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ABSTRACT Surveillance cameras are increasingly being used worldwide due to the proliferation of digital
video capturing, storage, and processing technologies. However, the large volume of video data generated
makes it difficult for humans to perform real-time analysis, and evenmanual approaches can result in delayed
detection of events. Automatic violence detection in surveillance footage has therefore gained significant
attention in the scientific community as a way to address this challenge. With the advancement of machine
learning algorithms, automatic video recognition tasks such as violence detection have become increasingly
feasible. In this study, we investigate the use of smart networks that model the dynamic relationships between
actors and/or objects using 3D convolutions to capture both the spatial and temporal structure of the data.
We also leverage the knowledge learned by a pre-trained action recognition model for efficient and accurate
violence detection in surveillance footage. We extend and evaluate several public datasets featuring diverse
and challenging video content to assess the effectiveness of our proposed methods. Our results show that
our approach outperforms state-of-the-art methods, achieving approximately a 2% improvement in accuracy
with fewer model parameters. Additionally, our experiments demonstrate the robustness of our approach
under common compression artifacts encountered in remote server processing applications.

INDEX TERMS Anomaly detection, anomaly localization, automated video surveillance, deep learning,
efficient violence detection, human activity recognition, security, smart cities, video recognition, violence
detection.

I. INTRODUCTION
Today, surveillance and security cameras are deployed in
various public places to monitor public events and human
activity. Video surveillance improves public safety and plays
a crucial preventive role in protecting a specific territory
against crimes. The recorded surveillance footage is often
used as evidence in criminal prosecutions. To prevent
crime and reduce the crime rate, detecting and recognizing
anomalies such as violence as soon as possible is a crucial
task for the military and law enforcement agencies. However,
surveillance cameras generate a large amount of video
data every single day and instances of violence occur very
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rarely compared to other normal activities. Therefore, it is
impractical and cumbersome for humans tomanuallymonitor
this video data for instances of violence. Human error may
also reduce the efficiency of a manual, labour-intensive
approach. Therefore there is a significant need for automatic
and efficient methods for detecting abnormal or violent
activities, especially in surveillance videos.

Video classification using Human Activity Recognition
(HAR) is a popular research topic in recent years and is
analogous to the field of violence detection. In these methods,
sensor data is used to provide information on simple or
complex physical activities of humans, such as standing,
talking and cooking. Earlier techniques for HAR involved
detecting and tracking human body parts in consecutive video
frames using image-level descriptors, such as Histogram
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of Oriented Gradients (HOG) or Histogram of Oriented
optical Flow (HOF) [1]. Other advanced approaches involved
computing spatio-temporal descriptors for motion [2], [3].
However, one of the major drawbacks of these techniques
is that they often require good lighting conditions and
clear visibility for successful operation. With the develop-
ment of depth cameras, algorithms have emerged that use
depth measurements from sensors such as Microsoft Kinect
[4], [5], ASUS Xtion2 [6] or Intel RealSense [7] for
HAR. One advantage of depth sensors is that they come
with Software Development Kit (SDK) containing real-time
algorithms for detecting skeletons [8]. Specifically, a skeleton
joint coordinate can be obtained in three dimensions (3D) in
real-time and series of these coordinates, when tracked over
time, can be used to detect and describe human actions. As a
result, several algorithms have been proposed in the literature
for using depth sensors to perform HAR [9], [10], [11], [12],
[13] or using a combination of color and depth sensors [14].
However, depth sensors, even the modern ones, often have
substantial noise in their measurements. Without adequately
filtering out this noise, it can be difficult to achieve good
detection for HAR. Additionally, integrating depth sensors
into use cases such as surveillance can increase the hardware
costs and may not always be feasible.

The use of Convolutional Neural Networks (CNNs) has
become increasingly common in computer vision due to their
exceptional success in image recognition tasks [15], [16].
CNNs are evolving rapidly in many fields of research, and it
is expected that future solutions will enhance the adoption of
CNNs. With the availability of big data and the exponential
growth of computing power, these learning algorithms con-
tinue to have significant development potential. Several suc-
cessful methods have recently been proposed that extend the
spatial CNNs, which are used for image recognition tasks, to
the temporal domain for HAR in videos [17], [18], [19], [20]
[21], [22], [23], [24]. One of the main advantages of using
CNNs for HAR is that they can handle challenging cases
such as changes in lighting conditions, background changes,
camera movement, different dressing styles and varying body
shapes of people. They can also handle videos with partially
or completely occluded human body parts.

In this paper, we address the problem of violence detection
using deep learning with CNNs. Specifically, the following
are the contributions of this work:

1) We propose a deep learning-based approach for filter-
ing videos based on their violent or normal content. Our
method is computationally efficient, making it practical
for real-world applications and performs better on
popular video classification metrics than several state-
of-the-art methods for violence detection. Additionally,
our method is able to maintain high classification
accuracy even in the presence of video compression
artifacts.

2) We present a comprehensive video database for the
study of violence, comprising both violent and normal
videos. Our database combines and extends seven

existing video databases, providing a diverse range of
violent content in various contexts.

3) We present a fully functional stand-alone system
that implements the proposed methods for automated
violence detection.

The rest of the paper is organized as follows: In section II,
we discuss related work. Section III describes the proposed
approaches in detail. In section IV, we present the results
and discuss the scope of generalization of our approach.
In section V, we conclude the work and derive future
directions for our current work.

II. RELATED WORK
In this section, we describe several classes of algorithms that
have been proposed in the literature for detecting violence
using deep learning. We note that in the literature, there
are multiple variants of violence detection that are being
studied under different names, such as anomaly detection,
abnormal activity detection and fight detection. Our current
work focuses on forms of violence that primarily involve
humans and human interaction with objects.

Due to the lack of a substantial amount of labeled
data containing diverse real-world violence samples, several
studies in the literature have used training data containing
only a few samples. There are also some large-scale, publicly
available datasets for violence detection. However, for these
datasets, the exact time and duration of the violence are not
available. Algorithms trained on such data often strive to
minimize unusual patterns among training samples in order
to learn about rare violent activities [25], [26] [27], [28] [29].
These methods are described in the subsections II-A and II-B.
We also introduce methods that use labeled training data for
violence detection in subsection II-C.

A. MODELLING NORMAL PATTERNS
These techniques learn patterns of normal behavior from
training videos that contain no violence. Since only normal
videos without violence are used in the training phase, no spe-
cific labels are provided. During testing, these methods are
expected to find samples that deviate from the learned normal
behavior [30]. In [31], and [25], motion trajectories are used
to learn about normal patterns. In [31], the authors suggested
representing motion patterns using super-trajectories that
describe motion of local groups of similarly moving points
(pixels in a video sequence) and clustering these motion
patterns hierarchically to derive prototype patterns for normal
samples.

In [32] and [33], the authors used auto-encoders to learn
regularities in video sequences. As inputs to the auto-
encoders, they used state-of-the-art spatio-temporal motion
features computed using HOG and HOF [34]. In [35], the
authors used optical flows along with video sequences and
constructed multiple auto-encoders. They used reconstruc-
tion loss [36] to detect abnormal or violent events.

Authors in [37], [38], and [39] also incorporated
auto-encoders to learn normal behaviors, but without
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explicitly computing local motion patterns. This one-stage
approach is faster in terms of computational speed because it
does not require object detection or feature extraction. There
were also approaches that augmented memory modules [37]
to auto-encoders and used optical flow images [40], [41]
to define flows of normal patterns. In [37], the authors
augmented the output of an encoder in a variation of an
auto-encoder CNN with a memory module that adaptively
records prototypical patterns of normal data formore accurate
detection of violent cases in a given database.

