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We investigate the logical connection between (spatial) isotropy, homogeneity of 
space, and homogeneity of time within a general axiomatic framework. We show 
that isotropy not only entails homogeneity of space, but also, in certain cases, 
homogeneity of time. In turn, homogeneity of time implies homogeneity of space 
in general, and the converse also holds true in certain cases.
An important innovation in our approach is that formulations of physical properties 
are simultaneously empirical and axiomatic (in the sense of first-order mathematical 
logic). In this case, for example, rather than presuppose the existence of spacetime 
metrics – together with all the continuity and smoothness apparatus that would 
entail – the basic logical formulas underpinning our work refer instead to the sets 
of (idealised) experiments that support the properties in question, e.g., isotropy is 
axiomatised by considering a set of experiments whose outcomes remain unchanged 
under spatial rotation. Higher-order constructs are not needed.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we investigate the logical connections between the following properties of space and time, 
(spatial) isotropy (ISO), homogeneity of space (HOMspace), and homogeneity of time (HOMtime) within a 
general axiomatic framework for physics assuming some minimal kinematical axioms. Among other things, 
we show formally that isotropy implies not just homogeneity of space, but also homogeneity of time if there 
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are clocks that loose synchrony.1 In turn, homogeneity of time implies homogeneity of space in general, and 
the converse implication also holds if there are clocks that loose synchrony, see Fig. 1.

The novelty in our approach is, accordingly, that formulations of homogeneity and isotropy are simultane-
ously empirical and axiomatic. Rather than presuppose the existence of, e.g., metrics satisfying appropriate 
differentiability constraints, the basic logical formulas underpinning our work refer instead to the sets of 
experiments that support the properties in question. So, for example, the idea that space is isotropic is 
directly connected to a set of (idealised) physical experiments whose outcomes should remain unchanged 
under spatial rotation. Higher-order mathematical constructs are not needed, because in descriptions of 
experiments, one typically does not quantify over sets or other higher-order logic objects.2

This work is part of the Andréka–Németi school’s long-running project to axiomatise and analyse relativ-
ity theories within first-order logic, see e.g., [1,2,4,7,20,24,25]. It is also related to Hilbert’s Sixth Problem:

“The investigations on the foundations of geometry suggest the problem: To treat in the same manner, 
by means of axioms, those physical sciences in which mathematics plays an important part” [19, p. 454, 
(Hilbert’s emphasis)].

For discussion of the methodological and epistemological significance of this project, see Friend and Molinini 
[13,14]. For a comprehensive comparison between Hilbert’s project on the foundations of physics and the 
Andréka–Németi project, see Formica and Friend [12].

An important feature of the axiomatic approach is that it helps avoid hidden assumptions, which is 
fundamental in foundational analyses of this nature. It also allows us to verify our results computationally 
using interactive theorem provers like Isabelle/HOL [18,33]. For a fuller discussion of the benefits of first-
order logic see e.g., [6, §Appendix: Why FOL?], [36, §11].

Another important feature of the axiomatic approach is that it helps explain why some apparently 
contradicting results do not lead to real contradictions. This is so because the same informal idea can have 
several slightly different formalisations which may lead to contradicting consequences especially if one uses 
different hidden assumptions in deriving these consequences. Using the axiomatic approach, formalisation 
forces us to make every detail explicit and to reveal not just the hidden assumptions but also these slight 
differences in our understandings of certain key assumptions. Hence the easily ignorable details that led to 
the apparent contradictions become highlighted and unignorable.

1.1. Informal explanations of the main results

By homogeneity of time, we mean that no matter when we initiate a certain experimental configuration the 
progress and outcome of the experiment will be the same. Analogously, the intuitive meaning of homogeneity 
of space is that the progress and outcome of an experiment does not change if we simply translate its 
configuration to another location. Likewise, the intuitive meaning of isotropy is that rotating an experimental 
configuration in space does not change the outcome.

In order to define these concepts formally, we need to describe what we mean by an experiment. Since 
we generally adopt a static representation of spacetime, the most natural approach is to represent any given 
experiment as a 4-dimensional spacetime “scenario,” capturing its initial and final states, together with 
its progress from one to the other and any related feasibility constraints. For example, an elastic collision 
between two point particles would be described by giving a point with two incoming and two outgoing 

1 That spatial isotropy entails spatial homogeneity is to be expected (but nonetheless requires formal confirmation within the 
restricted framework used here) because every spatial translation can be obtained as a composition of spatial rotations. However, 
the fact that temporal homogeneity is also entailed, in certain cases, was more surprising.
2 Nevertheless, if we decide for some reason that including sets, functions, etc., would be useful, we can include them via new 

sorts by enriching our first-order language.
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Fig. 1. The relationships we establish in this paper between isotropy, homogeneity of space and homogeneity of time.

worldlines. We then ask which experiments remain feasible under various types of spacetime transformation. 
For example, isotropy can be captured by the claim that, if an experiment is realisable, then all spatially-
rotated versions of that experiment are also realisable. These ideas will be formulated using formula schemas 
in our first-order logic framework, see p. 17.

In this framework, we prove the connections between isotropy (ISO), homogeneity of time (HOMtime) and 
homogeneity of space (HOMspace) illustrated in the left-hand side of Fig. 1 using just the following simple 
and natural kinematical assumptions as auxiliary axioms:

• The structure of physical quantities satisfies some of the most fundamental properties of real numbers, 
i.e., they form an ordered field (AxOField, p. 19).

• Inertial coordinate systems remain inertial if they are rotated or translated (AxRelocTran, AxRelocRot, 
p. 19).

• Coordinate transformations between inertial observers are affine (AxAffTr, p. 19).
• There is an inertial coordinate system relative to which there are three inertial coordinate systems 

moving in linearly independent spatial directions (Ax3Dir∃Motion, p. 19).

To show the extra logical connections illustrated in the right-hand side of Fig. 1, we only need one extra 
assumption implied by relativity theory, viz.

• There are clocks that lose synchrony (ASync, p. 20).

