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Abstract
In forensic voice comparison, deep learning has become widely popular recently. It is 
mainly used to learn speaker representations, called embeddings or embedding vec-
tors. Speaker embeddings are often trained using corpora mostly containing widely 
spoken languages. Thus, language dependency is an important factor in automatic 
forensic voice comparison, especially when the target language is linguistically very 
different from that the model is trained on. In the case of a low- resource language, 
developing a corpus for forensic purposes containing enough speakers to train deep 
learning models is costly. This study aims to investigate whether a model pre- trained 
on multilingual (mostly English) corpus can be used on a target low- resource language 
(here, Hungarian), not represented by the model. Often multiple samples are not avail-
able from the offender (unknown speaker). Samples are therefore compared pairwise 
with and without speaker enrollment for suspect (known) speakers. Two corpora are 
used that were developed especially for forensic purposes and a third that is meant 
for traditional speaker verification. Speaker embedding vectors are extracted by the 
x- vector and ECAPA- TDNN techniques. Speaker verification was evaluated in the 
likelihood- ratio framework. A comparison is made between the language combinations 
(modeling, LR calibration, and evaluation). The results were evaluated by Cllrmin and 
EER metrics. It was found that the model pre- trained on a different language but on 
a corpus with a significant number of speakers can be used on samples with language 
mismatch. Sample duration and speaking style also seem to affect the performance.

K E Y W O R D S
AusEng, ECAPA, forensic voice comparison, ForVoice120, language dependency, speaker 
verification, speaking style, VoxCeleb, x- vector

Highlights

• Pre- trained speaker recognition models are evaluated in forensic voice comparison scenario.
• Evaluation was done on datasets created especially for forensic purposes.
• Language mismatch between training and forensic datasets is not found using deep learning 

models.
• Performance increase was found using multiple samples from the known speaker.
• Sample duration and speaking style mismatch was found to affect the performance.
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1  |  INTRODUC TION

The fields of speaker identification (SI) and speaker verification (SV) 
(together: speaker recognition) have been studied for a long time, 
and the literature is still growing [1]. Several studies have been con-
ducted in this field of research, resulting in a number of techniques 
for both topics. Over time, state- of- the- art technologies are con-
stantly changing as new ideas emerge. Until recently, i- vectors were 
considered the state- of- the- art technique in speaker recognition [2], 
but with the advent of deep learning methods and the emergence 
of large speech corpora, novel classification and feature extrac-
tion methods have been developed (e.g., d- vectors [3], j- vectors [4],  
x- vectors [5], and ECAPA- TDNN networks [6]).

In speaker identification, the task is to identify an unknown 
speaker from a set of already known speakers. The closed set (or 
in- set) scenario is when all speakers within a given set are known. 
On the other hand, we talk about open set (or out- of- set) speaker 
identification when the set of known speakers does not contain po-
tential test subjects [7].

In speaker verification, we verify that the speaker is who he/
she says he/she is by comparing two (or more) speech samples/ut-
terances and evaluating whether the speakers in the two samples 
are the same [7]. This is traditionally done, in general forensic voice 
comparison practice, by comparing the test sample or samples with 
the given speaker's sample or samples and a universal background 
model [8]. Another way to compare whether a pair of speakers is 
of the same origin is to classify the pairs as ‘same’ or ‘different’ and 
create a model accordingly. This is feasible for sample- by- sample 
comparisons, as a model can be trained on a dataset of sample pairs 
to predict whether speakers are identical, rather than using a UBM. 
From this definition, it follows that technically forensic speaker 
comparison is part of the speaker verification scheme, although the 
‘known’ speaker in this case is not specifically known. A voice sample 
can be associated with a hypothesized speaker. The aim is to verify 
that the identity of this speaker (suspect) matches the identity of 
another unknown speaker (offender). Often the purpose of foren-
sic voice comparison is also to verify whether the identities of two 
unknown speakers match. In practice, this verification is carried out 
using the same method.

A paradigm shift is taking place in forensic science and practice 
[9, 10], which allows for automatic and semi- automatic evaluation 
of evidence using different methods and measurement types (e.g., 
DNA, fingerprinting) [11, 12]. This new paradigm, the so- called like-
lihood ratio (LR) framework, supports a processing pipeline that can 
be easily computed for multiple types of evidence. Forensic voice 
comparison, where speaker recognition techniques are adapted to 
the requirements of the framework, is an area where this new par-
adigm can be applied. For a piece of evidence, it produces a ratio of 
the likelihood or probability density (at a given point) of same and 
different speakers [13– 15].