In [39] and [42], the authors employed a variation of
auto-encoders to predict a future video frame from a given
set of consecutive video frames. Then, they computed per-
pixel differences between the predicted and ground truth
frames to make a decision on whether the current video
sequence is normal or not. Future frame prediction has
gained increasing attention due to its potential applications in
unsupervised feature learning for video representation [43].
In [39], the authors also quantized the output of the encoder
using a predefined codebook (a concept similar to augmented
memory modules) that further narrows the explanation of
normal events and aids in better future frame prediction in
normal videos. In [44], to generate more realistic and accurate
future frames, the authors imposed a loss in the temporal
space. In particular, they computed optical flows in video
sequences using a pre-trained CNN [45] and formulated a
loss function for an auto-encoder that ensures the optical flow
of predicted frames is consistent with the ground truth. In
addition to the methods that predict future frames, there were
also efforts in the literature to predict transformations needed
for generating future frames [46], [47], [48], [49].

B. MULTIPLE INSTANCE LEARNING
These methods also aim to learn about violent actions
using video-level labels that are provided during the training
phase. In contrast to methods that model normal patterns,
these methods use both normal and violent data to train
violent detection models [50], [51], [52], typically using
Multiple Instance Learning (MIL) [53]. Sultani et al. [50]
divided each video (in both normal and violent videos) into
multiple temporal segments to form positive and negative
bags that capture instances of the violent and normal events
respectively. C3D [54] spatio-temporal features were then
extracted from each segment and used to train multiple fully
connected layers, which derive scores for the positive and
negative bags. Due to the absence of segment-level labels, a
novel ranking loss function was proposed that encourages the
score indicating violence in the positive bag to be higher than
the score in the negative bag. The ranking loss also imposed
smoothness and sparsity constraints in the ranking loss to
reduce false alarms.

By extending the approach of Sultani et al., Zhu et al.
in [51] introduced temporal context information into the
MIL ranking loss to compute video-wise scores, rather than
segment-wise scores. They proposed a temporal augmented
network that captures motion features using pre-computed

optical flows, similar to an auto-encoder. The encodedmotion
patterns were used to train MIL ranking model for better
localization of violence instances.

Philippe et al. [55] proposed a two-step approach where
they first detect and track humans locally across a given
segment of a video to form human tubes (spanning the
entire segment) and then use multi-fold Multiple Instance
Learning (MIL) with Support Vector Machines (SVM) [56]
to learn about human tubes that contain the action described
by the video-level labels. In [57], Yan et al. proposed a
multi-task ranking model. In their approach, they segmented
videos into supervoxels using a graph-based segmentation
method to generate action tubes and action–actor tubes.
Action tubes were then used as proposals for actions, e.g.,
walking, adult running, and crawling. Features were extracted
from each tube to train the ranking model to select the most
characteristic action tubes.

Arnab et al. [58] proposed a probabilistic variant of MIL,
in which they estimate the uncertainty of an instance-level
prediction. They used a pre-trained person detector trained
on a large image dataset to detect persons over consecutive
frames of a video to form person tubelets. A bag for MIL
consists of all tubelets within a video, and it is annotated with
the video-level label. During training, they also model the
label noise through the uncertainty of sampling bags that do
not contain any tubelets with the labeled action.

Mettes et al. in [59] aimed to find the spatio-temporal
locations of actions in videos using pseudo-annotations. They
investigated spatio-temporal pseudo-annotations from differ-
ent sources such as action proposals, object proposals, person
detection, motion, and center biases. They later combined
the extracted pseudo-annotations using a correlation metric
to train a classifier using MIL.

C. SUPERVISED LEARNING
There have beenmultiple approaches that use deep learning to
classify violent videos using labeled data. These methods rely
on video datasets with accurate visual information about the
relevant class, such as videos in the violence class containing
few or no normal events.

In [60], Long et al. proposed a method for classifying
violent videos using the Motion SIFT (MoSIFT) algorithm to
extract features and then applying Kernel Density Estimation
(KDE) to filter out noise. These reduced MoSIFT features
were then transformed into a video-level feature vector using
sparse coding, and a Support Vector Machine (SVM) was
trained on these vectors to classify videos.

In 2012, Hassner et al [61] proposed a method for real-time
detection of violence in crowded scenes using the Violent
Flows (ViF) descriptor to capture optical flow information
between consecutive video frames and a linear SVM to clas-
sify the videos based on the computed ViF descriptors. They
demonstrated that their method was effective at classifying
videos containing crowd violence, and it was compared to
other existing methods at the time. In a later study, Meng
and Serrano [62] proposed a method for violence detection
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that combined feature extraction with deep learning using
Convolutional Neural Networks (CNNs). Their approach
involved using a Hough Forests spatio-temporal feature
extractor in combination with a 2D CNN.

Sudhakaran and Lanz [63] proposed amethod for encoding
the difference between two successive frames using a
combination of a CNN and a Long Short-Term Memory
(LSTM) module and demonstrated that this approach had
better performance than a model trained on raw frames.
AlDahoul et al. [64] proposed a lightweight model with fewer
parameters that used a CNN and an LSTMmodule to capture
spatial features for violent video classification. Fath U Min
Ullah et al. [65] proposed a Violence Detection Network
(VD-Net) that first used object detection to detect humans and
suspicious objects like guns to pre-filter video sequences for
violence detection and then applied a combination of a con-
volutional LSTM and gated recurrent units [66] to the filtered
video sequences for violence detection. Romas et al. [67]
also proposed a CNN-LSTM-like architecture that was
computationally light, using MobileNet V2 to extract spatial
features for training an LSTM network.

Chollet et al. [68] used a model based on XceptionNet [69]
to extract features from a video and then applied a
bi-directional LSTM to analyze the extracted features in both
forward and backward temporal directions for classification.
Khan et al. [70] proposed a method that uniformly samples
a video into segments, selects a representative frame from
each segment using computed levels of saliency, and then
fine-tunes a MobileNet model [71] using the representative
frames to classify the corresponding segment as violent or
non-violent. Li et al. [72] proposed a DenseNet-based [73]
3D CNN architecture that directly processes video data with-
out explicitly computing features, and demonstrated good
accuracy on standard databases with a relatively lightweight
model. Fernando et al. [74] proposed an architecture based
on a variant of DenseNet [75] that extracts feature maps and
then applies self-attention mechanisms [76] to link different
positions in a single sequence and generate a representation
that focuses on the most relevant parts of the sequence. This
representation is fed into bi-directional LSTM blocks and
fully connected layers for classification. They demonstrated
good accuracy on four different databases using this method,
and also experimented with using both optical flow and
pseudo-optical flow computed from adjacent frames as inputs
to the DenseNet.

In a 2016 study, Dong et al. proposed a multi-stream
deep convolutional neural network consisting of three streams
(color, optical flow, and person-to-person acceleration) for
violence detection. The acceleration stream aimed to capture
the intense information that was hypothesized to be present
in violent events, and three LSTMs were trained using
the features from the three streams. The outputs from the
streams were fused to classify a video. In a later study,
Su et al. [77] proposed a method for violence detection that
involved computing 3D skeleton point clouds from video
and then using interaction learning on these point clouds

to capture spatio-temporal features and model interactions
between skeleton points. They used multiple Skeleton Points
Interaction Learning (SPIL) modules together with a fully
connected layer to classify violent videos from normal
videos. In another study, Mu et al. [78] proposed a method
for violence detection that used both visual and audio cues,
as it was hypothesized that visual information may not be
reliable for violence detection and that using audio could
improve performance. They extracted audio features using
40-dimensionalMel Filter-Bank (MFB) coefficients and used
an SVM to classify audio samples from input videos.