1.2. Structure of the paper

We present the main results of this paper in two levels of sophistication. First, in Section 3, we use 
a simple language where we put the experimental indistinguishability of inertial observers into a “black 
box” represented by an abstract equivalence relation. Later in Section 4, we replace this black box with a 
concrete notion explicitly talking about experiments. Then in Section 5, we revisit the main results in this 
more complex language.

There are three possible ways to read this paper: one can read every section in order; one can jump 
immediately from Section 2 to Section 4; or one may read the discussion in Section 6 after reading Section 3. 
The structure of the paper is depicted in Fig. 2.

2. Preliminaries: structure of the quantities, coordinate systems, translations and spatial rotations

With some sporadic exceptions, most of the non-axiomatic literature assumes that the structure of 
physical quantities is isomorphic to the field of real numbers. This is quite a strong assumption, which 
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Fig. 2. Structure of the paper.

cannot be justified experimentally. Therefore, we prefer assuming only a small fragment of this, namely 
that the structure of physical quantities forms an ordered field, i.e., we can add, multiply and compare 
physical quantities and these operations satisfy some basic properties valid in the field of real numbers.

Throughout the paper Q is a nonempty set of Quantities which are used to specify coordinates, lengths 
and related quantities, and we assume that Q is equipped with the usual binary operations, · (multiplication) 
and + (addition); constants, 0 and 1 (additive and multiplicative identities); and a binary relation, �. We 
assume that (Q, +, ·, 0, 1, �) satisfies the most fundamental algebraic properties of the real numbers, so that 
calculations can be performed and results compared with one another:

AxOField (Q, +, ·, 0, 1, �) is an ordered field.3

Elements of the coordinate system Q4 representing spacetime locations are denoted using over-arrows, 
e.g., �p, �q, �x, �y, �v, . . . . We define the time-axis, t, to be the set t 

def= {(t, 0, 0, 0) : t ∈ Q}. Alongside the time 

axis, we define the simultaneity, S, to be the set S 
def= {(0, x, y, z) : x, y, z ∈ Q}. If �p = (t, x, y, z) ∈ Q4, 

then �pt
def= t is the time component and �ps

def= (x, y, z) is the space component of �p. For simplicity, we write 

�o def= (0, 0, 0, 0) for the origin of Q4. We will often omit the multiplication symbol “·”. The squared Euclidean 

length of x̄ = (x1, . . . , xn) ∈ Qn is defined as |x̄|2 def= x2
1 + . . . + x2

n. We will use the usual vector space 

operations on Qn. The unit vectors of Q4 are denoted as �e1
def= (1, 0, 0, 0), �e2

def= (0, 1, 0, 0), �e3
def= (0, 0, 1, 0)

and �e4
def= (0, 0, 0, 1).

A function T : Q4 → Q4 is a translation iff there is �v ∈ Q4 such that T (�p) = �p + �v for every �p ∈ Q4. 
It is a spatial translation when �v ∈ S and a temporal translation when �v ∈ t. We denote the set of all 
translations, spatial translations, and temporal translations, respectively, by Tran, Transpace, and Trantime. 
A map L : Q4 → Q4 is a linear transformation iff it is a bijection and L(λ�p + �q) = λL(�p) + L(�q) for every 
�p, �q ∈ Q4 and λ ∈ Q. A map A : Q4 → Q4 is an affine transformation iff it is a composition of a linear 
transformation and a translation. A linear transformation R : Q4 → Q4 is a spatial rotation iff it leaves the 
time axis pointwise fixed, preserves the simultaneity setwise (as well as squared Euclidean lengths measured 
within it), and preserves the orientation of space, i.e., if �p ∈ t, then R(�p) = �p, if �p ∈ S, then R(�p) ∈ S
and |R(�p)|2 = |�p|2, and the determinant of 3 × 3 matrix [R(�e2)s, R(�e3)s, R(�e4)s] is positive.4 Id denotes the 
identity transformation from Q4 to Q4.

3 That (Q, +, ·, 0, 1, �) is an ordered field means that (Q, +, ·, 0, 1) is a field which is totally ordered by �, and we have the 
following two properties for all x, y, z ∈ Q: (1) x + z � y + z if x � y, and (2) 0 � xy if 0 � x and 0 � y.
4 This can be expressed without any assumption about the structure of quantities as: R(�e2)2R(�e3)3R(�e4)4+R(�e2)4R(�e3)2R(�e4)3+

R(�e2)3R(�e3)4R(�e4)2 > R(�e2)4R(�e3)3R(�e4)2 +R(�e2)2R(�e3)4R(�e4)3 +R(�e2)3R(�e3)2R(�e4)4, here R(�p)2, R(�p)3, and R(�p)4 denote the 
second, third and fourth component of R(�p) ∈ Q4, i.e., if R(�p) = (t, x, y, z), then R(�p)2 = x, R(�p)3 = y, and R(�p)4 = z.
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3. Main results presented in a simple language

To highlight the group theoretic and geometric ideas behind the proofs of our main results, first we 
formulate and prove them using a very simple language in which we use an abstract equivalence relation to 
capture the idea of experimental indistinguishability between inertial observers. Later, using a more complex 
language, we are going to introduce an explicit notion of observers agreeing on certain experiments and use 
that notion in place of this abstract one.

3.1. Our simple language

We are concerned in this section with two sorts of objects, (inertial) observers and quantities, which we 
represent as elements of nonempty sets IOb and Q, respectively.

Observers are interpreted to be labels for inertial coordinate systems and as we explained in Section 2, 
we assume that Q is equipped with the usual binary operations, · (multiplication) and + (addition); binary 
relation, � (ordering) and constants 0 and 1.

For o, o′ ∈ IOb, we assume the existence of a function woo′ : Q4 → Q4, called the worldview transfor-
mation from the worldview of o′ to the worldview of o, which we interpret as saying that the event seen 
(coordinatised) by o′ at �p is seen (coordinatised) by o at woo′(�p). In later sections, in richer languages, these 
events and worldview transformations will be defined concepts.

