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ABSTRACT: 

               The aim of this paper is to describe worldwide export and import patterns in wheat trade and                

investigate their interconnections. The analysis uses Gephi techniques, including Geo layout and 

Fruchterman-Reingold algorithms. The research reveals the most important objectives of the wheat 

network by identifying and quantifying exporters and importers, subnetworks and flow pathways by 

calculating the centrality, network and clustering metrics. The results of the network analysis of the 

global wheat trade system highlight the scale-free character of the world’s wheat supply system. 
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1. INTRODUCTION 

 

 What do a chapati, a matza, a bagel, an English muffin or a knäckebröd have in common? The 

answer is wheat, which is the main source of our staple food and it consists one-fifth of the calories 

and protein consumed globally. Climate change can affect agriculture in various ways. The crop yields 

as the wheat is susceptible to climate changes and most countries are less equipped to deal with the 

impact of heat stress, droughts, storms on their crops. Most exporter countries of wheat which are 

located in the Earth’s southern hemisphere such as Australia, Argentina, India may face a reduction 

in wheat harvests of between 6% and 23% by 2050 (Wood, 2019). The projected deficiency of the 

world’s wheat consume could be filled up by countries of the Earth’s northern hemisphere by 

broadening their output and expanding crop harvests. As climate change warms the planet, unstable 

weather patterns and shifting seasons are disrupting the way of crops cultivation. The top wheat 

exporters such as Russia, the United States, Canada, France, Germany, Ukraine, Romania, Poland 

and other countries also may face disease, pests and weeds which may cause by frequent and rising 

temperatures.  

The complexity of the international wheat trade necessitates the application of network analysis. 

The web of the international trade relations in wheat is considered as a network. The nodes of the 

network are the different countries, while the trade flows of wheat form the edges of the network in 

order to describe the presence of an import-export trade relations between geographic subnetworks or 

countries. This approach is widely used in studies of international trade (Chaney, 2014). There is a 

growing significance of network-based approaches to food system analysis and food safety-based 

analysis of supply systems in particular (Pinior et al., 2015; Hueston & McLeod, 2012; McDowell, 

2017). Network- based approach has been recently applied in empirical studies of international trade 

(Li et al., 2003; Kastelle et al., 2005; Serrano et al., 2007; Bhattacharya et al., 2007). In the present 

paper it is important to describe the relationships and interdependence of the geographic subnetworks, 

also the countries included in the given subnetworks. The different dimensions of connectivity can be 

designated applying complex network indices that measure the number and the density of the trading 

relationships, the level of clustering (bilateral or multilateral trade), their dispersion or concentration, 

the centrality for a given node (country).  
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The trade-network studies has been profoundly deeply manipulated by the so-called "world 

system" theories, i.e. the notion that one can distinguish between core and peripheral countries. Thus, 

the structural analysis of the network is an indispensable condition for the completeness and 

universality of the network approach. The structure of interactions in the network is the object of 

research in areas such as theory graphs, the theory of random networks, the theory of the "tight world", 

the theory of scale-free networks. 

Climate change including warming, drought and heat stress is highly likely to impact agricultural 

yields and, thereby, the proliferation of wheat availability. Due to the trade plays a key role in 

reallocating wheat production, addressing wheat security issues requires understanding the structure 

of trade networks. Graph theory is a network science modelling approach that studies the graphs made 

by the nodes and edges identified as relevant for describing a system. It defines metrics to capture the 

topology of empirical networks and tackle complex patterns of change. The topology in graph theory 

describes the arrangement of nodes and edges in networks, and gives important information on the 

pattern of nodes connectivity. Here, we study the world wheat trade network based on the BACI 

International Trade database and use the countries as nodes and the mass of international wheat flows 

as edges. 

In the framework of this research we intend to test the following objectives through Gephi 

methods: 

 No. 1: The international network of wheat can be characterized by a small number of central 

countries and a high number of peripheral countries. No. 1a: The central countries are linked in a 

densely-connected core, while the majority of participant countries are relatively atomized around 

the periphery of the network. No. 1b: The peripheral countries which are unable to cultivate and 

provide wheat to other countries due to its unsuitable weather and climate conditions, despite of this 

the peripheral countries export wheat to other countries; 

 No. 2: A small number of countries which are located in one geographic subnetwork sell more than 

a big number of countries which are located in other geographic subnetworks with suitable 

conditions of weather for wheat cultivation. No. 2a: Therefore, there are countries that both do not 

export and do not import wheat being outliers in the network graph. No. 2b: The top importer of 

wheat is located in Asian or African subnetwork with a big population. 