D. COMPARISON OF THE STATE-OF-THE-ART METHODS
Table 1 compares different approaches for violence detec-
tion in videos proposed in the literature and lists their
advantages and disadvantages. Successful algorithms for
violence detection should be computationally fast, achieve
high classification accuracy, and be adaptable to scenarios not
present in the training data. Some normal actions involving
close physical interaction between humans can mimic violent
actions and can mislead the deep learning algorithms that
are solely trained on normal videos. It is suggested that
it is important to incorporate both normal and violent
behaviors in the training data for better generalizability of
the trained models. MIL using spatio-temporal feature-based
methods can be computationally fast but may not achieve
high classification accuracy, as they focus on predicting
bag-level labels while neglecting the hidden temporal context
information in violence and normal patterns.

From the results presented in the literature, it is evident
that methods that use 3D deep learning architectures that
capture spatio-temporal features in the data account for
both the spatial structure of the video frames as well as
the temporal dynamics between frames. This makes such
3D CNNs effective at tasks such as action recognition and
violence detection, where the actions being performed and
their temporal evolution are important factors to consider.
However, it is important to note that the cost of extracting
some of the spatio-temporal features is still prohibitive for
practical applications. In the current work, a computationally
light and accurate 3D deep learning architecture (see
section III) is adapted and extended and labeled datasets are
used (refer to section III-A) to develop efficient methods for
violence detection.

III. FAST AND ACCURATE VIOLENCE DETECTION
ResNet [79] is a popular base architecture for image and
video recognition tasks, known for its effectiveness and state-
of-the-art results on benchmarks like ImageNet [80] and
COCO [81] datasets. 3D ResNets [23] are an extension of
the ResNet architecture, designed for learning spatiotemporal
features from video data. They have achieved strong perfor-
mance on various benchmarks and real-world applications,
including the Kinetics-700 action recognition dataset [82]
(where a variant called I3D [83] achieved state-of-the-
art performance) and the Something-Something V2 action
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TABLE 1. Comparison of approaches in the state-of-the-art for violence detection in videos.

recognition dataset (where a 3D ResNet called R(2+1)D [84]
achieved state-of-the-art performance).

3D ResNets have higher accuracy than counterparts like
3D-MobileNet [85] due to factors such as more layers
for learning complex spatio-temporal features and skip
connections between the input and output of each layer
that allow input to bypass intermediate layers. However,
they are generally more computationally intensive due to a
large number of model parameters. To improve computa-
tional efficiency, model complexity can be reduced through
techniques such as reducing the number of layers, using
fewer filters in convolutional layers, and using smaller input
data, though this may decrease accuracy on complex tasks.
Christoph et al. [86] experimented with various parameters
of the 3D ResNet architecture to understand the effect of
reduced model complexity on accuracy. They expanded the
architecture along multiple axes to form spatio-temporal
models and selected the axis that achieved the best trade-off
between computational speed and accuracy, resulting in a
series of models ranging from extra small (XS) to extra
large (XL) in increasing complexity. Using the Kinetics-
400 dataset [87], they showed that their expanded model,
X3D-M, had the same accuracy as state-of-the-art video
classification networks but with a 10X reduction in model
parameters.

The X3D-M model is an appropriate choice for our
violence detection task due to its high accuracy and reduced
model complexity. As demonstrated by Christoph et al.,
the X3D-M model achieves similar accuracy to state-of-the-
art video classification networks, but with a significantly
lower parameter count. This reduction in model complexity
makes the X3D-M model more efficient to train and
deploy, particularly for resource-constrained systems. Also,
the ResNet 3D backbone, which has a proven ability to
learn complex spatio-temporal features, is particularly useful
for our violence detection task, as it allows the model to
capture the dynamic nature of the videos and learn robust
representations of the data. The proposed system using
X3D-M model architecture is detailed in section III-B.

A. DATASETS FOR EXPERIMENTS
Due to data protection laws such as GDPR [91], it is not pos-
sible to obtain large amounts of real-world footage containing
violence for training deep learning models. Recently, the
usage of synthetic training data has become more common in
computer vision. The use of training data containing pasted
object patches on real images has been shown to be effective
for tasks such as 2D object detection [92], [93], [94] and
human pose estimation [95]. However, for violence detection,
we postulate that such fabricated training data may not fully
capture the complex and diverse action patterns of violent
actions with various nuances. Therefore, preparing and using
synthetic training data is not considered in the scope of the
current work.

In their study, P. Sernani et al. [96] proposed the AIRTLab
dataset, which contains videos showing violence patterns
performed by non-professional actors. They studied the use of
2D and 3D deep learning architectures for violence detection
using their dataset and found that the studied models adapt
well to their setting, where violence is mimicked by non-
professional actors. However, they also noted that their
results cannot be considered general, as their architectures
were not validated on other datasets and no cross-validation
experiments were performed. Therefore, we do not consider
such datasets in our experiments.

In the current work, we have considered seven different
datasets that are commonly used in the literature for
experimentation with violence detection and to facilitate
comparison of our results with other methods. We have also
extended some of these datasets with annotations to assist
in in-depth cross-validation experiments. These datasets are
described in the following:

• Crowd Violence (CV) dataset [61] contains videos
involving violence in crowds, collected from YouTube.

• Hockey Fights (HF) dataset [88] is a collection of
fights between players in hockey games from the USA’s
National Hockey League (NHL).

• Movie Fights (MF) dataset [88] consists of a collection
of scenes from action movies.
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TABLE 2. Overview of the datasets used in our experiments. In addition to the existing databases in the literature (CV, HF, MF, RLVS, RWF-2K), we have
annotated parts of two other datasets (UCFS and XD-V).

• Real Life Violence Situations (RLVS) dataset [89]
consists of fighting videos gathered from YouTube and
real street cameras that depict real street fights.

• Real-World Fight-2000 (RWF-2K) dataset [90] is a
collection of large-scale fighting videos from YouTube.
The dataset consists of trimmed video clips captured by
surveillance cameras from real-world scenes.

• UCF-Crime Selected (UCFS) dataset is a subset
of UCF-Crime dataset [50]. The UCF-Crime dataset
consists of long untrimmed surveillance videos that
cover 13 real-world anomalies, including Abuse, Arrest,
Arson, Assault, Burglary, Explosion, Fighting, Road
Accident, Robbery, Shooting, Stealing, Shoplifting, and
Vandalism, without annotations. While this is a large-
scale dataset, videos in the violence class contain mix
of violent and normal actions, which is undesirable.
Therefore, we selected the classes of Abuse, Explo-
sion, Fighting, Road Accident and Shooting from the
UCF-Crime dataset and manually trimmed the videos
to only contain violent parts for training and testing
purposes.

• XD-Violence Selected (XD-V) dataset contains a subset
of videos from the XD-Violence dataset [97]. The
XD-Violence dataset consists of several untrimmed
videos covering six anomalies, including Abuse, Car
Accident, Explosion, Fighting, Riot, and Shooting,
gathered from action movies and YouTube. Similar to
the UCF-Crime dataset, we selected a set of videos
belonging to the classes of Abuse, Explosion, Fighting,
Road Accident and Shooting from the XD-Violence
dataset and manually trimmed these videos to only
contain violent parts for training and testing purposes.