3.2. Formulations of isotropy, homogeneity in our simple language

Homogeneity of time/space simply means that the outcome of an experiment does not depend on 
when/where the experiment is performed and isotropy of space means that the spatial orientation of an 
experiment does not affect its outcome. We can capture the translations/rotations of experiments by using 
the coordinate transformations between observers. For example, consider a certain experiment initiated at 
time t0 in the coordinate system of observer o and suppose we are interested in whether the outcome of the 
experiment would be the same or not if it was initiated at time t1. Then instead of translating the experiment 
to t1 in the coordinate system of o, we can consider observer o′ such that the worldview transformation from 
o to o′ is the temporal translation that maps t1 to t0, and we can ask o′ if it sees the same outcome when 
initiating the experiment with the same spatial orientation at t0. This story works for spatial translations 
and rotations in exactly the same way. (The trick of moving observers instead of the experiments is also 
used in informal approaches, see e.g., [11, pp. 21–22].)

The simple language of Section 3.1 is not suitable to formulate explicitly what we mean when we say that 
two observers agree on the outcomes of experiments. In the present section, we substitute this notion with 
an abstract equivalence relation, which we interpret as saying that two observers are equivalent exactly if 
they agree on the outcomes of experiments performed at the same coordinate point and with same spatial 
orientation. So let ∼ be a binary relation on IOb. In our theorems we will assume that ∼ is an equivalence 
relation.

We formulate the homogeneity of time/space by the statement that observers whose coordinate systems 
differ only by temporal/spatial translation are ∼-equivalent. Isotropy is formulated by the statement that 
observers whose coordinate systems differ only by a spatial rotation are ∼-equivalent. Formally:

H OM∼
time Homogeneity of time:
For every o, o′ ∈ IOb, o ∼ o′ whenever woo′ ∈ Trantime.

H OM∼
space Homogeneity of space:
For every o, o′ ∈ IOb, o ∼ o′ whenever woo′ ∈ Transpace.

H OM∼ Homogeneity of spacetime:
For every o, o′ ∈ IOb, o ∼ o′ whenever woo′ ∈ Tran.
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Fig. 3. Illustration of 3Dir∃Motion, Ax3Dir∃Motion, async and ASync.

I S O∼ Isotropy of space:
For every o, o′ ∈ IOb, o ∼ o′ whenever woo′ ∈ Rotspace.

In these definitions, Trantime, Transpace and Tran are the usual sets of temporal, spatial and spacetime 
translations of Q4, respectively; and Rotspace is the set of spatial rotations of Q4 introduced in Section 2.

3.3. Assumptions

The worldline of observer o′ according to another observer o is the woo′ -image of the time-axis:

wl o(o′)
def= woo′ [t] = {woo′(�p) : �p ∈ t}.

Below we list the assumptions that we use in the present section.

AxOField (Q, +, ·, 0, 1, �) is an ordered field.
Wvt For every o, o′, o′′ ∈ IOb, woo′ ◦ wo′o′′ = woo′′ and woo is the identity transformation Id.
RelocTran Translations of inertial coordinate systems are inertial:

For every o ∈ IOb and every T ∈ Tran there is o′ such that woo′ = T .
RelocRot Rotations of inertial coordinate systems are inertial:

For every o ∈ IOb and every R ∈ Rotspace there is o′ such that woo′ = R.
AffTr Worldview transformations are affine transformations.
3Dir∃Motion There is an inertial observer o according to which there are three inertial observers o1, o2 and 

o3 moving in linearly independent spatial directions (see Fig. 3):
There are o, o1, o2, o3 ∈ IOb with �o ∈ wl o(o1) ∩ wl o(o2) ∩ wl o(o3) and there are �p 1 ∈ wl o(o1), 
�p 2 ∈ wl o(o2) and �p 3 ∈ wl o(o3) such that �p 1

s , �p 2
s and �p 3

s are linearly independent vectors.
async There are clocks that get out of sync, i.e., there are events which are simultaneous for one observer 

but not for another one (see Fig. 3):
There are o, o′ ∈ IOb and �p, �q ∈ Q4 such that �pt �= �qt and wo′o(�p)t = wo′o(�q)t.

In Section 4.4, the assumptions above will be reformulated in a first-order language. These reformulations 
will all be taken as axioms apart for the reformulation ASync of async. We treat async differently, because 
it is not a natural basic assumption for kinematics.

Let ∼ be a binary relation on IOb. We say that ∼ has the transformation property iff for every o, u, o′, u′ ∈
IOb, if wou = wo′u′ and o ∼ o′, then u ∼ u′, see Fig. 4.

The intuitive meaning of transformation property is the following: Assume o and o′ agree on the outcomes 
of experiments performed with the same initialisation (i.e., at the same coordinate point and with the same 
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Fig. 4. Transformation property.

orientation) and the worldview of u is related to the worldview of o the same way as the worldview of 
u′ is related to the worldview of o′. Then u and u′ also agree on the outcomes of experiments performed 
with the same initialisation. The intuitive motivation for this conclusion is the following. Let e denote an 
experiment together with its initialisation that is performed by both u and u′. In the worldviews of o and o′, 
the manifestations of e are respectively ê and ê ′ (which are experiments together with their initialisations). 
Since u is related to o the same way as u′ is related to o′, ̂e and ̂e ′ are the same. Observers o and o′ agree on 
the outcome of ̂e = ê ′ by assumption. Therefore, it is natural to assume that u and u′ agree on the outcome 
of e. Later when we will be able to talk about experiments explicitly, we will make this intuitive derivation of 
the transformation property precise. Specifically, in Section 4.5, we are going to define a unary map 

̂
from 

formulas-describing-experiments to formulas, and instead of the transformation property, we will assume 
that this unary operation maps descriptions of experiments to descriptions of experiments. Then we will 
prove the transformation property in Lemma 5.27.

3.4. Main results in the simple language

Since the intuitive meaning of relation o ∼ o′ is that observers o and o′ get the same outcomes when 
performing the same experiments with the same initial configuration, it is natural to assume that ∼ is an 
equivalence relation.

