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Abstract: Advancing models for accurate estimation of food production is essential for policymaking
and managing national plans of action for food security. This research proposes two machine learning
models for the prediction of food production. The adaptive network-based fuzzy inference system
(ANFIS) and multilayer perceptron (MLP) methods are used to advance the prediction models. In
the present study, two variables of livestock production and agricultural production were considered
as the source of food production. Three variables were used to evaluate livestock production,
namely livestock yield, live animals, and animal slaughtered, and two variables were used to assess
agricultural production, namely agricultural production yields and losses. Iran was selected as the
case study of the current study. Therefore, time-series data related to livestock and agricultural
productions in Iran from 1961 to 2017 have been collected from the FAOSTAT database. First, 70% of
this data was used to train ANFIS and MLP, and the remaining 30% of the data was used to test the
models. The results disclosed that the ANFIS model with generalized bell-shaped (Gbell) built-in
membership functions has the lowest error level in predicting food production. The findings of this
study provide a suitable tool for policymakers who can use this model and predict the future of
food production to provide a proper plan for the future of food security and food supply for the
next generations.

Keywords: food production; machine learning; agricultural production; prediction; big data; data
science; deep learning; forecasting; data-driven decision making; food demand; artificial intelligence

1. Introduction

Climate change, natural hazards, drought, uncertainty in recourses, and population
growth are increasingly threatening the food security of the global nations [1]. It is esti-
mated that the world’s population will exceed 9.7 billion by 2050, which will encourage
worldwide hunger and food insecurity [2]. In general, there are two means of the food
supply, i.e., domestic production and imports [3]. Awareness of a region’s potential for
producing food provides the foundation for developing informed policies for food security.
Thus, advancing accurate prediction models is considered essential for food governance
and business models [4]. Reliable food prediction models can be used by policymakers
to reconsider the annual food import volumes and prices [5]. Furthermore, insight into
the food production value to better manage the poverty and support vulnerable groups
exposed to food insecurity [6]. Conventional time series and mathematical models had
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been often used to project food production [7]. Advanced data-driven methods based on
artificial intelligence and machine learning have recently shown promising results in pro-
viding accurate prediction models. The research for the advancement of reliable artificial
intelligence and machine learning methods to be used in a higher level of policymaking is
still in the early stage [8–10].

A review of the literature for studies that predicted agricultural and livestock pro-
duction, as the essential representatives of food production, shows that the available
studies at the microlevel often focus on a specific crop or individual livestock. For in-
stance, Nosratabadi et al. [7], Pantazi et al. [8], and Sengupta and Lee [9], used machine
learning techniques to develop models for crop yield prediction. Nosratabadi et al. [7]
developed a gray wolf optimizer of neural networks (GWO-ANN), a hybrid machine learn-
ing model, to predict the yield of wheat crops in Iran and they also state that this model
has a lower error rate and higher predictive accuracy (with R = 0.48 and root mean square
error (RMSE) = 3.19) compared to other models. Pantazi et al. [8] designed a supervised
Kohonen networks (SNK) model to predict wheat yield. They report that the accuracy of
their model in the prediction of wheat yield was 81.65%. Sengupta and Lee [9] using a
support vector machine (SVM) tried to identify the number of immature green citrus and
they report that the accuracy of their model was 80.4%. In addition, Morales et al. [10],
Alonso, Villa, and Bahamonde [11], and Alonso, Castañón, and Bahamonde [12], for exam-
ple, have employed machine learning techniques to design models for livestock production.
Morales et al. [10] develop an SVM model for the early detection of problems in the pro-
duction curves of hens’ eggs. They claim that the accuracy of their mode has been equal to
98%. Alonso et al. [11] developed an SVM model to forecast cattle weight trajectories with
only one or a few weights. Additionally, they report that the level of error metrics of mean
absolute percentage error (MAPE) for their model were between 3.9 and 9.3 for different
datasets. Alonso et al. [12] develop an SVM/ support vector regression (SVR) to estimate
the beef cattle’ carcass weight 150 days before slaughter. They used MAPE to test the
accuracy of their model and they report that the average MAPE of their model was 4.27%.
Although research has used advanced machine learning tools to predict agricultural and
livestock production, the focus of the research has been on a specific product or livestock,
and developed models are not designed to forecast different production at the macrolevel
of a country. To address this gap in the literature, the present study intends to develop
a model for predicting food production at the macro level of a country using machine
learning models.