Considering a forensic voice comparison system, we can evaluate 
comparisons of same and different speaker origins in two ways [16]: 
(1) there are multiple samples available from unknown and known 

speakers, and (2) samples can be compared pairwise. It naturally fol-
lows that the first scheme can achieve higher accuracy. However, 
there are many cases where multiple samples are not available for 
comparison (only a single voice recording fragment is available). 
Several studies have been conducted using short utterances [17– 20],  
but these generally do not meet the requirements of forensic eval-
uation: the evaluation datasets do not follow a strict protocol [21] 
or use techniques that have already been outperformed by deep 
learning techniques in regular speaker recognition. This study aims 
to investigate this scenario in two ways: only one sample is avail-
able for the unknown speaker and (i) only one or (ii) multiple samples 
are available for the known speaker. An example of (i) is when one 
speech sample is available for both the offender and the suspect, 
and (ii) is when one sample is available for the offender, but multiple 
samples can be recorded for the suspect. Therefore, in this paper, we 
focus on the pairwise comparison of samples.

In the LR framework of forensic voice comparison, the likelihood 
of speech evidence is calculated according to two competing hy-
potheses, e.g., (1) “What is the possibility that the sample in ques-
tion originates from the suspect?” and (2) “What is the possibility 
that the sample in question originates from someone else?”. The 
ratio of these expressions expresses the strength of the evidence 
(Equation 1). LR is the likelihood- ratio, E is the evidence, Hso is the 
hypothesis of same- origin speakers, and Hdo is the hypothesis of 
different- origin speakers.

Several large- scale corpora are available for speaker recog-
nition [22– 24], and the NIST speaker recognition challenge [25] 
is also often held. However, for a forensic voice comparison sys-
tem, there are specific needs [21] that are not satisfied by these 
corpora. This paper uses a speech dataset developed for foren-
sic expert purposes to evaluate speaker verification systems and 
analyze their sensitivity to sample length and speech style. The 
goal here is to compare the performance of state- of- the- art deep 
learning feature extraction models pretrained on a large dataset 
with models trained in a low- resource language and evaluate them 
in the low- resource language. This demonstrates the usefulness 
of pre- trained models with language mismatches (between the 
trained model and the test samples) for forensic voice compar-
isons for institutions such as public services in countries where 
sufficient speech data cannot be collected to adequately train a 
deep learning model.

Feature extraction methods based on deep learning (such as 
TDNN architectures) have shown better performance than pre-
vious approaches (GMM- UBM, i- vector). However, these tech-
niques require large amounts of training data to produce suitable 
models. Low- resource languages do not have the data needed 
to train such models. Thus, the possibility of using pre- trained 
models for speaker recognition in smaller languages naturally 
arises. Kleynhans and Bernard [26] found a language- dependent 

(1)LR =

P
(
E|Hso

)

P
(
E|Hdo

)

 15564029, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1556-4029.15250 by N

ational U
niversity O

f Public Service - N
em

zeti, W
iley O

nline L
ibrary on [20/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  873SZTAHÓ and FEJES

tendency, but they used an outdated technology for speaker veri-
fication. However, the language dependence of deep learning fea-
ture extraction methods (such as the one used in this study) may 
be negligible due to the large amount of data on which they are 
trained. Even if the samples are from a single language, the deep 
learning model may be able to extract information robust enough 
to use an accurate speaker representation in another language. 
There have been studies that have investigated this cross- linguistic 
pattern, but none of them fit the framework of forensic voice com-
parison. Li et al. [27] used synthesized speech for evaluation, and 
the comparison was pairwise. In their study, Chojnacka and col-
leagues [28] conducted multilingual experiments with a multilin-
gual training dataset, which is not the main practice we want to 
investigate. The language dependency of the i- vector technique 
has already been investigated [29, 30], but newer deep learn-
ing techniques have outperformed the older i- vector technique. 
Fabien and Motlicek [31] investigated the performance of x- vector 
models in forensic scenarios, but with acted speech, and the study 
did not focus on the effect of multilingualism (although the data-
set was multilingual). The study by Skarnitzl and colleagues [32] is 
specifically related to forensic research and evaluated multilingual 
scenarios but uses an earlier version of the VOCALIZE [33] system 
based on the obsolete i- vector.

There are certain factors in a speech material that can affect 
the effectiveness of voice comparison. It may be important if dif-
ferences in speaking style and sample duration impair performance. 
Few studies have focused on whether these factors actually matter 
[34– 36], although if they do, it may bias the evaluation of the evi-
dence. In the present study, we use the three speech styles available 
in the dataset developed for forensic claims and compare the results 
depending on sample duration.

In this study, we investigate (1) how a pre- trained deep learn-
ing speaker embedding model performs in a low- resource language 
that is not the same as the one in which the model was trained; (2) 
whether and how much performance gains are obtained when more 
samples are available from the known speaker (suspect); (3) how 
performance metrics depend on sample length; and (4) how perfor-
mance metrics depend on the speech style (available in the dataset). 
The results may be helpful to forensic services or institutes planning 
forensic voice comparisons.

The structure of the paper is as follows: the methods, datasets, 
evaluation metrics, and scenarios used in the study are described in 
the next section. This is followed by a presentation of the results. 
Then, an overview of the resulting evaluations is given, with brief 
concluding reflections.