We prove the results of the present section in Section 3.6.

3.4.1. Homogeneity of time implies homogeneity of space

Theorem 3.1. Assume AxOField, Wvt, RelocTran, AffTr and 3Dir∃Motion. Let ∼ be an equivalence relation 
on IOb that has the transformation property. Then

H OM∼
time ⇒⇒⇒ H OM∼

space.

By Theorem 3.5, homogeneity of space does not imply homogeneity of time in general, cf. Theorems 5.3
and 5.17. However, if we assume that there are clocks that lose synchrony, homogeneity of space implies 
homogeneity of time:

Theorem 3.2. Assume AxOField, Wvt, RelocTran, AffTr and that ∼ is an equivalence relation on IOb that has 
the transformation property. Then

(H OM∼
space + async) ⇒⇒⇒ H OM∼

time.

While homogeneity of spacetime clearly entails homogeneity of both time and space, the converse does 
not hold in general, i.e., homogeneities of time and space together do not imply homogeneity of spacetime, 
cf. Proposition 5.1(ii). However, if we make some mild additional assumptions, the converse becomes true.
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Proposition 3.3. Assume AxOField, Wvt, RelocTran and that ∼ is an equivalence relation on IOb. Then

(H OM∼
time + H OM∼

space) ⇒⇒⇒ H OM∼.

3.4.2. Isotropy of space implies homogeneity of space

Theorem 3.4. Assume AxOField, Wvt, RelocTran and RelocRot. Let ∼ be an equivalence relation on IOb that 
has the transformation property. Then

I S O∼ ⇒⇒⇒ H OM∼
space.

In the case of positive results, the formulations and proofs in the simple language give some insights and 
explanations even though ∼ is just an abstract equivalence relation. We can formulate and prove also our 
negative results using the simple language; however, the counterexamples are less explanatory than in the 
language of Section 4 because they do not contain any physical phenomena showing why some property, 
say homogeneity of time, does not hold. Nevertheless, for illustration, we formulate and prove one of our 
negative results, namely Theorem 5.17, in the simple language. The other counterexamples of Section 5.5
can also be transformed into the simple language.

3.4.3. Isotropy and homogeneity of space together do not imply homogeneity of time

Theorem 3.5. Assume that ∼ is an equivalence relation on IOb. Then

(I S O∼ + H OM∼
space) ��� H OM∼

time

even if we assume AxOField, Wvt, RelocTran, RelocRot, AffTr, 3Dir∃Motion and that ∼ has the transformation 
property.

We note that homogeneity of spacetime does not imply isotropy, cf. Theorems 5.9, 5.15.

3.5. Connections to groups and group actions

The set of worldview transformations is defined as

W
def= {wou : o, u ∈ IOb}.

Notice that W does not necessarily form a group under composition. For example, if (Q, +, ·, 0, 1, �) is 
the field of reals and IOb consists of only two observers o and u such that wou �= Id is a Lorentz boost, 
woo := wuu := Id, and wuo := w−1

ou , then wou ◦ wou /∈ W = {Id, wou, w−1
ou }. This counterexample satisfies 

AxOField, Wvt, AffTr and async. It is not difficult to construct a counterexample that satisfies all the 
assumptions listed in Section 3.3.

We will see that if we assume Spr below in addition to Wvt, W forms a group under composition.

Spr For every o, o′, u ∈ IOb, there is u′ ∈ IOb such that wou = wo′u′ .

Assumption Spr is a small slice of the special principle of relativity; it captures the idea that inertial observers 
cannot be distinguished by how they can be related to other inertial observers. Spr is an axiom in [22] and 
[23].
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Proposition 3.6. Assume Wvt. Then:

(i) Worldview transformations are bijections and wuo = w−1
ou for every o, u ∈ IOb.

(ii) W forms a group under composition if Spr holds.

Proof. (i): It follows from wou ◦ wuo = woo = Id and wuo ◦ wou = wuu = Id that wou and wuo are mutual 
inverses, and hence that they are both bijections.

(ii): By (i), it is enough to prove that W is closed under composition. To see this, let wjo′ , wou ∈ W . Let 
u′ ∈ IOb be such that wou = wo′u′ . Such u′ exists by Spr. Now, by Wvt, wjo′ ◦wou = wjo′ ◦wo′u′ = wju′ ∈ W .

For the next definition, we also need the following extensionality assumption:

Ext If wou = Id, then o = u, for every o, u ∈ IOb.

Intuitively, Ext states if observers o and u have the same worldviews, then they have to be the same observer; 
or in other words, different observers have to have different worldviews.

Proposition 3.7. Assume Wvt, Spr and Ext. Let w ∈ W and o ∈ IOb. Then there is a unique u ∈ IOb such 
that wou = w .

Proof. Let w = wo′u′ ∈ W . Let u ∈ IOb such that w = wo′u′ = wou. Such a u exists by Spr. To prove the 
uniqueness assume that h ∈ IOb is such that woh = w . Then whu = who ◦ wou = w−1 ◦ w = Id by Wvt and 
Proposition 3.6. Then h = u by Ext.

Definition 3.8. Assume Wvt, Spr and Ext. We define a function

α : W × IOb → IOb

as follows. Let w ∈ W and o ∈ IOb. Then, by Proposition 3.7, there is a unique u ∈ IOb such that wou = w . 
We define α(w , o) to be this unique u. Instead of α(w , o) we will write wo.

The following proposition gives group theoretic reformulations of our assumptions if Wvt, Spr and Ext
hold. It is straightforward to prove its items, hence we omit their proofs.

Proposition 3.9. Assume Wvt, Spr and Ext. Let ∼ be an equivalence relation on IOb. Then

(i) α is a regular5 group action of W on IOb.
(ii) ∼ has the transformation property iff, for all o, o′ ∈ IOb and w ∈ W

o ∼ o′ ⇒ wo ∼ wo′.