In the introduction section, we outlined two research objectives. Next, we present an overview 

of methodological issues related to the analysis of inter-country trade patterns and the nature of 

analyzing network data. Particular attention was paid to weighted network data and the corresponding 

centrality measures. This is followed by an overview of key results related to three types of weighted 

centrality measures, results from visual inspection of the network, and the optimal solution from 

weighted generalized modeling. The article concludes with a discussion of results and their 

implications; particularly with regard to export-import patterns of geographic subnetworks. 

 

 

2. DATA USED AND METHODS 

 

The heuristic value of network visualizations was first discovered in the second period of the 

20th century in the early school of social network analysis or SNA (Wasserman & Faust, 1994). Jacob 

Moreno, founder of such approach, accurately stated that “the expression of an individual position 

can be better visualized through a sociogram than through a sociometric equation” (Moreno, 1953). 

Moreno and his disciples set the standards for the visualization of networks (Freeman, 2009). The 

analysis of social networks gained significant popularity in communication research, economics, 

geography, computer science, organizational and developmental research. GVNA or geo-based visual 

network analysis is the data visualization subsystem of the SNA and it is an important component of 

high-quality data mining systems, especially those focused on processing large volumes of 

information. Three main characteristics of data visualization tools are: the nature of the data; 

visualization methods and samples through which data can be represented; possibilities of interaction 

with visual images and methods for better data analysis. The visualization data tools can work with 
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the following types of data: one-dimensional data such as one-dimensional arrays, time series; two-

dimensional data such as points of two-dimensional graphs, geographical coordinates; algorithms and 

programs such as information flows, debugging operations, etc. 

The data used in the present article retrieved originally from the United Nations Statistical 

Division, but cleaned by BACI International Trade research and expertise teams using methodology 

of harmonization (BACI International Trade database, 2019). The dataset represents countries that 

exporting and importing wheat around the world in 2018-2019.  The top exporters of wheat are Russia, 

the United States, Canada, Australia and France, whereas the top importers are Egypt, Indonesia, 

Algeria, Italy and Japan.  

Gephi software was used as a tool to visualize and spatialize different network graphs due to its 

flexibility and multi-task architecture that brings new possibilities to work with complex datasets and 

produce valuable visual results (Jacomy et al., 2014). Gephi can represent graphs through various 

layouts such as ARF layout, Circular layout, Concentric layout, DAG layout, Dual Circle layout, 

Force Atlas layout, Fruchterman-Reingold layout, Geo layout, Hiveplot layout, Isometric layout, 

Layered layout, Maps of countries layout, Multipartile layout, Network Splitter 3D layout, OpenOrd 

layout, Radial Axis layout, Yifan Hu layout, Yifan Hu proportional layout (Cherven, 2015). 

Moreover, the abovementioned layout algorithms can be classified among themselves. The Geo 

layout, Maps of Countries layout, Isometric layout, Network Splitter 3D layout, Fruchterman-

Reingold layout and other geo-based network layouts are categorized as Geographic layouts. The 

network data of the present article has a geographic component, such as longitude and latitude of each 

country, Geo layout and Fruchterman-Reingold layout algorithms were used to display geo-based 

network of the worldwide wheat trade flow.  

The micro-analytical level is one of key constituent elements of Geo-based Visual Network 

Analysis which is used to evaluate node centrality (degree, closeness, betweenness), network 

measures (eccentricity, graph density, average path length), clustering measures (modularity). In 

Table 1 the graph G = (V, L) represents the group of dyadic connections among the vertices (nodes). 