2  |  EMBEDDING MODEL S

In this study, two techniques were used to extract embedding vec-
tors as features from speech samples: the x- vector and ECAPA- 
TDNN. These methods take a speech sample as input and output 
a vector that can be imagined as a vector representation of the 

speaker in the sample. The deep learning- based feature extrac-
tion models were applied using the SpeechBrain toolkit [37]. In this 
paper, we use three embedding models to evaluate cross- lingual 
speaker verification schemes. To compare pre- trained models on 
the VoxCeleb dataset (details in the Datasets section), the param-
eters of the custom- trained models closely followed the method of 
these pre- trained models. The method includes the input sound file 
format, extracted features, network structures, and data augmen-
tation. These are detailed in the following subsections and in the 
Methods section. The pretrained models were downloaded from 
Huggingface [38, 39].

2.1  |  The x- vector

A deep learning- based feature extraction method called x- vector 
was developed primarily for speaker verification [5]. It is based on 
a multilayer DNN architecture (with fully connected layers), with a 
different temporal context (which they call “frames”) in each layer. 
Because of the wider temporal context, the architecture is called 
time- delay NN (TDNN). The TDNN embedding architecture is 
shown in Figure 1 and Table 1.

The first five layers work on speech frames with a small temporal 
context centered on the current frame t. For example, the frame in-
dexed as 3 sees a total of 15 frames, due to the temporal context of 
the previous layers. After training with the speaker identifiers used 

F I G U R E  1  The x- vector DNN embedding architecture in [5]. The 
two parts: frame level (with the five frame layers) and segment level 
(with segment 6, segment 7, and softmax).
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874  |    SZTAHÓ and FEJES

as the target vector, the output of the segment6 (“x- vector”) can be 
used as an embedding vector.

2.2  |  ECAPA- TDNN

The ECAPA- TDNN model is the extension of the x- vector model 
architecture in three ways [6]: channel-  and context- dependent 
statistics pooling, 1- Dimensional Squeeze- Excitation Res2Blocks 
(1D SE- Res2Block) and multi- layer feature aggregation and 

summation. The channel-  and context- dependent statistics pool-
ing enables the network to focus more on speaker characteristics 
that are not activated at the same or similar time instants, e.g., 
speaker- specific features of vowels versus speaker- specific fea-
tures of consonants. Using the SE- Res2Block (taken from the field 
of computer vision), the limited frame context of the x- vector (15) 
is extended to global properties of the recording. This enables the 
network to see a larger context than the original x- vector archi-
tecture by applying 1D convolution layers. The multi- layer feature 
aggregation means that not only the activation of the selected 
distinguished deep layer is used as a feature map (as in x- vector), 
but the shallower layers (here: SE- Res2Blocks) are also concate-
nated, because they hold additional information that helps form-
ing speaker vectors that may be lost in the deeper layers, so they 
also hold information about the speaker identity. The architecture 
is shown in Figure 2. For detailed information on the structure and 
its baseline evaluation, see [6].

3  |  METHODS

3.1  |  Embedding models

3.1.1  |  The x- vector

The dimension of the x- vectors was set to 512, and the input was 
24 mel- frequency band energies. The training was done for 35 ep-
ochs with early stopping for which the criterion was the minimum 
loss measured on a validation set. The training was done with 
Adam optimizer with a starting learning rate of 0.001. The x- vector 
model pre- trained on the VoxCeleb dataset was downloaded from 
Huggingface, and all custom- trained models followed the same input 
format and network structure. All samples were resampled to 16 kHz 
before feeding them to the network.

3.1.2  |  ECAPA- TDNN

Following the method of the model pre- trained on the VoxCeleb 
dataset, the dimension of the extracted embedding vector in the 
case of custom- trained models was 192, and the input was 80 mel- 
frequency band energies. The training was done for 35 epochs with 
early stopping for which loss was measured on a validation set. The 
training was done with Adam optimizer with a starting learning rate 
of 0.001. All samples were resampled to 16 kHz before feeding them 
to the network.

3.2  |  Cosine distance and enrollment

The cosine distance was used to evaluate the similarity of the em-
bedding vectors extracted from the sample pairs. Cosine distance 
was chosen because it enables comparison of single samples, unlike 

TA B L E  1  The x- vector DNN layer architecture [5]. It contains the 
layers, contexts, and the input– output dimensions.

Layer Layer context
Total 
context

Input × 
output

Frame1 [t − 2, t + 2] 5 120 × 512

Frame2 {t − 2, t, t + 2} 9 1536 × 512

Frame3 {t − 3, t, t + 3} 15 1536 × 512

Frame4 {t} 15 512 × 512

Frame5 {t} 15 512 × 1500

Stats pooling [0, T} T 1500 T × 3000

Segment6 {0} T 3000 × 512

Segment7 {0} T 512 × 512

Softmax {0} T 512 × N

F I G U R E  2  The ECAPA- TDNN layer architecture and its SE- 
Res2Block (taken from [6]).

