 1, β, γ + β, t) = E(βZλ+1(t) + γ + β)n

= E(βZ1(t) + β + βZλ(t) + γ)n =
n∑
i=0

(
n

i

)
E(βZ1(t) + β)iE(βZλ(t) + γ)n−i

=
n∑
i=0

(
n

i

)
Hi(1, β, β, t)Hn−i(λ, β, γ, t),

thus concluding the proof. �
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