The dimension of the graph is V = (1, ..., 94), where N = 94 is the overall amount of countries included 

in the analysis (De Benedictis & Tajoli, 2011). The link dimension of the graph is L = (1,…,1041), 

where M = 1041 is the overall number of existing links. The links (i.e. edges) are directed, routing 

from the exporter country, i, to the importer country, j, and Lij∈{0,1}. The binary information defines 

the existence, 1, and non-existence, 0, of a trade link. By adding W and P the graph will be transformed 

into the network: N = (G (V, L); W; P), where W comprises all characteristics of the links, P comprises 

all characteristics of the nodes (e.g. attributes, geographical coordinates). The trade network is 

generally distinguished by solid heterogeneity. The 1041 existing edges in 2018-2019 conform to a 

density of the network of 0.119 (i.e the proportion of the number of existing connections to the total 

number of maximum connections possible), showing 12% of nodes are connected with one another.  
 

                                                                                          Table 1. 

                                             Overview of graph statistics of the graph 

No. Countries                                                     94 

No. Links                                                        1041 

Graph density                                                 0.119 

Centrality measures: 

In-degree  centrality                                            36 

Out-degree centality                                            58 

Closeness centralization                                         1 

Betweenness centralization                           0.12679 

Network measures: 

Eccentricity       6 

Average path length                                         2.397 

Clustering measures: 

Modularity 0.222 



Tamás T. SIKOS and Aigul MEIRMANOVA / GEO-BASED VISUAL NETWORK ANALYSIS OF  … 87 

 

This is neither an exceptionally high number, nor could it be considered very low.  
Centrality statistics provide the framework to compare the roles played by various nodes within 

a single network and the centrality measures help to define aggregate patterns within the graph. 

Centrality measures are categorized into three main groups: a) degree centrality, that measures how a 

node is connected to other nodes; b) closeness centrality, that measures how easily a node can be 

reached by other nodes; c) betweenness centrality, describing how important a node is in terms of 

connecting other nodes (Jackson, 2010). Centrality statistics is an appropriate tool in analyzing wheat 

trade data.  

In a given network there are two measures of degree centrality: in-degree centrality, measuring 

the number of edges pointing to ego, and out-degree centrality, measuring the number of edges going 

from ego. The out-degree is the total number of countries toward which country i is exporting; 
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whereas in-degree is the total number of countries from which country i is importing: 
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The given dataset in the present article has an in-degree centrality of 36% and an out-degree 

centrality of 58%. The importing countries are receiving edges 36% of the countries in the network, 

while is sending edges to 58% of them. One of the most commonly used global centrality measures 

is the closeness centrality. It is a measure of how close (in terms of topological distance) a node is 

with respect to all other nodes. The shortest path between country i and country j is called the geodesic 

distance between i and j: 
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The closeness centrality is equal to Cc = 1, which indicates there are no far-flung outliers lying at 

a great distance from the hub of the graph. All countries are on average 1 topological step away from 

all other countries in the network. The betweenness centralization is the variation in the betweenness 

centrality of vertices divided by the maximum variation in betweenness centrality scores possible in 

a network of the same size. 

 The betweenness centrality is equal to Cb = 0.12679, which indicates showing the strength of the 

economic links between countries in the network. The eccentricity is tightly related to diameter for 

each vertex within the network. Every vertex in the network have a value equal to 6, indicating how 

many nodes match the criteria. Average path length can provide insight into the general structure and 

connectedness of a network. Average path length measure is 2.397 which is below the eccentricity 

indicator showing that the network is efficient, and information can easily flow across the graph. 

Modularity was used for graphs as one of the measures of the network. The modularity is used 

for network partition into clusters and for disclosure of community structure (Dedić & Stanier, 2017). 

The Modularity statistic places individual nodes into an aggregated group or cluster based on shared 

characteristics.  Output for this function is simply an integer value starting at 0.222. 
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3. RESULTS AND DISCUSSIONS 

 

Fruchterman-Reingold algorithm had been applied in order to generate a more precise map of the 

given dataset, pushing the most connected nodes away from each other whereas flattening the nodes 

that are connected to the hubs in clusters around them. The geographical coordinates of research 

locations with latitudinal, longitudinal and attribute values were imported into the Gephi, the overall 

quantity of the nodes were 94 and appropriate edges were 1041 in the network graph. The various 

communities in a network have distinct characteristics such as node degree, centrality, betweenness 

etc. A numerous real-world problem may be indicated as the structured feature by applying graphs. 