 15564029, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1556-4029.15250 by N

ational U
niversity O

f Public Service - N
em

zeti, W
iley O

nline L
ibrary on [20/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  875SZTAHÓ and FEJES

the commonly used PLDA, which needs multiple enrollment samples 
for a speaker. The cosine distance is commonly used in speaker veri-
fication measurements. It is simply the calculation of the normalized 
dot product of target and test vectors (wtarget and wtest), which gives a 
match score (Equation 2).

If multiple samples are available for a known speaker, it is com-
monly advantageous to create an enrollment vector or model from 
these. In the present study, due to the use of cosine distance, the 
embedding vectors were averaged per speaker to get a mean em-
bedding vector for each speaker. In the results, we compared the 
performance with and without using speaker enrollment. Speaker 
enrollment was done by averaging the embedded vectors per 
speaker on the session 1 samples (known speakers). The average 
vectors were then compared to all of the session 2 samples (un-
known speakers).

3.3  |  LR score calculation

To calculate LR scores, logistic regression was used (implemented 
with the Python sklearn package). The cosine distances were calcu-
lated for sample pairs and arranged according to the same speaker 
and different speaker labels, used for training logistic regression 
models. The output of the logistic regression model is the probability 
of the same speaker decision. Since Hso and Hdo in Equation 1 are mu-
tually exclusive and exhaustive events, after weighing input classes 
so that P

(
Hso

)
= P

(
Hdo

)
, P
(
E|Hdo

)
 can be alculated as 1 − P

(
E|Hso

)
 [40, 

41]. This enables the calculation of LR in Equation 1. Figure 3 shows 
an example of a trained logistic regression model. Distributions of 
same and different origin vector pairs are shown in blue and yellow, 
respectively. The figure shows the P

(
E|Hso

)
 probability. This implies 

that the LR score is 1 at the intersection of the distributions, because 
P
(
E|Hso

)
= P

(
E|Hdo

)
.

3.4  |  Datasets

Forensic voice comparison performance measures were evalu-
ated on two forensic datasets (multiple speaking styles per 
speaker, multiple recording sessions per speaker): the Hungarian 
ForVoice120+ corpus and the Australian English AusEng [42] 
dataset. These followed the protocol specified by Morrison et al. 
[21]. Both datasets contain multiple speech tasks per speaker each 
modeling a different speaking style and (at least) two recording 
sessions per speaker with at least 2 weeks' delay. See Table 2 for 
a description of the datasets. The ForVoice120+ dataset contains 
120 speakers, representing a low- resource language dataset. The 
AusEng corpus contains more than 500 speakers. Figure 4 shows 
the age distribution according to ranges defined in the AusEng 
dataset. As the figure shows, the ForVoice120+ used for evalu-
ation mainly represents the 18– 35 age range. However, this does 
not affect the statements that can be derived according to lan-
guage dependency. Both corpora contain three speech tasks: free 
dialogue, information exchange, and monologue (simulating inter-
rogation). The datasets were split into multiple parts. 40 speakers 
of the ForVoice120+ were used for LR calibration, and the remain-
ing 80 speakers were used for evaluation. Since ForVoice120+ 
contains only a limited number of speakers, the Hungarian speaker 
embedding x- vector and ECAPA- TDNN models were trained on 
different samples, not explicitly made for forensic purposes: BEA 
[43], MRBA [44] and newly recorded samples with read text and 
free speech. A total of 632 speakers were used for the training; 
the total duration of the speech was 27.31 h. For the AusEng data-
set, 395 speakers were randomly selected for embedding model 
training, 80 speakers for LR calibration, and 80 for evaluation.

In addition to the embedding models trained on the Hungarian 
dataset and the AusEng corpus, we also used pre- trained models 
on the VoxCeleb2 [23] corpus (available in the Huggingface reposi-
tory) to extract embedding feature vectors, as the corpus contains 
more than 6000 speakers and represents the largest available 
model for speaker recognition. The two large- scale datasets rep-
resent a language that is commonly available and has many re-
sources. Available details on the VoxCeleb dataset are also shown 
in Table 2. The dataset contains materials collected from YouTube. 
Exact information on languages included in the VoxCeleb is not 
available. The creators claim that it is a multilingual dataset, but 
only limited nationality information is made available for the data-
set, not the language spoken on the original YouTube videos. It 
mainly represents widely spoken languages, and therefore the 
target low- resource language (Hungarian) is not represented. Age 
distribution is also not available. Hechmi et al. [45] created an en-
richment for the VoxCeleb in which age information is included as 
well. Figure 4 shows the distribution of age by the same ranges 
used in AusEng based on this enrichment. The datasets used to 

(2)CDS
�
wtarget,wtest

�
=

wtarget ⋅ wtest

‖wtarget ‖ ⋅ ‖wtest ‖

F I G U R E  3  A trained logistic regression model example. Blue 
and yellow lines show the distributions of cosine distances of 
embedding vector pairs of same and different speaker origin, 
respectively. 
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876  |    SZTAHÓ and FEJES

train the embedding models were split into training, validation, 
and test sets in a ratio of 60– 20- 20%. The early stopping criteria 
were measured on the validation set and used to check for over-
fitting on the test set (comparing the results on the test set and 
the validation set).