Since there is ample evidence that agriculture in Iran is facing many problems due
to a lack of water resources (e.g., Karandish et al. [13] and Qasemipour and Abbasi [14]),
with successive droughts (e.g., Paymard et al. [15]) and poor water management (e.g.,
Raeisi et al. [16] and Akhoundi and Nazif [17]) cited as reasons for Iran’s lack of water.
Such problems have hampered food security at the macrolevel in Iran. On the other hand,
Iran, with 79 million in 2015 [18], is one of the most populous countries in the world and is
expected to have positive population growth in Iran in the future [18]. There are plenty
of studies that explain that some Iranian households are exposed to food insecurity for
reasons such as low levels of education and low levels of income (e.g., Ekhlaspour et al. [19],
Esfarjani et al. [20], Fathi Beyranvand et al. [21], Najafi Alamdarlo et al. [22]). Therefore, in
the present study, Iran was selected as a case study, and the time-series data of agricultural
and livestock products related to Iran were used to develop and test the research model.

In the literature, there are advanced and accurate methods for predicting future trends
using past data. Artificial intelligence models have the ability to learn from data and can
predict non-linear phenomena with very high accuracy based on existing data. There is
ample evidence that neural networks, as one of the tools of artificial intelligence, have a
very high performance in predicting time series data. For example, Tealeb [23] conducts a
review study detailing the articles that used artificial neural networks (ANNs) to predict
time series data and shows that the results of ANN are promising in predicting time
series data. On the other hand, Tealab, Hefny, and Badr [24] debate that it is better to use



Agriculture 2021, 11, 408 3 of 13

advanced and hybrid ANN models in predicting non-linear time series data. Adaptive
network-based fuzzy inference system (ANFIS) is a hybrid ANN that is combined with
fuzzy systems that can be applied for the time-series data. Hence, the main objective of the
current study is to compare the predictive performance of multilayer perceptron (MLP),
a type of ANN, and ANFIS in the prediction of the future of agricultural and livestock
production in Iran to select the most accurate model. The output of the present study
provides policymakers with a comprehensive picture of the future food supply in Iran.
Information on predicting indigenous food production provides knowledge to macro-
decision makers to design appropriate policies for food security and provide adequate food
for future generations. The research has been designed based on a comparative analysis
of MLP and ANFIS. Our study investigates the model performance of neural networks
and neuro-fuzzy. The structure of the manuscript is represented as follows. First, the data,
data source, and the data collection process are elaborated. The machine learning methods
used in this paper are then described in detail. After that, the results of comparing MLP
and ANFIS are presented. In the next stage, the most accurate model for predicting food
production based on the results of accuracy metrics is presented.

1.1. Food Security in Iran

Iran is one of the countries exposed to drought [15] as climate change and inadequate
agricultural irrigation systems are among the main reasons mentioned in the literature
for the problem of drought in Iran [25]. Drought is a serious threat to food security and
has created many challenges for food supply in Iran. Iran is a vast country with diverse
climatic conditions that have led to the cultivation of various agricultural products in
different parts of the country. Drought and rising population growth, nonetheless, have
jeopardized food supply and food security in the country. Qasemipour and Abbasi [14]
believe that intensive agricultural practices in Iran led to water scarcity of 206%. Of course,
research solutions have been proposed to address water management in order to increase
food security and improve food production in Iran. Raeisi et al. [16], for example, consider
greenhouses as an alternative to traditional farming because of better water management
and higher crop yields. On the other hand, Akhoundi and Nazif [15] propose a model
by which wastewater is used to irrigate agricultural fields instead of using natural water.
Besides, Esfahani et al. [26] introduce a more creative model to deal with water scarcity in
Iran. They consider overseas cultivation as a solution to contribute to food security in Iran.