Each node corresponds to a country and each edge performs an export-import relationship 

between countries. The colored nodes represent wheat exporters around the world (Fig. 1). The 

present geo-based network displays a clear pattern of a core of interconnected countries where shown 

as categorized clusters of countries which supply wheat around the world.  

 

 

                                 NODES                                                                    EDGES 

               

 

Fig. 1. The worldwide wheat exporters by Fruchterman-Reingold algorithm, 2018-2019. 

The wheat exporter-countries are classified by attributes which are identified by to how many 

countries they export wheat to. The categorization is identified by red colored nodes – to very high 

amount of countries export to (5.32%), orange colored nodes – to high amount of countries export to 

(5.32%), yellow colored nodes – to medium amount of countries export to (14.89%), green colored 
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nodes – to low amount of countries export to (10.64%), blue colored nodes – to very low amount of 

countries export to (63.83%). Each node performs wheat exporter country which leads to identify 

‘hub’ supplier countries and to categorize exporters in order to highlight the largest players in the 

market (Fig. 1). The majority of countries are rather peripheral, but some countries play a central role 

in wheat trade flows. The identification of local centres and the most important trade flows is critical 

to determine the most vulnerable parts of the network (Ślusarczyk, 2017).  

 Clustering methods will do this through specialized algorithms that interpret network patterns 

into distinct groupings (clusters) of similar nodes (Cherven, 2015). Clustering of the network graph 

by nodes according to the sizing and coloring options, therefore beforementioned options were created 

according to the categories to which they belong to. The same approach can be applied using node 

size to scale values according to their degree level (David & Tukey, 1977). The size of vertices is 

proportional to the number of countries where exporters send wheat to: a large circle indicate that the 

corresponding country is among the main partner for a large number of importing countries. A typical 

approach is to have scaled coloring based on a measurable attribute, with orange and red colored 

nodes corresponds to a high and very high number of countries they export wheat to.  The network 

graph represents how the wheat trade network is polarized around the United States of America, 

Canada, Russia, Ukraine, France, Australia, Argentina, Poland, Germany, Romania, acting as the 

trajectory of the wheat trade system. 

A typical approach is to have scaled coloring based on a measurable attribute, with yellow and 

green colored nodes corresponds to a medium and low number of countries they export wheat to. The 

centrality of such countries as India, the United Kingdom, Latvia, Lithuania, Kazakhstan, Turkey, 

Moldova, Bulgaria, Italy, the Netherlands, Hungary, Czech Republic, Slovakia, Austria, China, 

Switzerland, Belgium, Serbia, Greece, Spain, Sweden, Estonia, Finland and Denmark are evident and 

these countries have a supportive position in the wheat trade system. Other countries represented in 

blue colored nodes are peripheral countries in the network graph, indicating that the international 

network of wheat can be characterized by a small number of central countries and a high number of 

peripheral countries. This means that the central countries are interconnected in a densely-linked core, 

while the majority of peripheral countries are relatively atomized around the circumference of the 

network. As a summary it can be stated that Fruchterman-Reingold layout algorithm determines the 

hubs and peripheral states of the international wheat trade network, which can be considered by a 

scale-free network. In Barabási’s and Bonabeau’s (2003) view, a scale-free network can be 

characterized by a relatively low number of nodes, which have a high number of connections to other 

nodes.  The results have supported Objectives No. 1, 1a due to the international trade in wheat can be 

designated by a few hubs, around which there are numerous peripheral countries. 

A typical approach is to have scaled coloring based on a measurable attribute with blue colored 

nodes corresponds to a very low number of countries they export wheat to. Some peripheral countries 

as el Salvador, the Seychelles, Sri Lanka, Kuwait, Singapore, Oman, Thailand, Jordan, Yemen, Japan, 

Iraq, Syria, Senegal, Israel, South Korea, Cyprus, Bosnia and Herzegovina, Macedonia, Croatia, 

Malta, Libya, Guinea, Kyrgyzstan, Uzbekistan, Guyana, Zimbabwe, Uruguay, Sierra Leone, 

Mauritius, Mozambique, Tanzania, Ghana, Kenya, Togo etc. are unable to provide wheat to other 

countries due to its weather and climate conditions that is unsuitable for cultivation wheat. Despite of 

this the abovementioned countries export wheat to other countries, supporting Objective No. 1b. 