(iii) RelocTran and RelocRot are equivalent to Tran ⊆ W and Rotspace ⊆ W , respectively.
(iv) Assuming RelocTran, H OM∼

time holds iff the equivalence classes of ∼ are closed under the actions of 
temporal translations, i.e.,

w ∈ Trantime, o ∈ IOb ⇒ o ∼ wo.

5 A group action is regular if it is transitive and only the action of the identity element has fixed points.
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Fig. 5. Illustrations for Definition 3.11 and Lemma 3.12(iv).

(v) Assuming RelocTran, H OM∼
space holds iff the equivalence classes of ∼ are closed under the actions of 

spatial translations, i.e.,

w ∈ Transpace, o ∈ IOb ⇒ o ∼ wo.

(vi) Assuming RelocTran, H OM∼ holds iff the equivalence classes of ∼ are closed under the actions of 
translations, i.e.,

w ∈ Tran, o ∈ IOb ⇒ o ∼ wo.

(vii) Assuming RelocRot, I S O∼ holds iff the equivalence classes of ∼ are closed under the actions of spatial 
rotations, i.e.,

w ∈ Rotspace, o ∈ IOb ⇒ o ∼ wo.

3.6. Proofs of Theorems 3.1, 3.2, 3.4, 3.5, and Proposition 3.3

Let T�v : Q4 → Q4 denote the translation by vector �v ∈ Q4, i.e., T�v(�p) = �p + �v for all �p ∈ Q4. Assuming 
AxOField, we recall that: T�v is a bijection, T�v−1 = T−�v, T�o = Id and T�v+�v ′ = T�v ◦ T�v ′ = T�v ′ ◦ T�v for every 
�v, �v ′ ∈ Q4.

Lemma 3.10. Assume AxOField. Let A be an affine transformation, and suppose that �p, �q ∈ Q4 and λ ∈ Q. 
Then:

(i) A ◦ T�p−�q = TA(�p)−A(�q) ◦A.
(ii) A(λ�p) −A(λ�q) = λ (A(�p) −A(�q)).

Proof. This follows easily from the fact that A = L ◦ T for some linear transformation L and translation 
T , and that A(�p ′) −A(�q ′) = L(�p ′) − L(�q ′) for all �p ′, �q ′ ∈ Q4.

Let us recall that, by Proposition 3.6(i), from Wvt it follows that worldview transformations are bijections 
and w−1

hk = wkh for every k, h ∈ IOb. We will use this fact in the definitions and proofs.

Definition 3.11. Let k, h, m ∈ IOb and �v ∈ Q4. We say that h is a �v-translated version of k according to m, 
and write k �v−−→m h, if wmh = T�v ◦ wmk, see the left-hand side of Fig. 5.

Lemma 3.12. Assume AxOField and Wvt. Then for all k, h, j, m ∈ IOb and �v, �u ∈ Q4, we have:

(i) k �o−−→m k.
(ii) If k �v−−→m h, then h −�v−−→m k.
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Fig. 6. Illustration for Lemma 3.14.

(iii) If k �v−−→m h and h �u−−→m j, then k �v + �u−−→m j.
(iv) Suppose wjm is an affine transformation, and k �v − �u−−→m h. Then k �w−−→j h for �w := wjm(�v) − wjm(�u), 

see the right-hand side of Fig. 5.
(v) If wkh = T�v, then k �v−−→k h.

Proof. (i), (ii), (iii) are straightforward. To prove (iv), let �w := wjm(�v) −wjm(�u). Then, by Lemma 3.10(i), 
wjm ◦ T�v−�u = T�w ◦ wjm. By k �v − �u−−→m h, we have that wmh = T�v−�u ◦ wmk. By these and Wvt, we have 
wjh = wjm ◦ wmh = wjm ◦ T�v−�u ◦ wmk = T�w ◦ wjm ◦ wmk = T�w ◦ wjk, as required. To prove (v), assume that 
wkh = T�v. Then, wkh = wkh ◦ Id = T�v ◦ wkk, as claimed.

Lemma 3.13. Assume AxOField, Wvt, RelocTran and AffTr. Then, for every k, m ∈ IOb and �v ∈ Q4, there 
exists h ∈ IOb such that k �v−−→m h. This h is unique if Ext is assumed.

Proof. Define �u := wkm(�v) − wkm(�o). Let h ∈ IOb be such that wkh = T�u. Such an h exists by 
AxRelocTran. Then, by Lemma 3.12(v), k �u−−→k h. By Lemma 3.12(iv), it now follows that k �v−−→m h because 
wmk(wkm(�v)) −wmk(wkm(�o)) = �v−�o = �v. To prove the uniqueness assume Ext and that h′ ∈ IOb is such that 
k �v−−→m h′. Then wmh = wmh′ (= T�v ◦wmk). By Wvt, we have whh′ = whm ◦wmh′ = whm ◦wmh = whh = Id. 
Thus h = h′ by Ext.

Lemma 3.14. Assume AxOField, Wvt, RelocTran. Let ∼ be an equivalence relation on IOb that has the trans-
formation property. Let �v ∈ Q4 and m, k, h ∈ IOb be such that k �v−−→m h. Then items (i) and (ii) below 
hold, see Fig. 6.

(i) If H OM∼
time holds and �v ∈ t, then k ∼ h.

(ii) If H OM∼
space holds and �v ∈ S, then k ∼ h.

Proof. By k �v−−→m h, we have wmh = T�v ◦ wmk. Let j ∈ IOb be such that wmj = T�v. Such a j exists by 
RelocTran. By Wvt and Proposition 3.6(i), wjh = wjm ◦ wmh = T�v

−1 ◦ T�v ◦ wmk = Id ◦ wmk = wmk. Thus 
wmk = wjh.

(i) Suppose H OM∼
time holds and that �v ∈ t. Then m ∼ j because wmj = T�v ∈ Trantime. But then k ∼ h

because wmk = wjh, m ∼ j and ∼ has the transformation property.
(ii) Analogously, if H OM∼

space holds and �v ∈ S, then k ∼ h.