3.4.1  |  Database splitting

The recordings of the dataset used for Hungarian embedding model 
training, ForVoice120+ and the AusEng datasets were split into mul-
tiple parts with various lengths. The possible duration of a part was 
{2,3,4,5,6,7,8,9,10} s. The number of samples was (almost) evenly 
distributed according to the durations. First, all silence parts were 
removed from the recordings, and then splitting was done with 10% 
overlap between adjacent parts. There was no influence on the sam-
ple lengths of the VoxCeleb2 dataset because pre- trained models 
were used in those cases. The final distributions of sample durations 
are shown in Figure 5. The figure also shows the exact number of 
samples per durations used.

3.4.2  |  Augmentation

Following the method of the pre- trained models available on 
Huggingface, data augmentation was applied to the Hungarian 
samples and the AusEng dataset during model training: the samples 
were augmented with every combination of time- distorted (dura-
tion was scaled with factors 0.95 and 1.05) and noise- distorted (with 
15 dB white noise) variants. To compare the newly trained models 

with these previously trained models, the same augmentation was 
applied across all datasets used in the study. We do not have any 
control on the pre- trained models in this regard, but we have used 
the same method for training our custom models as described by 
their creators. According to the results reported on the pre- trained 
models, this augmentation increases the robustness of the models.

3.5  |  Evaluation metrics

The outputs of the different model configurations were evalu-
ated in terms of equal error rate (EER) of speaker verification (EER 
is the level at which false acceptance rate and false rejection rate 
are equal, commonly used in biometric security systems) and log- 
likelihood- ratio cost (Cllr, Equation 3) [46] defined as

where Nso and Ndo are the number of same- origin and different- origin 
comparisons and LRso and LRdo are the likelihood ratios derived from 
same- origin and different- origin comparisons. Cllr is a function that 
measures the balance of LR scores of same- origin and different- origin 
comparisons. Ideal same- origin and different- origin comparisons have 
log LR > 0 and log LR < 0, respectively. Incorrect comparisons (which 
are not as ideal as the inequalities mentioned above) result in higher 
Cllr. The better the performance of a forensic comparison system, the 
more correct LR values it produces, the lower Cllr it achieves, supplying 
the evidence magnitude. In addition to Cllr, the minimum Cllr is also 
reported, which is the generalization of the original cost function and 

(3)Cllr =
1

2

(
1

Nso

∑Nso

i=1

(
1 +

1

LRsoi

)
+

1

Ndo

∑Ndo

j=1

(
1 + LRdoj

))

TA B L E  2  Metadata for the For Voice120+ and AusEng datasets.

Dataset
Total number of 
recordings

Number of recording 
sessions

Number of 
speakers (male/female)

Total speech 
length

Number of recordings 
per speaker

ForVoice120+ 720 2 120 59/61 ~32 h 6

AusEng 3899 2 or 3 555 239/316 ~311 h 3– 9

VoxCeleb 1,128,246 not controlled 6112 3728/2384 ~2442 h not controlled

F I G U R E  4  Distributions of speaker age according to ranges defined in the AusEng dataset. 
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produces application- independent Cllr values by optimizing the deci-
sion threshold [47]. While Cllr is a measure of both discrimination and 
calibration, the calibrated Cllr has any calibration mismatch optimized 
away, it is a now pure measure of discrimination. The EER is a concise 
summary of the discrimination capability of the detector. As such, it is 
a very powerful indicator of the discrimination ability of the detector, 
across a wide range of applications. However, it does not measure cal-
ibration, the ability to set good decision thresholds [46]. Results are 
also displayed on Tippett plots, which show the proportion of correctly 
identified same and different speaker origin pairs (a visualization often 
used in forensic comparison).

3.6  |  Evaluation scenarios

Multiple phenomena were investigated:

• language mismatch,
• speaker enrollment,
• sample duration mismatch and
• speech task mismatch.

Datasets containing different languages were used to train em-
bedding models, calibrate LR scores, and evaluate speaker verifica-
tion, all without and with enrollment. The best performing scenario 
was broken down into utterance durations and speech tasks to see 
their effect on forensic voice comparison. Training of embedding 
models and calibration of LR scores were performed on samples 
from all sessions. The evaluation compared samples from different 
sessions: session 1 samples were used as known speaker samples 
and session 2 as unknown speaker samples. Sessions were recorded 
with a delay of at least 2 weeks.