Geo layout algorithm was applied in order to spatialize a full geo-based network of wheat trade 

flow. Nodes repulse each other like charged particles, while edges attract their nodes, such as springs. 

These forces create a movement that converges to a balanced state (Jacomy et al., 2014).  The network 

represented the separate countries as the nodes in a directed spatial network, based on the geographic 

coordinates (latitude/longitude) for each country. Edges between node pairs were weighted by the 

value of wheat exports (US$) transferred between each origin and destination country in 2018-2019 

(Fig.2). The categorization  is identified by black colored edges – exporter send wheat to importer in 

very high value between $330M - $3B (consists of 1.54%), orange colored edges – exporter send 

wheat to importer in high value between $30M - $330M (consists of 15.56%), yellow colored edges 

– exporter send wheat to importer in medium value between $9M - $30M  (consists of 14.12%), green 
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colored edges – exporter send wheat to importer in low value between $1M - $9M  (consists of 

22.38%), purple colored edges – exporter send wheat to importer in very low value between $1K - 

$1M (consists of 46.4%). 

 

 
                             NODES                                                                      EDGES 

           

Fig. 2. Graphical representation of the world trade flow of wheat ((1) the number of nodes is proportional 

to the number of outflows, (2) the number of edges is proportional to the amount of the export value). 

 

Classifications by geographical sub-networks is not only identify the main trends of the 

worldwide trade flow, but also analyze, compare continents with each other. But any classification is 

useful only when it is possible to identify clear criteria, classification features that enable us 

unambiguously evaluate certain phenomena. International trade export in wheat considered as 

geographically segmented, with the major role played by European sub-network (export value is 

$22.7B), while the North American sub-network with its main players such as Canada, the United 

States are located in a decentralized position (export value is $11.4B) (Fig.2). The third hub is Oceanic 

sub-network (export value is $4.88B) supporting Objective No. 2  which claims that one geographic 

sub-network export more than other sub-network with more countries with suitable conditions of 

weather for cultivating wheat in comparison with the South American sub-network (export value is 
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$2.71B), the Asian sub-network (export value is $900M), the African sub-network (export value is 

$33.2M) from Fig.2.  

There are inward and outward flows between countries, based on the network shown in Fig.2 we 

notice that:  

• Some edges between countries do not exist, due to some countries such as Mongolia, Afghanistan, 

Colombia, Venezuela, Ecuador, Mauritania, Mali, Chad, Sudan, Angola, Mozambique etc. do not 

export wheat to other countries and Turkmenistan, Chad, Namibia, Botswana, Laos do not import 

wheat. Therefore, there are countries Turkmenistan, Chad, Namibia, Botswana, Laos both do not 

export and do not import wheat being outliers in the network graph supporting Objective No. 2a which 

claims that there are number of countries do not export and do not import; 

• The top importers of wheat around the world in the African sub-network are Egypt (import share 

9.8%) and  Algeria (import share 4%), in the Asian sub-network are Indonesia (import share 6.1%) 

and Japan (import share 3.3%), in the South American sub-network is Brazil (import share 2.5%), in 

the North American sub-network is Mexico (import share 2.5%); in the European sub-network is Italy 

(import share 3.6%), supporting Objective No. 2b which claims that the top importer located in Africa 

or in Asia with big population. 

 
4. CONCLUSION 

 

We examined a number of issues related to the international wheat trade system applying the 

tools of Network Analysis. The world wheat trade network is represented graphically and analytically 

through the indices describing the network’s properties, such as in-degree centrality, out-degree 

centrality, closeness centralization, betweenness centralization, eccentricity, average path length and 

modularity. The analysis shows a role of countries in shaping the wheat trade network. This approach 

has relevant implications in demonstrating some valuable insights about the group of wheat exporters 

and importers around the world: what are the subgroups it consists of, who are the most influential 

players, what are the peripheral players and outliers, etc. The results of a network analysis of the 

global wheat trade system highlight the scale-free character of the world’s wheat supply system. This 

information is important for the organizations of international trade control systems during 

temperature changes and when some countries are less equipped to deal with the impact of heat stress 

on their crops. 
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