All of the datasets also contain normal videos for training
and testing that do not involve violence. In the case of the
UCFS and XD-V datasets, we trimmed the normal videos
to five-second video clips to match the average duration of
normal clips in the other datasets. Additionally, in the case
of the UCFS and XD-V datasets, we limited the maximum
duration of a video clip containing violence to approximately
five seconds. Table 2 provides more details about each of the
datasets we used in our experiments.

B. MODEL ARCHITECTURE
We note that for accurate violence detection, it is important
to a have properly labeled dataset containing a large number

of diverse examples for training a deep learning model.
Successful action recognition datasets such as Kinetics-
400 [87], contain a minimum of 400 videos for each action
class, such as standing, sitting and talking. All videos in the
Kinectics-400 dataset have a fixed duration of five seconds.
The authors obtained clips for each class from YouTube and
then used Amazon Mechanical Turkers (AMT) to decide if a
given clip contained the desired action. A clip was accepted
if it received three or more confirmations (out of five) [87].
The dataset was also de-duplicated to reduce redundancies in
the environment.

In several cases, actions involving violence are more
complex than actions such as sitting and talking and the
number of example violent videos collected in existing
datasets may not be sufficient for training a model that
generalizes well and can lead to overfitting. Additionally,
as shown in Table 2, different datasets for violence detection
contain clips with different durations in seconds and they
are not well-organized to check for the validity of a specific
action or for redundancies. To address these issues with
existing datasets for violence detection, we follow training
approaches that are inductive in nature. Specifically, we aim
to make use of the knowledge learned using better-calibrated
action recognition datasets to solve the efficient violence
detection problem. To this end, we propose two different deep
learning configurations that are described in the following
subsections.

1) FINE-TUNED X3D-M MODEL
In the Fine-Tuned X3D-M (FT) model, we consider the
X3D-M model architecture initialized with weights obtained
by training on the Kinetics-400 dataset. Note that the original
architecture used for training on the Kinetics-400 dataset
contains two fully connected layers, with the output of the
second fully connected layer representing the classification
results for each class (the number of outputs of this layer is
equal to the number of classes in the training dataset). Since
we aim to predict if a clip contains violence or not (a binary
classification), we modify the architecture into a regression
model to generate a violence coefficient that indicates the
probability of violence in a given video clip. Specifically,
we trim the X3D-Mmodel until the first fully connected layer
and replace the second fully connected layer with one that
outputs a floating-point variable, which is converted into the
range of [0, 1] using a sigmoid function to derive the violence
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FIGURE 1. Our FT model: Batches of videos containing violence and non-violence are supplied for training. Each input video is pre-processed to obtain
16 uniformly sampled temporal frames for training a trimmed X3D-M model. The second fully connected layer of X3D-M model is replaced to output a
floating-point variable, which is converted into range [0, 1] using a sigmoid function to derive the violence coefficient.

TABLE 3. In the FT model, we have 2976723 parameters that are involved
in the combination of the trimmed X3D-M model and the replaced second
fully connected layer. Since the parameters of the trimmed X3D-M model
are also optimized during training, all 2976723 parameters are trainable.

coefficient. Simply, during learning, we label the violence
coefficient as 1 for samples of video clips containing violence
and as 0 for samples of video clips containing no violence.

The architecture of theX3D-Mmodel follows the fast path-
way design of SlowFast networks [98] with down-sampled
temporal input. Therefore, we pre-process the input videos
as required by the X3D-M model. In particular, for a given
video clip, we first extract 16 video frames by uniformly
sampling in the temporal domain. Then, we transform the
pixel value range of the extracted frames to be within [0, 1]
to obtain floating-point images. Next, we normalize the video
frames using mean and standard deviation and resize the
frames so that the shortest side corresponds to 256 pixels.
Finally, we center crop the resized frames to obtain 16 video
frames with a spatial resolution of 256 × 256. Batches of
pre-processed video frames are supplied to the FT model
with corresponding labels for training. Note that the X3D-M
model weights obtained by training on the Kinetics-400
dataset are only used for network initialization and these are
further optimized during training on datasets for violence
detection. The FT architecture is shown in Fig. 1, and Table 3
presents information on the corresponding model parameters.

2) TRANSFER-LEARNED X3D-M MODEL
Unlike the FT model, the Transfer-Learned X3D-M model
(TL) uses the X3D-M model for feature extraction. Specif-
ically, we provide pre-processed (following the method
described in the FT model) batches of videos containing
violence and non-violence as input to a trained X3D-M
model that has been trained on the Kinetics-400 dataset and
extract the output of the first fully connected layer to form
a feature set. The extracted feature set is a vector containing

TABLE 4. In the TL model, we have 4040211 parameters. Since the
parameters of the trimmed X3D-M model are not trained,
1065537 parameters are trainable and 2974674 parameters are
non-trainable.

2048 elements, which is used to train three additional fully
connected layers, as shown in Fig. 2. The output of the
additional fully connected layers is a floating-point variable,
and similar to the FT model, we transform this variable to be
within the range of [0, 1] using a sigmoid function to obtain
the violence coefficient. Table 4 presents information on the
TL model parameters.

C. LEARNING AND OPTIMIZATION
We do not apply data augmentation techniques in the training
of the proposed models. We use Adagrad [99] to optimize
our models with an initial learning rate of 1e−3. Both
models are compiled to minimize the Binary Cross Entropy
(BCE) between the estimated and ground truth violence
coefficients. For training the TL model, we use a batch
size of 30 samples collected from shuffled pre-computed
X3D-M feature vectors. Since the FT model takes videos as
input, to account for higher memory usage during training,
we consider a batch size of 4 samples collected from shuffled
videos. For regularity, within a training batch, for both
models, we concatenate a batch of violent video clips with
a batch of non-violent video clips. For ease of access, all our
hyperparameters are listed in the table 5

IV. RESULTS AND DISCUSSION
In this section, we present the results from our various
experiments using the proposed models and the various
datasets described in section III-A. Most of the datasets used
in the study already have a training and testing data split
with 80% of the data as the training set and 20% as the
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FIGURE 2. Our TL model: Pre-processed videos containing both violence and non-violence are are input to a pre-trained X3D-M model for feature
extraction. Three fully connected layers are trained using the extracted features to obtain the violence coefficient.

TABLE 5. List of hyperparameters and their corresponding values used in
our trainings.

test set. For other datasets, for our experiments, we preserve
this percentage and randomly select 20% of violent and non-
violent samples to create a testing set for fair comparison
across datasets. To facilitate fair comparison, all the models
are trained for 50 epochs using a given training dataset.
We use the PyTorch [100] deep learning library to train
and test our models on a Nvidia GeForce GTX 1080 Ti
GPU using the CUDA toolbox. We use the Ubuntu Linux
operating system on an AMD Ryzen Threadripper 1950X
16-core processor. To evaluate the performance of various
methods, we use the following metrics that are commonly
used to evaluate the performance of classification algorithms
using deep learning.

• Accuracy (ACC) [101] is the most popular metric for
evaluating deep learning models for video classification.
It is the ratio of the number of correct predictions (as
violent or non-violent video clips) to the total number
of predictions. To compute the accuracy, we used the
provided ground truth binary labels - 0 (for video clips
without violence) and 1 (for video clips with violence) -
that are provided during training. Since we designed our
networks to output floating-point violence coefficients,
we round the predicted violence coefficients to the
nearest integer before calculating the accuracy. In line
with other methods in the literature, we report the
accuracy score in percentages.