1.2. Application of Data Science in Food and Agriculture

Many researchers have used data science to solve research problems related to food
and agriculture. Since machine learning and deep learning models have the ability to
analyze big data, find trends, and make accurate predictions, they have become highly
useful tools for researchers [27]. Sengupta and Lee [9] and Su, Xu, and Yan [28], for instance,
have used the SVM model and Ali et al. [29] has used the ANFIS model to predict crop
yield. The use of learning machine to detect diseases is one of the other applications of
machine learning in agriculture. For example, Chung et al. [30] and Ebrahimi et al. [31]
used the SVM model to detect diseases in rice and strawberry crops, respectively. The use
of ANN models to detect wheat diseases has been very common. So, that Moshou et al. [32]
has used the ANN/MLP model, Moshou et al. [33] employ the ANN/SOM model to detect
wheat diseases. There are also studies that have used machine learning models to detect
weeds. For example, Pantazi et al. [34] and Pantazi, Moshou, and Bravo [35] use an ANN
model to detect weeds. Water management and soil management are other applications
that have used machine learning models to improve agricultural production. For example,
Feng et al. [36] and Patil and Deka [37] use the ANN model to estimate evapotranspiration.
Estimation of soil temperature and humidity are also among the applications of machine
learning models for soil management. In addition, the use of machine learning models to
solve problems related to livestock management has become trendy. Craninx et al. [38],
for example, has used the ANN model to forecast rumen fermentation pattern from milk
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fatty acids in cattle. Alonso, Villa, and Bahamonde [11] uses the SVM model to estimate
the weight of cattle at different stages of growth with the least number of weights. Alonso,
Castañón, and Bahamonde [12] also used the SVM model to predict carcass weight for beef
cattle 150 days before slaughter.

Researchers have also used machine learning models in the food industry. The main
applications of machine learning and deep learning in food are to estimate the quality
of food. For example, Liu et al. [39] combined stacked sparse autoencoder (SSAE) with
CNN to develop a model that detect the quality of vegetables. In addition, Rodriguez
et al. [40] and Azizah et al. [41] use CNN to study the quality of fruits. There are studies
that evaluate the quality of meat and aquatic products using deep learning models [42,43].
Using machine learning models to study food contaminations is another example of using
machine learning in the food industry [44,45].

2. Materials and Methods
2.1. Data

The aim of this study is to develop a model for predicting food production for the
next decade in Iran. In the present study, two subvariables of agricultural production
and livestock production have been considered to evaluate food production. Three vari-
ables, livestock yield, live animals, and animal slaughtered, are used to measure livestock
production. This study has also considered two variables, agricultural production yields,
and losses, to evaluate the agricultural production. Figure 1 represents the model of the
study. In this study, the production of barley, beans, dates, maize, millet, potatoes, rice,
soybeans, wheat, rye, and olives is considered as agricultural production in Iran. According
to this model, agricultural production yields and losses of the aforementioned products are
evaluated as two input variables of agricultural production. Since the losses refer to the
loss of productions the respective arrow is drawn outward. For the livestock production,
the data related to the live animals such as beehives, buffalo, camel, cattle, chicken, duck,
geese, goat, pig, sheep, and turkey, the data related to indigenous meat of buffalo, camel,
cattle, chicken, duck, geese, goat, pig, sheep, and turkey, and the data related to milk of
buffalo milk, cow, goat, and sheep are collected. These data are collected from the FAO
database, i.e., FAOSTAT, that can be accessed on http://www.fao.org/faostat/en/#data
(accessed on 20 September 2020). The collected data covers the period of 1961–2017.
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Figure 1. The proposed model of the study for indigenous food production in Iran.

Figure 1 shows that the indigenous livestock production quantity and the indigenous
agricultural production in Iran are considered as the country’s potential food production
for this country. Two variables of yield and losses were used to evaluate and measure
agricultural production, and three variables of live animals, livestock yield, and slaughtered
animals were used to measure livestock production quantity.

2.2. Methods

For predicting the future trends of food production in Iran, two models of MLP and
ANFIS are applied in the collected data, and the predictive performance of the models are
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compared based on the accuracy metrics. We trained the proposed models by minimizing
a regularized loss function on the training set and evaluated the models by comparing the
accuracy metrics on the test set.

2.2.1. MLP

Multilayer perceptron (MLP) is a type of neural network that has a supervised learning
technique using the back-propagation method. Figure 2 shows that MLP benefits from
a three-layer structure, including the input layer, hidden layer/s, and output layer/s, in
which each neuron is connected to all the neurons in the next layer. It is frequently reported
that MLP has a great function in non-linear problems [46,47].
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Equation (1) shows how the output of input variables, bias values, and input values
are calculated:

Si =
n

∑
i=1

wij Ii + βi (1)

where I represent the input layer, Ii is the input variable i, n shows the total number of
inputs, βj is a bias value, and ωij is the weight of connections in j level. The sigmoid
function is mostly used as the activation functions in MLP and it can be calculated through
Equation (2):

f j =
1

1 + e−Sj
(2)

where, S is the activation function. Therefore, the ultimate output neuron j can be measured
in Equation (3):

yi = fi(
n

∑
i=1

wij Ii + βi) (3)

where, y presents the output value of the MLP method, which needs to be compared by
the target values for calculating the model performance. MLP was trained by 70% of total
data as a training dataset, which has been sorted randomly by the model. The training
was performed by different sets of the neuron numbers in the hidden layer for finding
the best architecture for the predictor model from 10 to 18 by interval 4. The activation
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function was selected to be the Tanh(x) due to its higher performance compared with other
activation functions.