For the best performing dataset combination, the results are 
broken down by sample durations and speech tasks. The Cllrmin 
and EER values (without enrollment) are organized into matrices 
of the examined phenomena. For sample durations, rows and col-
umns show results calculated by durations from 2 to 10 s. A value 
of a cell was calculated by filtering the sample- pair comparisons 
according to the known and unknown speaker sample lengths. For 
speech tasks, the rows and columns of the matrices contain the task 
numbers (1: free dialogue, 2: information exchange, 3: monologue) 

and the cells contain the results of the respective task pair. Using 
speaker enrollment, multiple sample lengths and speech tasks were 
not applicable for the known speakers, as the speaker vectors were 
averaged over all samples in session 1. The results are therefore 
vectors in this case. However, this does not pose a problem because 
it represents the real- life situation where multiple recordings can 
be obtained from a suspect (known speaker) and the enrollment can 
be performed.

4  |  RESULTS

4.1  |  Effect of languages used for model training 
and LR calibration

Table 3 shows the results without speaker enrollment using differ-
ent dataset combinations. The ECAPA- TDNN models outperformed 
the x- vector in all cases. Significant decreases are observed in all 
metrics. The best performing combinations were obtained when 
the VoxCeleb dataset was used to train the embedding models 
(pre- trained models): 3.1% EER and 0.122 Cllrmin values for ECAPA- 
TDNN. This is a good value compared to the state- of- the- art results 
on short utterance comparisons. The LR calibration set did not make 
any difference. The language difference also did not reduce the 
performance when comparing the evaluation sets. We even found 
slightly higher metric values using the ForVoice120+ than using 
the AusEng dataset (same language although different dialect). The 
Tippett plot of the best performing case is shown in Figure 6.

4.2  |  Effect of enrollment

The same dataset combinations were repeated using speaker enroll-
ment. The results are shown in Table 4. The main tendencies (differ-
ences in embedding vector technique, dataset used for embedding 
models, evaluation datasets) are the same as before. The ECAPA- 
TDNN outperformed the x- vector in this case as well. The language 
differences did not cause performance degradation. Again, the pre- 
trained models available on the VoxCeleb dataset performed best. 
The lowest EER is 1% with a Cllrmin of 0.045. The Tippett plot for this 
case is shown in Figure 7.

F I G U R E  5  Distributions of sample durations in the datasets used for the study. 
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4.3  |  Effect of sample duration

Of the two best performing cases, the Hungarian was selected to ex-
amine the impact of sample duration as it is a low- resource language. 
Figures 8 and 9 show the Cllrmin and EER values (without and with 
enrollment). As expected, the longer the duration of the sample, the 
better the results. If no enrollment is used, instead of a global 3.1% 
EER, an EER of 1.1% was obtained for the 10 versus 10 case. On 
the other hand, the shortest case (2 vs. 2) was 5%. However, if we 
consider that this is a comparison of the 2- s samples of the unknown 
and the known speakers, 5% might be an acceptable result in real 
life. Using speaker enrollment, samples of 10- s duration achieve an 
EER of 0.2%. The shortest samples go up to 1.6%.

4.4  |  Effect of speaking tasks

The results of the best performing dataset combinations were also 
broken down into speech task combinations. The Cllrmin and EER val-
ues are shown in Figures 10 and 11. Based on the results, task 3 versus 
task 3 (monologue, describing the events of the previous day of the 
speaker, EER: 1.8%) has the lowest EERs, while the highest values are 
obtained in the cross- task combinations (e.g., task 1 vs. task 2, EER: 
3.6%). The results show the same trend for the speaker enrollment. 
The use of monologue gives the best results (0.8% EER) and the infor-
mation exchange the worst, although only slightly higher (1.2% EER).

5  |  DISCUSSION

In the present study, language mismatch effects were examined 
in terms of the forensic voice comparison perspective using deep 
speaker embeddings. The aim was to assess whether language dif-
ferences matter in voice comparison and to investigate whether a 
model pre- trained on a large- scale dataset with language different 
from the target samples can be used for forensic voice compari-
son. The results show that it does. The lowest EER (3.1% and 1.0% 
without and with speaker enrollment, respectively) was obtained 
with the model pre- trained on the VoxCeleb dataset, evaluated on 
the Hungarian ForVoice120+ corpus. This was even better than 
evaluating the model on the English AusEng dataset. Although the 
VoxCeleb dataset can be considered multilingual, according to the 
creators, but only nationality information on speakers is available. 
Based on this information, widely spoken languages are repre-
sented that do not contain the target language used in this study 
(Hungarian). Therefore, it can be stated that language difference 
does not degrade the performance of the given technique based on 
deep learning embeddings. It should be noted that for deep learning 

F I G U R E  6  Tippett plot of dataset combination (ECAPA- 
TDNN pretrained on VoxCeleb and LR score calibration on 
ForVoice120+) with lowest Cllrmin. 