• AreaUnderCurve (AUC) [102] is a statistical measure
to evaluate the performance of a classification model.
It represents the area under the Receiver Operating Char-
acteristic (ROC) curve, which graphically illustrates the
effectiveness of a classifier in discriminating between
the trained classes at various decision probability
thresholds. Specifically, using the predicted violence
coefficients, the ROC curve shows the relationship

between True Positive Rate (TPR) (the number of
times when violence cases are correctly identified as
violence among the total cases when violence cases
are correctly identified as violence and non-violence
cases are correctly identified as non-violence) and False
Positive Rate (FPR) (the number of times when non-
violence cases are incorrectly identified as violence
among the total cases when non-violence cases are
incorrectly identified as violence and violence cases are
incorrectly identified as non-violence). Higher values
of the area under the ROC curve (that are close to 1)
represent the ability of a model to effectively discern
between violence and non-violence cases, while lower
values represent the opposite.

We have conducted several experiments, including cross-
dataset validation, to evaluate the performance of the pro-
posed approaches using the considered datasets and metrics.
The details and results of these experiments are presented in
the following subsections.

A. EXPERIMENTS ON INDIVIDUAL DATASETS
Most datasets already have pre-defined data splits for training
and testing, with 80% and 20% of the data respectively.
We used these splits without modification for unbiased
comparison. For the remaining datasets, we maintained
this proportion of training and testing data by randomly
selecting 20% of violent and non-violent samples for testing.
We trained our models on the training data split and
evaluated their performance on the testing data split for each
dataset separately. The testing results using the ACC and
AUC metrics are presented in Tables 6 & 7 respectively.
The tables also show the performance of state-of-the-art
methods discussed in section II on the respective datasetes.
As mentioned, we created the UCFS and XD-V datasets and
we report the results on these datasets using only ourmethods.

It is worth noticing that only a few studies in the literature
report evaluations using the AUC metric. We argue that
in applications such as violence detection, false positives
(incorrectly reporting non-violent events as violent) should
be explicitly considered when evaluating the performance of
a model and the ACC metric does not directly account for
false alarms.

The experimental results on individual datasets show that
both of our proposed methods perform well on individual
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TABLE 6. The ACC(%) scores of our FT and TL models along with the state-of-the-art methods on individual datasets. Based on the ACC metric, our FT
method outperforms most of the state-of-the-art methods on all datasets except HF, with relatively fewer model parameters.

TABLE 7. The AUC scores of our FT and TL models compared to various state-of-the-art methods. According to the AUC metric, the FT model outperforms
the state-of-the-art methods on most of the datasets and has fewer model parameters.

datasets. Overall, our FT model outperforms most of the
state-of-the-art methods and our TL model also achieved
decent performance on all datasets. We postulate that the
FT model, which optimizes the parameters of the (trimmed)
X3D-M model during learning, is more adaptable to a given
dataset. On the MF dataset, the results for both TL and
FT models suggest overfitting, which is consistent with the
results frommost methods in the literature. This suggests that
the MF dataset may contain more regular examples with less
diversity and may be less challenging for deep learning video
classification models. The Tables 6 & 7 also show the model
parameter count for various models under comparison and
our models have fewer parameters than the state-of-the-art
methods.

Bilinski et al. [3] achieved a higher accuracy than our TL
model on the CV dataset. They used improved Fisher vectors
for spatio-temporal feature extraction, which can be context-
dependent. For example, the CV dataset only contains
examples of violence involving a crowd and their results
show that their method performs better in such scenarios.
It is important to note that statistical feature extraction
methods like this can be sensitive to variations in the video
capture environment and may result in false alarms. When
evaluated using the AUC metric, our TL model performs
better than the method of Bilinski et al. [3] on the CV dataset
(see Table 7).

Sudhakaran et al. [63] used a pre-trained AlexNet model
trained on ImageNet for their method. They used the

difference between consecutive video frames as input to
capture temporal information. The results show that their
method performs better on the CV dataset compared to our
TLmodel.We should note that our TLmodel extracts features
using a pre-trainedX3D-Mmodel trained on theKinetics-400
dataset. This dataset contains a smaller number of examples
with several people appearing in individual frames of the
videos. In contrast, the ImageNet dataset contains a relatively
higher number of examples with several people appearing in
one frame. Therefore, we suggest that the extracted X3D-M
features might be noisy and result in lower accuracy on
datasets involving crowds such as the CV dataset.

Li et al. [72] used a DenseNet 3D-CNN to train and
extract spatio-temporal features from videos. Their model
was initialized with parameters from a pretrianed model
trained on the Kinetics-400 dataset, similar to our FT
model. However, their model had more CNN layers and
higher model parameters, which contributed to its better
accuracy on the CV and HF datasets compared to our TL
model. It should be noted that DenseNet uses multi-layer
feature concatenation for improved feature representation,
but this approach requires more GPU memory and longer
training times. Choqueluque-Roman et al. [104] followed an
approach that used an I3D architecture in combination with a
ResNet50 for feature extraction using human action tubes for
training a deep learning model based on MIL. Their results
showed that, according to the accuracy and AUC metrics,
our models achieved better performance with relatively fewer
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model parameters, which confirms that training based onMIL
may not achieve high classification accuracy.

Violence-Net [74] also used DenseNet for training and
extracting feature maps. According to the ACC metric (see
Table 6), their method using optical flow input achieved
better scores than our FT model on the HF dataset. However,
their architecture contains more model parameters and
involves computing optical flow information, making it
computationally more complex than ours. When pseudo-OF
was used as input in their method, the accuracy decreased
compared to our FT model. On the CV dataset, their model
with more number of parameters achieved higher accuracy
than our TL model. As previously mentioned, the extracted
X3D-M features from videos involving crowds can be noisy
and lead to less accurate results.

Themethod proposed by Romas et al. [67] usedMobileNet
V2 architecture for spatial feature extraction and LSTMmod-
ules for learning about temporal associations. Despite having
a similar number of model parameters as our TL model,
our methods achieved higher accuracy. As demonstrated by
our results, methods that capture 3D spatio-temporal features
directly from the video data, such as our proposed models,
represent temporal associations more accurately and are
therefore more effective at detecting violence in videos. This
is due to the ability of our proposed models to accurately
capture the full context and dynamics of the events depicted
in the video, leading to improved performance in violence
detection tasks.

The SPIL method [77] achieved higher accuracy scores
than our TL model on the CV and RWF-2K datasets.
However, this method requires significant computational
resources due to the need to estimate 3D skeleton point clouds
for interaction learning, making it impractical for practical
applications.

The Violence Detection Network (VD-Net) [65] achieved
better accuracy on HF and RWF-2K datasets compared to
our TL model and has slightly more model parameters.
VD-Net first detects humans and suspicious objects such as
guns, which requires more computational resources than our
TL model. However, the AUC scores for the TL model are
comparable to VD-Net.

Finally, the CNN-LSTM-IOTmodel [64] has fewer param-
eters than all of the models under comparison, including ours,
and it has been demonstrated that it can run on a low-cost
Internet of Things (IoT) device like a Raspberry Pi. However,
the model relies on spatial features for learning and performs
poorly on the RLVS and RWF-2K datasets.