2.2.2. ANFIS

The adaptive network-based fuzzy inference system is a hybrid neural network in
which a fuzzy logic (FL) is embedded to the artificial neural network (ANN) architecture
to identify the optimal distribution of membership functions [48]. The inference system of
ANFIS consists of five layers in which the input of each layer is the output of the previous
layer. This method applies fuzzy if-then rules of Sugeno, and if an ANFIS model has two
inputs (x, y) and one output (fi), for example, the two rules for a first-order two-rule are:

• Rule 1: if x is A1 and y is B1 then z is f 1(x, y);
• Rule 2: if x is A2 and y is B2 then z is f 2(x, y).

where x and y are the ANFIS inputs, A and B are the fuzzy sets, and fi(x, y) is the outputs
of the first-order Sugeno fuzzy. The architecture of an ANFIS model constitutes adaptive
nodes and fixed nodes (see Figure 3). The first layer of the model includes adaptive nodes
that can be calculated through Equations (4)–(6).

O1, i − µAi(x) f or i = 1, 2 (4)

O1, i − µBi(y) f or i = 1, 2 (5)

µ(x) =
1

1 + ( x−ci
ai

)
2bi

(6)

where x and y are the inputs, A and B are the linguistic labels, µ(x) and µ(y) are membership
functions that take values between 0 and 1, and ai, bi, and ci are the parameter sets.
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The second layer, which is shown in red circles in Figure 3, is a fixed node and can
be calculated through Equation (7). It is worth mentioning that ωi is the firing strength of
a rule.

O2,i = wi = µAi(x)·µBi(y), for i = 1, 2 (7)

O2,i as the output of the second layer enters to the third layer. The third layer, which
is presented in yellow circles in Figure 3, is also a fixed node. Its main goal is to normalize
the firing strength by using Equation (8).

O3,i = wi =
wi

∑ wi
=

wi
w1 + w2

, for i = 1, 2 (8)
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The fourth layer is an adaptive node as well and depicted as green squares. Equation (9)
is used to measure the fourth layer.

O4,i = wi· fi, for i = 1, 2 (9)

• Rule 1: if x is A1 and y is B1 then f 1 = p1x + q1y + r1;
• Rule 2: if x is A2 and y is B2 then f 2 = p2x + q2y + r2.

where pi, qi, and ri are the parameters sets.
The fifth layer is also a fixed node presented in the form of a blue circle in Figure 3

and can be calculated through Equation (10).

O5,i = fout = ∑ wi· fi = Overaloutput, for i = 1, 2 (10)

The final output of an ANFIS structure, which is shown as fout in Figure 3, can be
calculated through Equation (11).

c fout = w1 f1 + w2 f2 = w1
w1+w2

f1 +
w2

w1+w2
f2 = (w1x)p1 + (w1y)q1

+(w1)r1 + (w2x)p2 + (w2y)q2 + (w2)r2
(11)

ANFIS was trained using 70% of the total data (randomly selected). Input variables
were time-series data. The training parameter was the type of the membership function
(MF). Since it has the maximum effect on the accuracy and performance of the ANFIS
model. Triangular, trapezoidal, and G-bell types were selected as the frequently used and
popular MF types for comparison purposes in the presence of linear output MF type (for its
highest accuracy in comparison with constant type MF). Other parameters like the number
of MF types and hybrids method were considered to be constant because they did not have
any significant effect on the modeling procedure in the present study. One of the main
reasons can be the dimension of the dataset in the present study. The rest of the data set
(30% of the total dataset) was employed for the testing step.

2.3. Accuracy Metrics

To compare the predictive power and accuracy performance of MLP and ANFIS two
evaluation criteria namely RMSE and determination coefficient (R) are measured for both
models. Equations (12) and (13) respectively show how to calculate RMSE and R2.

RMSE =

√
1
N ∑N

i=1(A − P)2 (12)

R2 = 1 − (
∑n

i=1(A − P)2

∑n
i=1(A)2 ) (13)

where A is the target values, P refers to the predicted values (output of models), and N is
the number of data. Using these performance parameters, the accuracy of models can be
calculated for comparison purposes.