TA B L E  3  Speaker verification results obtained with models of different dataset combinations.

Ealuation language/
dataset

Embedding model 
language/dataset

LR calibration 
language/dataset Model Cllr Cllrmin Cllrcal EER

Hungarian/ForVoice120 Hungarian Hungarian/ForVoice120 x- vector 0.632 0.601 0.031 0.189

ECAPA- TDNN 0.405 0.401 0.005 0.116

English/AusEng Hungarian/ForVoice120 x- vector 0.567 0.537 0.031 0.167

ECAPA- TDNN 0.253 0.249 0.004 0.069

English/AusEng English/AusEng x- vector 0.581 0.537 0.044 0.167

ECAPA- TDNN 0.629 0.249 0.380 0.069

VoxCeleb Hungarian/
ForVoice120

x- vector 0.365 0.349 0.016 0.102

ECAPA- TDNN 0.127 0.122 0.005 0.031

VoxCeleb English/AusEng x- vector 0.381 0.349 0.032 0.102

ECAPA- TDNN 0.168 0.122 0.046 0.031

English/AusEng English/AusEng English/AusEng x- vector 0.616 0.575 0.041 0.183

ECAPA- TDNN 0.184 0.182 0.001 0.048

VoxCeleb English/AusEng x- vector 0.511 0.481 0.029 0.150

ECAPA- TDNN 0.220 0.206 0.014 0.053

The best results are highlighted in bold.
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techniques, it is generally useful to have as many training samples 
as possible. Of course, if there were as many samples of the target 
language as in the case of VoxCeleb, the performance of the target 
language model would also improve. The results presented here are 
intended to support the fact that if there are not enough samples 
available (which is typical for low- resource languages), one can also 
use a model in a different language. The language of the corpus used 
for LR calibration does not seem to affect the performance. Among 
the two deep learning architectures used, the models structured by 
the ECAPA- TDNN architecture perform better than the x- vector in 
all corpus combinations. Although this was expected since ECAPA- 
TDNN inherently performs better, it was used here without the 

LDA/PLDA block. This should be considered when comparing re-
sults. This is in line with what Desplanques et al. reported [6].

Considering the speaker enrollments, further performance gains 
can be obtained. The results show that (unsurprisingly) when more 
samples are available from the suspect, it is better to use speaker 
enrollment (in this study, the average of the embedding vectors) 
to compare the voice sample of the offender. The best perform-
ing model achieves an absolute EER decrease of 2.1% (from 3.1% 
to 1.0%). Of course, this can only be achieved if more than one re-
cording of the suspect is available, but recordings can be obtained 
deliberately during an investigation.

Further details can be revealed by breaking down the results by 
sample length and speech style (simulated with different speech 
tasks). The analysis of sample length shows that the longer the dura-
tion of the sample in question, the better the performance, as would 
naturally be expected. Comparing sample pairs of 2- s duration, an 
EER of 5% is achieved in the best case, while for samples of 10- s du-
ration, this drops to 1.1%. With enrolment (comparing a single sam-
ple of the offender to the average vector of the suspect), this can 
be further improved: for 10 s samples, the EER is 0.5%. This means 
that, in practice, pre- trained models can be used on samples of other 
languages, but the longer the sample, the better the performance. 
Furthermore, it is recommended to record more samples from the 
suspect and to use an averaged embedding vector.

The results by speech task show that there is a slight gain in using 
the same speech style in the compared samples (at least the sponta-
neity would be the same) if enrolment is not possible. However, if mul-
tiple recordings of the suspect are available, there is no real difference 
if different speech styles are used, and it does not really matter.

The results show that the automatic, sample- wise forensic voice 
comparison technique used in this study can be used in practical, 
real- world scenarios. This is useful when only a single sample is 

TA B L E  4  Speaker verification results obtained with models of different dataset combinations by speaker enrollment.

Evaluation language/
dataset

Embedding model 
language/dataset

LR calibration 
language/dataset Model Cllr Cllrmin Cllrcal EER

Hungarian/ForVoice120 Hungarian Hungarian/ForVoice120 x- vector 0.517 0.411 0.105 0.123

ECAPA- TDNN 0.190 0.183 0.006 0.049

English/AusEng Hungarian/ForVoice120 x- vector 0.609 0.343 0.265 0.104

ECAPA- TDNN 0.115 0.110 0.005 0.029

English/AusEng English/AusEng x- vector 0.458 0.343 0.115 0.104

ECAPA- TDNN 0.378 0.110 0.267 0.029

VoxCeleb Hungarian/
ForVoice120

x- vector 0.248 0.191 0.058 0.053

ECAPA- TDNN 0.050 0.045 0.006 0.010

VoxCeleb English/AusEng x- vector 0.222 0.191 0.031 0.053

ECAPA- TDNN 0.067 0.045 0.022 0.010

English/AusEng English/AusEng English/AusEng x- vector 0.472 0.358 0.114 0.104

ECAPA- TDNN 0.064 0.061 0.004 0.016

VoxCeleb English/AusEng x- vector 0.324 0.289 0.035 0.085

ECAPA- TDNN 0.093 0.084 0.009 0.020

The best results are highlighted in bold.