In summary, our experiments on individual datasets
demonstrated that our FT model outperformed most of
the state-of-the-art methods on most datasets while having
fewer model parameters. Our TL model also achieved
decent performance on all the datasets, despite having
fewer trainable parameters than the FT model, as shown in
Tables 3 & 4. This suggests that the TL model is relatively
less adaptable to specific scenarios.

B. EXPERIMENTS ON GENERALIZABILITY
To study the adaptability of our proposed approaches to
unseen videos, we conducted cross-dataset experiments
where we trained a model on one dataset and evaluated its
performance on another dataset. Table 8 shows the results
from such one-on-one cross-validation tests in the top section
(columns 5-8). It should be noted that, among the considered
datasets, different datasets have different numbers of videos
containing instances of violence and non-violence actions.
In general, the number of samples available for training can
greatly affect the learning capabilities of a deep learning
model. Few and less diverse training samples can lead to
model overfitting, where the model models some noise or
random fluctuations in the training data is modeled very well,
but it cannot generalize to new data. In our case, since we
follow an inductive training approach using a pre-trained
X3D-M model on the Kinetics-400 data, we suggest that
our models are least influenced by the number of training
samples, and our cross-validation results essentially show the
ability of our models to learn the concept of violence.

Both ACC and AUC metrics show that there are several
inconsistencies in the results across the considered datasets.
To provide deeper insights into our cross-validation results,
we plot the ACC and AUC scores obtained by training on a
specific dataset and averaging the testing scores on the rest of
the datasets in Figures 3 & 4 respectively for both FT and TL
models. Each plot also shows the standard deviation of the
metric scores obtained from the testing datasets, indicated by
the red color lines. According to the metric scores, the trained
FT and TL models on the CV dataset did not generalize well
to other datasets (see bar plots in Figures 3(a) & 4(a)). This
is anticipated since the CV dataset contains only examples
of mass violence, and the other datasets do not contain
many such examples. Also, the trained FT model on the
HF dataset poorly generalized to other datasets, indicating
that the HF dataset does not contain diverse examples of
violence and contains monotonous fighting videos between
hockey players. However, the TL model trained on this
dataset showed better generalization than the FT model as
indicated by the metric scores.

FT and TL models trained individually on datasets - MF,
RLVS, RWF-2K, UCFS & XD-V performed satisfactorily
in our cross-validation tests and generalized well to other
datasets with average ACC scores close to or above 80% and
average AUC scores close to or above 0.8. When considering
both metrics, FT and TL models trained on UCFS and XD-V
datasets exhibited the best generalization ability in our cross-
validation studies. This suggests that these datasets, which
we compiled, contain the most representative and diverse
samples for violent and non-violent actions.

For closer examination, we also conducted leave-one-
out cross-validation tests where we trained our models on
all datasets except one, which was reserved for testing.
The results of these tests are presented in the middle
section of Table 8. The tests suggest that when the CV
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TABLE 8. Cross dataset experiment results - One-on-one cross-validation test results are shown in the top section, leave one out cross-validation test
results are shown in the middle section, and the bottom section shows the performance of our models on the training/testing folds used in
Violence-Net [74] . To compare, ACC scores for Violence-Net using both OF and Pseudo-OF inputs are also provided for relevant datasets.

dataset was left out of the training, the TL model did not
achieve a good ACC score. This is expected because the
TL model extracts features from training videos using a pre-
trained X3D-M model that was trained on the Kinetics-400
dataset, which does not contain many examples involving
crowd participation. However, the FT model achieved decent
accuracy, indicating that the datasets other than CV contain
a sufficient number of examples for learning about violence
involving crowds. In line with the results obtained in the
one-on-one cross-validation tests, leaving out the UCFS or

XD-V datasets from training resulted in poor performance
for the FT model. However, the performance of the TL
model did not drop when these datasets were left out
of the training, indicating that the TL model generalizes
better than the FT model. To confirm this, we collected all
instances of the one-on-one cross-validation tests when a
specific dataset was being tested for further examination.
In Figures 5 and 6, we plot theACC andAUC scores obtained
by averaging the testing accuracy scores on a specific dataset
when all other datasets were used individually for training
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FIGURE 3. ACC scores for each dataset obtained by training on that specific dataset and averaging the testing accuracy scores on the rest of the
datasets. The scores are shown for both FT and TL models. The red lines indicate the standard deviation of the testing scores from the mean value.

FIGURE 4. AUC scores for each dataset obtained by training on that specific dataset and averaging the testing accuracy scores on the rest of the
datasets. The scores are shown for both FT and TL models. The red lines indicate the standard deviation of the testing scores from the mean value.

FIGURE 5. ACC scores for each dataset obtained by averaging the testing accuracy scores when all other datasets are used individually for training. The
average scores are indicated for both FT and TL models. Each plot also includes red lines indicating the standard deviation in ACC scores obtained during
testing.

FIGURE 6. AUC scores for each dataset obtained by averaging the testing accuracy scores when all other datasets are used individually for training. The
average scores are indicated for both FT and TL models. Each plot also includes red lines indicating the standard deviation in AUC scores obtained
during testing.

for both the FT and TL models. Each plot also shows
the standard deviation of the metric scores obtained during

testing, indicated by red lines. Based on these plots, it is
evident that overall, the TL model showed better capability to
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FIGURE 7. The pie chart illustrates the distribution of samples from
different datasets used for training and testing in the combined dataset
experiments.

FIGURE 8. Performance of FT and TL models (left and right respectively)
on all combined dataset shown using ROC curve. Both ACC and AUC
scores show that the FT model performs better than the TL model on this
dataset.

generalize and had lower standard deviation within the testing
accuracy scores for individual datasets when compared to the
FT model.

To the best of our knowledge, results from cross-validation
studies are rarely presented in the literature for violence
detection algorithms. For comparison, we have also included
the cross-validation results from Violence-Net [74] using
both OF and pseudo-OF inputs (columns 2-3) in the Table 8.
Only ACC scores are provided since AUC scores are not
presented in their original study. Also the authors of Violence-
Net only used four datasets in their experiments, so results are
presented only for these four datasets. The comparison results
show that, on average, our TL and FT models consistently
outperformed Violence-Net using both OF and pseudo-OF
inputs. This suggests that our approaches are more accurate
and better able to generalize to unseen scenarios for violence
detection when compared to Violence-Net.

C. EXPERIMENTS WITH ALL COMBINED DATASET
In this section, we describe our experiments using combined
dataset and discuss the performance of the FT and TL models
on this dataset. To ensure a fair distribution of training
samples from each dataset, we selected and grouped the
predefined 80% of the data from each dataset for training
and the remaining 20% for testing. Figure 7 illustrates the
proportion of samples from each dataset. The ROC curves,
including the obtained ACC and AUC scores are presented in

FIGURE 9. Confusion matrices for FT and TL models obtained after testing
on all combined dataset. Results show that TL model produced more
number of combined false negatives & false positives than FT model.

Figure 8. Results from both metrics suggest that our models
performed satisfactorily on this dataset, with the FT model
achieving slightly better performance. It is worth noting again
that the TL model has fewer trainable parameters than the FT
model.

For further analysis, we present the confusion matrices
for both models in Figure 9. The rows of the confusion
matrix represent the true labels, or the expected output,
for the Violent (V) or Non-Violent (NV) classes, while the
columns represent the predicted labels. In our case, the
following are the four numbers presented in the confusion
matrices:

• True Positives (TP) - the number of videos actually
containing violence that were predicted as containing
violence. TP are shown in the first row, first column of
the confusion matrix.