Remark 3.15. Assume AxOField, Wvt, RelocTran, AffTr, Ext and that ∼ is an equivalence relation on IOb that 
has the transformation property. By Lemmas 3.12 and 3.13, for every m ∈ IOb, −−→m determines a group 
action6 of Tran on IOb as follows: Let m ∈ IOb. Then the action of T�v ∈ Tran on k ∈ IOb is defined to be 
the unique h for which k �v−−→m h. By Lemma 3.14 it can be proven that

6 We consider Tran as a group under composition.
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Fig. 7. Illustration for the proof of Theorem 3.1.

(i) H OM∼
time holds iff for every m ∈ IOb, the equivalence classes of ∼ are closed under the actions of 

temporal translations, and
(ii) H OM∼

space holds iff for every m ∈ IOb, the equivalence classes of ∼ are closed under the actions of 
spatial translations.

Proof of Theorem 3.1. Assume H OM∼
time. We will prove that for every �v ∈ Q4 and k, h ∈ IOb if wkh = T�v, 

then k ∼ h, which is a stronger statement than the required H OM∼
space. So, let �v ∈ Q4 and k, h ∈ IOb

satisfy wkh = T�v. We want to prove that k ∼ h.
By 3Dir∃Motion, we can fix m, j1, j2, j3 ∈ IOb and �p 1, �p 2, �p 3 ∈ Q4 such that �p 1

s , �p
2
s , �p

3
s are linearly 

independent and �o, �p i ∈ wl m(ji) for every i ∈ {1, 2, 3}, see Fig. 7. By Lemma 3.12(v) and wkh = T�v, we 
have that k �v−−→k h. Let �u ∈ Q4 be such that k �u−−→m h, see Fig. 7. Such �u exists by Lemma 3.12(iv). Let 
λ1, λ2, λ3 ∈ Q be such that �us = λ1�p

1
s + λ2�p

2
s + λ3�p

3
s .

By Lemma 3.13, we can fix k1, k2, k3 such that

k
λ1�p

1

−−→m k1, k1
λ2�p

2

−−→m k2 and k2
λ3�p

3

−−→m k3. (1)

By Lemma 3.12(iv), it now follows that k �w 1
−−→j1 k1, k1

�w 2
−−→j2 k2 and k2

�w 3
−−→j3 k3 for �w i := wjim(λi�p

i) −
wjim(�o) (i ∈ {1, 2, 3}). Since wjim is an affine transformation, �w i = λ

(
wjim(�p i) − wjim(�o)

)
. We have that 

wjim(�o), wjim(�p i) ∈ t, because �o, �p i ∈ wl m(ji) := wmji [t] and w−1
mji

= wjim. Therefore �w i ∈ t for every 
i ∈ {1, 2, 3}. Now, by Lemma 3.14(i),

k ∼ k1, k1 ∼ k2 and k2 ∼ k3.

Let �p := λ1�p
1 + λ2�p

2 + λ3�p
3 and note that �ps = �us. By Lemma 3.12(ii) and k �u−−→m h, we have that 

h −�u−−→m k. By Lemma 3.12(iii) and (1), it follows that k �p−−→m k3. Then by Lemma 3.12(iii) again, we have 

that h 
�p − �u−−→m k3. Since �ps = �us, we have �p− �u ∈ t, and hence by Lemma 3.14(i),

h ∼ k3.

Since ∼ is an equivalence relation, we conclude that k ∼ h, as required.
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Fig. 8. Illustration for the proof of Theorem 3.2.

Proof of Theorem 3.2. Assume H OM∼
space. We will prove that for every �v ∈ Q4 and k, h ∈ IOb, if wkh = T�v, 

then k ∼ h, which is a stronger statement than the required H OM∼
time.

Let �v ∈ Q4 and k, h ∈ IOb be such that wkh = T�v. We want to prove that k ∼ h. By async we can fix 
m, j ∈ IOb and �p, �q ∈ Q4 (see Fig. 8) such that �pt �= �qt and wjm(�p)t = wjm(�q)t.

By Lemma 3.12(v) and wkh = T�v, we have that k �v−−→k h. By (iv) of Lemma 3.12, we can fix �u ∈ Q4

such that k �u−−→m h. Let λ ∈ Q be such that λ(�pt − �qt) = �ut. By Lemma 3.13, we can fix g ∈ IOb
such that k λ�p − λ�q−−−−−→m g. Then, by Lemma 3.12(iv), k �w−−→j g for �w := wjm(λ�p) − wjm(λ�q). By AffTr and 
Lemma 3.10(ii), we have that �w = λ (wjm(�p) − wjm(�q)). By this and wjm(�p)t = wjm(�q)t, we have that 
�wt = 0, i.e., �w ∈ S. But then by Lemma 3.14(ii),

k ∼ g.

By k
λ�p − λ�q−−−−−→m g, k �u−−→m h and items (i) and (ii) of Lemma 3.12, we have that h −�u−−→m k and h �z−−→m g

for �z := λ�p− λ�q − �u. By λ(�pt − �qt) = �ut, we have that �zt = 0, i.e., �z ∈ S. Therefore, by Lemma 3.14(ii), we 
have that

h ∼ g.

Since ∼ is an equivalence relation, we conclude that k ∼ h, as required.

Proof of Proposition 3.3. Assume H OM∼
time and H OM∼

space. To prove H OM∼, let k, h ∈ IOb, and 
�v ∈ Q4 be such that wkh = T�v. We have to prove that k ∼ h. Let �t ∈ t and �s ∈ S be such that �v = �t + �s. 
Such �t and �s exist by AxOField. Then T�t ∈ Trantime and T�s ∈ Transpace. Let m ∈ IOb be such that wkm = T�t. 
Such an m exists by RelocTran. Then, by H OM∼

time and T�t ∈ Trantime,

k ∼ m.

By Wvt and AxOField, wmh = wmk ◦ wkh = T−�t ◦ T�v = T�v−�t = T�s ∈ Transpace. By this, and H OM∼
space,

m ∼ h.