F I G U R E  7  Tippett plot of dataset combination (ECAPA- TDNN 
pretrained on VoxCeleb and LR score calibration on ForVoice120+) 
with lowest Cllrmin for enrollment. 
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880  |    SZTAHÓ and FEJES

F I G U R E  8  Heatmap of Cllrmin and EER values depending on sample duration without speaker enrollment. ECAPA- TDNN models trained 
on VoxCeleb, LR score calibration done on ForVoice120+. 

F I G U R E  9  Heatmap of Cllrmin and EER values depending on sample duration with speaker enrollment. ECAPA- TDNN models trained on 
VoxCeleb, LR score calibration done on ForVoice120+. 

F I G U R E  1 0  Heatmap of Cllrmin and EER values depending on speech task without speaker enrollment. The ECAPA- TDNN models were 
trained on VoxCeldeb, LR score calibration was done on ForVoice120+. 
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available from the offender. (Multiple samples may be available from 
the suspect since speaker enrollment was also investigated here.) 
The Cllr and EER values obtained are not directly comparable with 
other studies (due to differences in the datasets used). The aim here 
was not to evaluate speaker enrolment models (these have been 
evaluated in other studies) but to investigate the language mismatch 
properties of a possible voice comparison system.

The dataset used for evaluation is in a low- resource language 
(Hungarian). Languages of this type often do not have sufficient 
speech samples to train a deep learning model and calibrate an LR 
framework. The results obtained here show that models pre- trained 
in a different language can indeed be used in the target language 
(which is also linguistically remote). These pre- trained models (even 
available online) can be universally applied to speaker verification re-
gardless of the language of the samples in question. This can be very 
useful if the target language is a low- resource language where few 
samples are available for forensic purposes (neither proper foren-
sic evaluation is possible nor deep learning models can be trained). 
The study shows that a large target language corpus is not needed 
to apply these models. The evaluation metrics show that even the 
language used to calibrate LR scores can differ from the final target 
language to achieve similar (good) results. A small dataset with a lim-
ited number of speakers is sufficient to evaluate the framework in 
the language in which the expert wants to use it.

Some comments on the legal use of pre- trained VoxCeleb mod-
els: Although VoxCeleb is a collection of YouTube videos and is li-
censed under the Creative Commons Attribution 4.0 International 
License, which means that the copyright of the original versions of 
the videos remains with the original owners, the models pre- trained 
on the dataset are licensed under Apache 2.0, which allows both 
research and commercial use of the models. The results presented 
here are not specific to the VoxCeleb, any model trained on a large- 
scale dataset would be sufficient.

6  |  CONCLUSION

Until now, in Hungarian forensic practice, several types of audio 
samples are recorded during speaker verification if the suspected 
speaker is known. In the sampling procedure, spontaneous speech is 
recorded, and the suspect also reads out a text material taken from 

the unknown speaker's speech sample. In the acoustic– phonetic rec-
ognition methodology, the expert uses this read speech sample to 
compare matching sound sequences (such as words). Additionally, 
the spontaneous sample is also used, for example, to determine av-
erage pitch values. However, the methodology used for biometric 
measurements needs to be reconsidered in light of the results pre-
sented in this paper. We believe that not all voice sample types are 
needed to be included in the measurements for voice biometrics. 
Instead, it is sufficient to measure only spontaneous speech sam-
ples, and efforts should be made to have more than one voice sam-
ple from each speaker available to the expert. A limitation in this 
study may be that the age distribution of the dataset used for evalu-
ation represents mainly the 18– 35 age range. However, the language 
dependency statements derived from the results are not affected 
by this phenomenon because all models are evaluated on this same 
dataset.

This study could be useful to improve forensic speaker recog-
nition by applying voice biometrics technology to different speech 
tasks and sample durations. Based on the results, future plans in-
clude investigating newly developed speaker embedding tech-
niques, how they perform compared to the ECAPA- TDNN. Also, we 
plan to investigate how emotions affect forensic voice comparison 
and also how voice of twins may degrade the performance of the LR 
framework.

Audio forensics experts summarize the results of their speaker 
recognition measurements in an interpretation framework. Its struc-
ture and characteristics determine the final expert conclusion on the 
probability of speaker identity in the expert report. Using the results 
of this study, a new interpretation framework has been developed in 
the Hungarian expert field and will be published in the near future. 
The new framework will make the expert analysis more objective 
and allow for a more detailed evaluation.
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F I G U R E  11  Heatmap of Cllrmin and EER values depending on speech task with speaker enrollment. The ECAPA- TDNN models were 
trained on VoxCeleb, LR score calibration was done on ForVoice120+. 
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