• False Negatives (FN) - the number of videos actually
containing violence that were predicted as not contain-
ing violence. FN are shown in the first row, second
column of the confusion matrix.

• False Positives (FP) - the number of videos actually not
containing violence that were predicted as containing
violence. FP are shown in the second row, first column
of the confusion matrix.

• True Negatives (TN) - the number of videos actually
not containing violence that were predicted as not
containing violence. TN are shown in the second row,
second column of the confusion matrix.

From the confusion matrices, it is evident that the TL
model produced a greater number of combined FP & FN
than the FT model. For detailed evaluation, we also studied
and presented the metric scores and confusion matrices
for individual datasets. Figures 10 & 12 show the results
from the FT model, while Figures 11 & 13 show the
results from the TL model. We note that overall, for both
models, the number of FP & FN is balanced for all datasets,
indicating that the training samples from both the violence
and non-violence classes are balanced. Additionally, from
the confusion matrices for individual datasets, it is clear that
for most of the datasets, the TL model produced a greater
number of combined FP & FN. Our hypothesis is that the
fixed nature of the extracted X3D-M features in the TLmodel
does not provide sufficient flexibility to accurately recognize
the attributes of violent actions.
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FIGURE 10. ROC curves including ACC and AUC scores obtained by testing on individual datasets using FT model trained on all combined dataset.

FIGURE 11. ROC curves including ACC and AUC scores obtained by testing on individual datasets using TL model trained on all combined dataset.

D. ANALYSIS OF THE DATASETS AND CHALLENGES
Even though the CV dataset has a smaller number of exam-
ples, both models trained on the combined dataset performed
well on it. However, our leave-one-out cross-validation
results indicate that when the CV dataset was excluded from
training, the models did not perform well. This suggests that
the CV dataset contains diverse and representative examples
of crowd violence. However, it should be noted that the
dataset only includes examples of violence involving crowds
and the models trained on it did not generalize well to other
types of datasets.

The HF dataset, on the other hand, contains a relatively
larger number of training samples, primarily consisting of
monotonous fighting videos between hockey players. Both

our FT and TL models trained on the combined dataset
performed well on this dataset as well. However, our leave-
one-out cross-validation test revealed that excluding this
dataset did not significantly decrease the accuracy of our
models. Additionally, the model trained solely on the HF
dataset did not generalize well to other datasets, as shown in
figure 3. In line with our previous results on generalizability,
highly monotonic datasets like the HF dataset are less useful
for developing robust deep-learning models for violence
detection.

Since our models use pre-processed input containing
16 uniformly sampled temporal frames, the duration of a
video and the number of frames per second can affect
the model’s performance. The MF dataset has significant
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FIGURE 12. Confusion matrices obtained by testing on individual datasets using FT model trained on all combined dataset.

FIGURE 13. Confusion matrices obtained by testing on individual datasets using TL model trained on all combined dataset.

fluctuations in the FPS values of the training videos (as seen
in table 2), which is not favorable for training our violence
detection models. Additionally, this dataset has the least
number of training samples compared to others and models
trained solely on this dataset did not generalize well to other
datasets. We hypothesize that these drawbacks of this dataset
could be the reason for the decrease in the performance of the
FT model (trained on the combined dataset) on this dataset.
On the other hand, due to better generalizability, the TL
model trained on the combined dataset performed well on this
dataset.

In addition, our leave-one-out cross-validation test shows
that the MF, RLVS, and RWF-2K datasets do not contribute
significantly to model generalizability. The RLVS dataset
mainly contains examples of two people fighting, which are
also present in other datasets such as UCFS and XD-V.
The RWF-2K dataset contains videos that are encoded at
30 frames per second, but we have observed that there are
videos captured at very low fps, resulting in repeated frames
to create 30 fps videos. Additionally, most examples in this
dataset are repetitive in terms of environment and lighting
conditions and lack diversity. However, it is important to
note that the RLVS and RWF-2K datasets contain the highest

FIGURE 14. Schematic diagram of our standalone application.
16 frame-blocks are extracted from each four-second video clip which are
pre-processed and input to FT or TL model.

number of examples, which can lead the model trained on
the combined dataset to better represent scenarios in these
datasets. We hypothesize that due to the aforementioned
drawbacks specific to each of these two datasets, our models
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FIGURE 15. Results of our standalone system using FT model on a video clip from the testing set of the original UCF-Crime dataset. The video clip
includes an instance of violence between two normal events. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted violence
coefficients on 4-second video segments. Row 3: Keyframes extracted from the video.

trained on the combined dataset did not perform very well on
the RLVS and RWF-2K datasets.

Finally, our results show that models trained on our UCFS
and XD-V datasets generalize better to other datasets (as
seen in figure 3). Also, when these datasets were excluded
from training, the performance of our models dropped
significantly, indicating that these datasets contain well-
calibrated, diverse video footage, which is highly relevant
for training practical deep learning algorithms for violence
detection (as seen in table 8). However, these datasets contain
a fewer number of training examples compared to RLVS
and RWF-2K. Additionally, the UCFS and XD-V datasets
contain forms of violence such as explosions and road
accidents, which are not distinctly available in other datasets.
Due to this, we hypothesize that our models trained on the
combined dataset did not perform very well on the UCFS and
XD-V datasets. Overall, with fewer false positives and false
negatives, our FT model performed better on the combined
dataset than the TL model.

E. EXPERIMENTS WITH VIDEO COMPRESSION
Depending on the available hardware resources, it may be
necessary to stream the surveillance video to a remote server
for actual classification and violence detection. Additionally,
depending on the available network resources, there may
not be sufficient bandwidth to stream the video in its native
resolution and quality. In several fieldswhere video streaming
is involved, video compression techniques are commonly
applied to reduce the video bit-rate, which can introduce
artifacts in the video. To study the effect of such video
artifacts on the performance of our TL and FT models,
we generated compressed video streams with varying bit-
rates - 300, 500, 1000 and 1500 Kbps.

For this experiment, we randomly selected two datasets,
RWF-2K and CV and compressed the testing videos from

TABLE 9. Results from video compression experiments - The top section
shows results for the CV dataset and the bottom section shows results for
the RWF-2K dataset using ACC and AUC metrics.

these two datasets. Multiple videos were generated with the
different bit-rates using ffmpeg [105]. We used the models
trained on the combined dataset for this experiment and the
testing results are presented in Table 9. Our study shows that
both TL and FT models did not show significant fluctuations
in the performance and performed well even under extreme
compression (300 Kbps). This suggests that our trained
models did not model the noise in the training videos and
focused on learning the concept of violence.

F. STANDALONE IMPLEMENTATION AND PERFORMANCE
We have implemented a standalone application for violence
detection using the PyTorch deep learning library and using
our FT and TL models that are trained on the combined
dataset. The application design is outlined in Figure 14 and
can be easily extended for usage in surveillance applications.
The incoming video stream is divided into non-overlapping
video segments of four seconds, from which 16 video frames
are extracted per segment using uniform temporal sampling.
These 16-frame blocks are pre-processed and then used as
input for either the FT model or TL model to determine a
violence coefficient for the current segment. The application
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FIGURE 16. Results of our standalone system using FT model on a longer video clip from the testing set of the UCF-Crime dataset with two instances of
violence. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted violence coefficients on 4-second video segments. Row 3: Key frames
extracted from the video.