3. Results

In this study, the process of selecting the appropriate model with better predictive
power was designed in such a way that the models were first trained by 70% of the
data. After the training phase, the predictive performance of the models was tested on
the remaining 30% of the data, and then the accuracy of the models was measured and
compared by accuracy metrics RMSE and R2. Table 1 shows that the variables of xt−1, xt−2,
and xt−3, which are respectively the representation of live animals, animals slaughtered,
and livestock yield, are the inputs variables of livestock production quantity and xt−4
and xt−5, which are respectively the representation of yield and losses of agricultural
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productions, are the input variables of agricultural productions. In other words, the current
model constitutes two outputs: (1) livestock production and (2) agricultural production.

Table 1. The prepared dataset for time-series prediction.

Inputs Outputs

xt−1, xt−2, xt−3, xt−4, xt−5
O1 = Livestock production

O2 = Agricultural production

3.1. Training Results

As it is mentioned above, 70% of the data are used to train the models. The training
phase was repeated three times, with each model being tested with a different number
of neurons.

By changing the number of neurons, the accuracy of the MLP model can be controlled
and it reveals the most accurate model. Table 2 shows that in the training phase of the
MLP model with the number of neurons ten, fourteen, and eighteen were tested. At this
stage, the model with ten neurons for predicting livestock production and the model with
18 neurons for predicting agricultural production had the best performance because the
corresponding RMSEs were lower compared to other models.

Table 2. RMSE results for MLP models with different numbers of neurons in the training phase.

Variable Neuron Number RMSE

Livestock Production 10 275,284,878.3
Livestock Production 14 462,563,347.1
Livestock Production 18 320,412,824.4

Agri. Production 10 36,325,828
Agri. Production 14 77,746,693.65
Agri. Production 18 35,410,107.42

On the other hand, to control the accuracy of the ANFIS model in the training phase,
the predictive accuracy of different membership functions (MF) was tested. In this study,
triangular-shaped (Tri.), trapezoidal-shaped (Trap.), and generalized bell-shaped (Gbell)
built-in membership functions were evaluated. The results of the evaluation of the accuracy
of MFs are presented in Table 3.

Table 3. RMSE results for ANFIS models with different MF types in the training phase.

Variable MF Type RMSE

Livestock Production Tri. 17,225,511.04
Livestock Production Trap. 4,080,579.79
Livestock Production Gbell 6,750,734

Agri. Production Tri. 2,144,876.04
Agri. Production Trap. 987,950.19
Agri. Production Gbell 9,751,562

The results show that the model with the Trap. built-in membership function had
the highest accuracy for predicting both livestock and agricultural production because the
RMSE of this model was 4,080,579.79 for livestock production and 987,950.19 for agricul-
tural production, which were lower than other membership functions. The comparison of
Tables 2 and 3 illustrates that the performance of the ANFIS model compared to the MLP
model in predicting both agricultural and livestock production was higher. Since the values
of RMSE of this model in all cases was lower than the MLP model in the training phase.
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3.2. Testing Results

After training the models, the models were tested by 30 percent of the data to examine
the predictivity power of models. The results of the testing phase of the MLP model were
in accordance with the results of the training phase as the MLP model with ten neurons had
the highest accuracy for predicting livestock production because the RMSE of this model
was equal to 265,590,099.2, which was lower than other models with different neurons. In
addition, the RMSE of the MLP model 18 neurons for testing agricultural production was
33,575,595.74 that was lower than the other models indicating the higher accuracy of this
model compare to the other models (see Table 4).

Table 4. RMSE results for MLP models with different numbers of neurons in the testing phase.

Variable Neuron Number RMSE

Livestock Production 10 265,590,099.2
Livestock Production 14 457,160,675.6
Livestock Production 18 311,543,277.9

Agri. Production 10 40,310,186.93
Agri. Production 14 82,380,698.29
Agri. Production 18 33,575,595.74

However, Table 5 shows that in the testing phase, the ANFIS model with the Gbell
membership function had more accurate results with less error levels in both livestock
production prediction (with RMSE = 6,052,851.43) and agricultural production prediction
(with RMSE = 1,724,426) while in the training phase the Trap. membership function
model had the highest accuracy rate. Comparing the results of the testing phase with
the training phase was the same, and in both phases, the ANFIS model provided higher
performance than the MLP model due to the low level of error in predicting both livestock
and agricultural production. Therefore, the present study proposes the ANFIS model for
predicting food production.

Table 5. RMSE results for ANFIS models with different MF types in the testing phase.