Since ∼ is an equivalence relation, the result now follows.

Proof of Theorem 3.4. Assume I S O∼. To prove H OM∼
space, let k, h ∈ IOb satisfy wkh ∈ Transpace. We 

have to prove that k ∼ h. Let �v ∈ S be such that wkh = T2�v, see Fig. 9, and let m satisfy wkm = T�v (such 
an m exists by RelocTran). Then, by Wvt and Proposition 3.6(i), wmh = wmk ◦ wkh = T−�v ◦ T2�v = T�v. We 
have to prove that k ∼ h.

Let R ∈ Rotspace be such that R(�v) = −�v. Such an R exists because of the following: Consider the 
linear map that takes α�e1 + β�v to α�e1 − β�v. By �v ∈ S, it is easy to see that this map is a linear bijection 
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Fig. 9. Illustration for the proof of Theorem 3.4.

preserving Euclidean scalar product on subspace generated by �e1 and �v. Hence, by the refinement of Witt’s 
theorem [32, Thm 234.1, p. 234] there is an extension R : Q4 → Q4 which is a linear transformation 
preserving the Euclidean scalar product with determinant 1. It is easy to see that this R is a spatial 
rotation, because R(�e1) = �e1.

Let m′ ∈ IOb be such that wmm′ = R. Such an m′ exists by RelocRot. Then, by I S O∼, we have that 
m ∼ m′. Let h′ be such that wm′h′ = T�v. Such an h′ exists by RelocTran. Then

h ∼ h′

because wmh = wm′h′ = T�v, m ∼ m′ and ∼ has the transformation property. Next we are going to prove 
that wkh′ = R. By Wvt, we have that wkh′ = wkm ◦ wmm′ ◦ wm′h′ = T�v ◦ R ◦ T�v. Thus, for every �p ∈ Q4, 
wkh′(�p) = (T�v ◦R ◦ T�v) (�p) = (T�v ◦R) (�p + �v) = T�v

(
R(�p) + R(�v)

)
= T�v

(
R(�p) − �v

)
= R(�p). Therefore, 

wkh′ = R ∈ Rotspace as claimed. Then, by I S O∼, we have that

k ∼ h′.

Since ∼ is an equivalence relation, we conclude that k ∼ h, as required.

Proof of Theorem 3.5. Let (Q, +, ·, 0, 1, �) be the ordered field of reals. Let G and H be respectively the 
sets of affine transformations that map simultaneous coordinate points to simultaneous coordinate points 
and the set of affine transformations that fix the time components of the coordinate points, i.e.,

G := {A ∈ AffTr : �pt = �qt ⇒ A(�p)t = A(�q)t} and

H := {A ∈ AffTr : A(�p)t = �pt}.

Both G and H form groups under composition and H is a proper subgroup of G. Let IOb := G, wkh := k−1◦h
and k ∼ h :⇔ wkh ∈ H for every k, h ∈ IOb.

Obviously AxOField holds, and it is easy to check that Wvt holds, too. RelocTran and RelocRot hold 
because Tran, Rotspace ⊆ G and G forms a group. To prove 3Dir∃Motion, let g1, g2 and g3 be the linear 
transformations that map �e1 to (1, 1, 0, 0), (1, 0, 1, 0) and (1, 0, 0, 1) respectively, and leave �e2, �e3 and �e4 fixed. 
Then g1, g2, g3 ∈ G = IOb, �o ∈ wl Id(g1) ∩ wl Id(g2) ∩ wl Id(g3), (1, 1, 0, 0) ∈ wl Id(g1), (1, 0, 1, 0) ∈ wl Id(g2), 
(1, 0, 0, 1) ∈ wl Id(g3) and (1, 0, 0), (0, 1, 0) and (0, 0, 1) are linearly independent. Thus 3Dir∃Motion holds.

By Wvt it is easy to check that ∼ is an equivalence relation because H is a group. To prove that ∼ has 
the transformation property let k, k′, h, h′ ∈ IOb be such that k ∼ k′ and wkh = wk′h′ . Then whk = wh′k′

by Proposition 3.6. We want to prove that h ∼ h′, i.e., whh′(�p)t = �pt for every �p ∈ Q4. Let �p ∈ Q4 be an 
arbitrary coordinate point. By Wvt,
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whh′(�p)t = whk(wkk′(wk′h′(�p)))t.

Because wkk′ ∈ H by k ∼ k′,

wkk′(wk′h′(�p))t = wk′h′(�p)t.

From this and whk = wh′k′ ∈ G, we have that

whk(wkk′(wk′h′(�p))t = wh′k′(wk′h′(�p))t = wh′h′(�p)t = �pt.

Thus whh′(�p)t = �pt; and hence whh′ ∈ H, which is equivalent to h ∼ h′ by definition. Hence ∼ has the 
transformation property.

H OM∼
space and I S O∼ hold by Transpace, Rotspace ⊆ H and the definition of ∼. Homogeneity of time 

H OM∼
time does not hold because of the following: By RelocTran there are k, h ∈ IOb for which Id �= wkh ∈

Trantime. For such k and h, we have that wkh /∈ H and therefore k � h.

4. Logical framework

To get a more refined understanding of the key notion of observers agreeing on experiments, now we 
dig deeper and make its meaning explicit. This notion clearly depends on the language on which the 
experimental descriptions are formulated. So we give a minimal core language that is needed to capture this 
notion, and we formulate our theorems in a way that makes them applicable to any language containing 
this core language. For methodological reasons, we work within the framework of first-order logic.

4.1. Language

Following [25], we use the 3-sorted first-order language

Lcore = {IOb,B,Q,+, ·, 0, 1,�,W}

as our core language for kinematics, where

• IOb is the sort of inertial observers – we use observers to label coordinate systems.
• B is the sort of bodies – these represent things that can move.
• Q is the sort of physical quantities, with constants 0 and 1, the usual binary operations · and +, and 

ordering relation �. We use Q to specify coordinates, lengths, etc.
• W is the worldview relation, a 6-ary relation of type IOb × B × Q4. We interpret the atomic formula 

W(o, b, t, x, y, z) to mean “inertial observer o coordinatises body b to be at spatial location (x, y, z) at 
time t.”