FIGURE 17. Results of our standalone system using FT model on a complex and longer video sequence from the testing set of the UCF-Crime dataset,
showing a crowd involved in violence at a metro station. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted violence coefficients
on 4-second video segments. Row 3: Keyframes extracted from the video.

was implemented on anUbuntu Linux operating system using
an AMDRyzen Threadripper 1950X 16-core processor and a
Nvidia GeForce GTX 1080 Ti GPU with the CUDA toolbox
for running our trained PyTorch models.

Our results indicate that, when combined with block
extraction and pre-processing, both the FT and TL models
require an average of 0.06 seconds on average to infer a
violence coefficient for each four second-video segment. The
pre-processing was implemented on the CPU, consuming an
average of 0.04 seconds. Therefore, the average time required
to run the FT or TL model is 0.02 seconds. It should be
noted that, the dense or fully connected layers of the models
consume minimal computational resources in practice. As a

result, even though the TL model has more parameters than
the FT model, the average time required to run both models
is similar.

To give a thorough understanding of the performance
of our standalone system, we have graphically represented
the progression of violence coefficients over time using
the FT model that showed the most optimal results on the
combined dataset. In figures 15 to 19, we illustrate our
classification outcomes on selected video samples that exhibit
the capability of our system in identifying violence. Each
figure comprises of three sections: the top row displays the
actual graph of violence coefficients over time, where the
coefficients are set to one during the occurrence of violence.
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FIGURE 18. Results of our standalone system using FT model on a video clip from the testing set of the UCF-Crime dataset that contains a single and
short instance of violence in the form of shooting. Row 1: Ground truth of violence coefficients over time. Row 2: Predicted violence coefficients on
4-second video segments. Row 3: Keyframes extracted from the video.

FIGURE 19. Results of our standalone system using FT model on a video compiled from 3 random videos of Smart-City CCTV Violence Detection Dataset,
one violent and two non-violent videos concatenated in such a way that the violent video is placed in between two non-violent videos. Row 1: Ground
truth of violence coefficients over time. Row 2: Predicted violence coefficients on 4-second video segments. Row 3: Keyframes extracted from the video.

The middle row illustrates the predicted violence coefficients
by our FT model on a series of non-overlapping video
segments with a duration of four seconds. The bottom row
shows key frames extracted from the videos.

Figures 15 to 18 demonstrate the performance of our
standalone system on video clips from the testing set
of the original UCF-Crime dataset. These video clips
include different scenarios such as instances of violence
amidst normal events (as illustrated in figure 15), multiple
occurrences of violence (as illustrated in figure 16), a crowd
engaging in violence at a metro station (complex and long
video sequence as illustrated in figure 17), and a single, short
instance of violence in the form of shooting (as illustrated in

figure 18). The predicted violence coefficients align closely
with the ground truth, indicating the algorithm’s capability to
accurately identify and predict instances of violence in video
segments of various lengths and complexities.

To further evaluate our system, we also created a video
sequence by combining random video clips from the
Smart-City CCTV Violence Detection Dataset [106], which
was not used in our study. As shown in figure 19, our results
exhibit outstanding performance on this compiled sequence
as well. This illustrates the adaptability of our algorithm and
its capability to perform well on new and unseen data.

Figures 15 to 19 also demonstrate the areas where
our standalone system falls short, which require further
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improvement in future research. We have noticed certain
situations where our tested FT model triggers false alarms
in the standalone implementation. For instance, when a
person suddenly starts running or crawling (as shown in
the keyframes from the 28th second in figure 15), it is
detected as violence, but with a lower level of violence
coefficient. In the original UCF-crime dataset, activities
such as crawling or sudden fleeing are not considered
violence. Nevertheless, in real-world surveillance scenarios,
such actions may appear suspicious and require more
investigation.

In situations where there is occlusion and the individuals
or objects engaged in violence are only partially visible, the
model may have difficulty identifying the violence. This can
be observed in the predicted violence coefficients between the
32nd and 36th second in figure 16, where a person is holding
a gun in his hand which is partly visible and hidden by his
body.

As previously noted, videos that include people in crowds
situated closely together can lead to inaccuracies in our
system. Figure 17 between seconds 76 and 80 illustrates this
scenario, where the predicted violence coefficient suddenly
falls to zero even though violence is happening during this
time. As mentioned earlier, our training dataset has limited
examples of crowds, and including more such examples in
future work is suggested.

V. CONCLUSION AND FUTURE WORK
In this work, we addressed the problem of efficient violence
detection for automated surveillance applications by adapt-
ing the computationally lightweight X3D-M deep learning
architecture for learning and detecting violence patterns from
videos. We proposed two architectures, FT and TL, for
classifying video clips containing violence, which leverage
action recognition features learned from the Kinetics-400
dataset.

In order to perform a detailed analysis and performance
evaluation of the proposed approaches, we collected and
extended seven different datasets in our study. In the past,
several deep learning-based methods for violence detection
have focused on datasets involving mostly fighting between
two or more people for experiments. However, it is important
to note that the spectrum of actions and visual patterns
representing violence is far wider. For example, violence
happening between a group of people in the form of a fight
is visually very different from violence involving the use
of objects such as a gun or violence involving explosions.
To also incorporate such cases, we annotated several
videos from the UCF and XD-Violence datasets for our
experiments.

Using our collected videos, the FT model optimizes the
X3D-M parameters learned from the Kinetics-400 dataset,
while the TL model extracts spatio-temporal features first,
without modifying the X3D-M parameters (trained on the
Kinetics-400 dataset), to train multiple fully connected
layers. Our experiments with individual datasets show

that both models performed well in terms of ACC and
AUC scores on the collected datasets. However, the FT
model performed better than most of the state-of-the-art
methods on popular datasets with relatively fewer model
parameters.

In the previous works on violence detection, cross-dataset
evaluations have not been thoroughly studied. We argue
that these evaluations are crucial for understanding the
prominence of various datasets as well as developed deep
learning models. In this work, we bridge this gap by
providing comprehensive evaluations, including one-on-one
cross-dataset validation and leave-one-out cross-validation.
Our cross-dataset tests showed that the TL model generalizes
better to unseen scenarios than the FT model. However, when
tested on the combined dataset, the FT model achieved better
performance, while the TL model produced a higher number
of combined false positives and false negatives. Further
tests on individual datasets show that models trained on the
combined dataset did not perform well in several cases when
compared to the performance of models trained on individual
datasets. This highlights the inconsistencies in the publicly
available datasets for violence detection. Additionally, results
from comparisons with several methods in literature have
shown limitations of both the developedmethods and existing
datasets.

We note that the existing public datasets for violence
detection are inconsistent in terms of the video duration,
FPS, the number of videos available for training and
testing and the forms of violence depicted. Furthermore,
these existing datasets are not particularly representative of
surveillance applications. Our results indicate that, in the
future, there is a great need for the development of diverse and
meaningful large-scale datasets, including footage from real-
world surveillance, to make these technologies practically
feasible. In the future, we plan to take steps towards
constructing such a large-scale dataset. Once such a datasets
is available, we also plan to re-evaluate the models presented
in this work for more general results.

We also presented a computationally light and functional
standalone system architecture for implementing the pro-
posed models in practical surveillance applications. In this
architecture, we extracted and evaluated non-overlapping
video segments having a duration of four seconds from the
incoming video stream. This strategy may fail in cases where
an event of violence begins at the end of a segment and ends
before the end of the next segment. In the future, we also
plan to develop smart strategies to handle such scenarios,
such as reducing the size of video segments adaptively and/or
using overlapped segments. The main focus in developing
such strategies will be on achieving the best computational
speed and accuracy trade-off.
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