Variable MF Type RMSE

Livestock Production Tri. 11,124,369
Livestock Production Trap. 17,894,505.8
Livestock Production Gbell 6,052,851.43

Agri. Production Tri. 2,264,668
Agri. Production Trap. 2,415,988
Agri. Production Gbell 1,724,426

The coefficient of determination of the ANFIS model was also tested. Figure 4 discloses
that the coefficient of determination (R2) of the ANFIS model was very high for both
livestock (Figure 4a) and agricultural production (Figure 4b) forecast so that R2 was equal
to 0.99 for livestock production and 0.94 for agricultural production.

3.3. Prediction Results

The results showed that the ANFIS model with the Gbell membership function, due
to the lower RMSE, not only had a better predictive performance in both agricultural and
livestock production forecasting compared to the ANFIS model with other membership
functions, but also it had a higher predictability power on the current data compared to the
MLP model. Consequently, this model was selected to predict food production in Iran. The
results of the prediction of Iranian agricultural and livestock products for 2018–2030 using
the ANFIS model with the Gbell membership function are presented in Table 6.
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Table 6. Prediction of agricultural and livestock production in Iran.

Year
Gbell Gbell

Livestock Products Agricultural Products

2018 351,165,674 30,231,125
2019 351,393,213.3 30,242,351
2020 351,889,340.6 30,282,632
2021 353,044,979.8 30,413,014
2022 355,433,096.5 30,700,922
2023 359,042,959.3 31,147,556
2024 363,583,520.4 31,717,244
2025 368,812,282 32,374,680
2026 374,726,642.9 33,113,468
2027 381,123,336.2 33,906,210
2028 387,439,028 34,691,535
2029 393,045,557.7 35,395,595
2030 397,788,163.4 35,992,727

In order to better represent the predicted trend for agricultural and livestock products
in Iran, Figure 5 was designed based on the predicted data. Figure 5 shows that agricultural
and livestock products in Iran are expected to have an upward trend with almost the same
slope. This is because the predictive model of this study, using time series data, predicts
that food production in Iran will increase in the upcoming decade.
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4. Conclusions

As the world’s population grows, so does the demand for food, and in recent years
the number of people exposed to hunger, and even severe hunger, is increasing daily.
Governments and organizations active in the food industry are planning and preparing to
prevent potential problems that may arise in the way of food security for future generations.
To achieve food security goals, food is mainly supplied through domestic production and
import. Therefore, studying a country’s potential for food supply is the first step in
planning for food security. Food production prediction gives a realistic view to policy
makers and activists in the agricultural and food industries for long-term and short-
term planning. Therefore, the present study tried to provide a suitable model with high
predictive performance for predicting food production. The present study predicted
Iran’s agricultural and livestock production for the next ten years. According to the
results, it is predicted that in the next ten years, the volume of both agricultural and
livestock production in Iran will increase. The findings of this study provide a basis for
planning the production volume required for the coming years, planning for budgeting and
agricultural subsidies, planning for the active workforce in the agricultural and livestock
sectors. In addition, according to forecasts, decision-makers can plan to import needed food
production and export surplus domestic production. Using machine learning, researchers
have come up with creative and precise solutions to a variety of food and agricultural
problems, such as crop yields prediction. However, there is no research to predict food
production. The present study used machine learning models to predict agricultural and
livestock products in Iran. For this purpose, the performance of two models, MLP and
ANFIS, was tested using time series data of agricultural and livestock production in Iran.
The results of accuracy metrics revealed that the ANFIS model has higher predictive
power than the MLP model due to its higher predictive accuracy. The current study
contributes to food security research by providing a repayable tool to predict the future
of agricultural and livestock production. Researchers and decision-makers can use this
model to predict the future of food security in a region. Therefore, for future research, it is
suggested that using the proposed model of the present study to predict food production
in different countries and provide appropriate solutions to combat food insecurity. One of
the limitations of this study is that forecasts for agricultural and livestock production are
based only on time series data while other factors such as climate, government policies,
and technological advances are considered constant. Another limitation of this article is the
generalization of the finding that the ANFIS model outperforms the MLP model because
this finding is limited to the time series data of Iran and the result may differ in data related
to another country.
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Abbreviations

ANFIS Adaptive network-based fuzzy inference system
ANN Artificial neural network
CNN Convolutional neural network
DS Data science
ML Machine learning
MLP Multilayer perceptron
SOM Self-organizing Map
SSAE Stacked sparse autoencoder
SVM Support vector machine
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