As usual, by a model of Lcore we mean a collection of three non-empty sets corresponding to sorts IOb, 
B and Q, as well as constants, operations and relations defined on them.

Later, we will talk about extensions of Lcore, and distinguish between “mathematical” and “non-
mathematical” sorts (for example, we consider Q to be the mathematical sort of Lcore, while IOb and B
are non-mathematical sorts). “Mathematical” sorts will occur as parameters in scenarios, while non-mathe-
matical ones are typically used to capture important physical attributes, e.g., a representation of quantum 
electrodynamics might extend Lcore by introducing new sorts representing photons, electrons and positrons. 
This approach means our results are not restricted to pure kinematics, but generalise automatically to a 
wide range of physically relevant theories. For examples of languages extending Lcore, see e.g., [3,21,24].
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4.2. Basic notation and definitions

Let L be any language extending Lcore, and suppose that some of the sorts of L are distinguished 
as mathematical sorts, for use as mathematical parameters of the experiments. We assume, in particular, 
that Q is a mathematical sort of L , while B and IOb are non-mathematical. The sorts of variables are 
usually clear from context, but to help the reader we regularly use variables o, k, h, m, j, g and their 
variants for inertial observers, b for bodies; x, y, z, t and λ for quantities, and x̄ for sequences of variables 
of mathematical sorts. Elements of Q4 representing spacetime locations are denoted using over-arrows, e.g., 
�p, �q, �x, �y, �v, . . . .

Let us recall here some key concepts easily definable in L . The event observed by observer o at coordinate 
point �p is the set of bodies that o coordinatises there:

evo(�p)
def= {b ∈ B : W(o, b, �p)} .

The worldview transformation woo′ is a binary relation on Q4 connecting the coordinate systems of observers 
o′ and o by mapping coordinate point �p to �q if the event that o′ coordinatises at �p is the same event that o
coordinatises at �q:

woo′(�p, �q)
def⇐⇒ evo′(�p) = evo(�q).

Under the mild background assumptions made here, woo′ is a bijection for all observers o and o′, and it 
maps the coordinate system of o′ to that of o.7

Because bodies and observers are of different formal sorts, we provide two distinct definitions of what 
we mean by a worldline. The worldline of body b according to observer o is the set of coordinate points at 
which o coordinatises b:

wlo(b)
def=

{
�p ∈ Q4 : W(o, b, �p)

}
.

From an observer’s standpoint, their own worldline maps out the time-axis because they consider them-
selves to be at rest spatially. So the worldline of observer o′ according to another observer o is simply the 
woo′-image of the time-axis8:

wlo(o′)
def=

{
�q ∈ Q4 : (∃�p ∈ t)woo′(�p, �q)

}
.

4.3. Formalisation of homogeneity and isotropy

Now we are going to formalise Homogeneity and Isotropy making the meaning of observers agreeing on the 
outcome of experiments explicit. Let us recall that isotropy means intuitively that rotating an experimental 
configuration in space should not change the overall outcome of the experiment, and homogeneity has an 
analogous intuitive meaning using translations in place of rotations. Let us also recall that we adopt a static 
representation of experiments where their configuration, progress and outcome are all contained in the 
description of the experiment – the representation provides a complete record of the experiment containing 
every relevant detail from beginning to end.

To formalise isotropy and homogeneity, we first capture this notion of static experiments by considering 
experimental scenarios expressible in any formal language L extending our base language Lcore. We assume 

7 The order of observers in the subscript of w is chosen to fit functional composition, i.e., so that woo′
(
wo′o′′ (�p)

)
= woo′′ (�p) for all 

observers o, o′, o′′ and coordinate points �p (assuming our background axioms ensuring that worldview transformations are indeed 
bijections).
8 This approach differs from that in [2,4], where we instead represented the motion of observers by considering co-moving bodies.
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In these examples we assume that B = {b1, b2, b3} and take t = 1 for illustrative purposes. Scenarios ϕ(1)–ϕ(4) are:

ϕ(1) Observer o can see a body at the origin: ϕ1(o) ≡ (∃b)W(o, b, �o).
ϕ(2) Observer o can send a body from the origin to (t, x, y, z):

ϕ2(o, t, x, y, z) ≡ (∃b)
(
W(o, b, �o) ∧ W(o, b, t, x, y, z)

)
.

ϕ(3) Observer o can observe (at least) two distinct bodies meeting at time instant t:
ϕ3(o, t) ≡ (∃b, b′)(∃x, y, z)

(
b �= b′ ∧ W(o, b, t, x, y, z) ∧ W(o, b′, t, x, y, z)

)
.

ϕ(4) Observer o can observe a stationary body at space location (x, y, z):
ϕ4(o, x, y, z) ≡ (∃b)(∀�p)

(
W(o, b, �p) ↔ �ps = (x, y, z)

)
.

Fig. 10. Some basic experimental scenarios expressed in formal terms, and whether observers m, k, h agree as to their realisability.

that certain sorts of L are distinguished as being mathematical, that Q is a mathematical sort, and that B
and IOb are non-mathematical. We will consider statements, ϕ, which describe experiments statically. For 
example, ϕ might say “if this device has the following specified spatial configuration at time t, then it also 
produces some definite reading (an observable in the resulting spatial configuration) at time t + 1”.

Recalling the notation of [25], a formula ϕ(o, ̄x) of language L is called a scenario if o is the only free 
variable of ϕ of sort IOb and all the other free variables x̄ of ϕ are of mathematical sorts (these correspond to 
experimental parameters in the coordinate system of o). For concrete choices of the parameters, we get con-
crete experiments. For example, ϕ(o, v) might capture the statement “o can send out a body b moving with 
speed v from the origin”. In this case, in a concrete model, the truth of ϕ(o, 1) means the realisability of the 
concrete experiment sending out a body moving with (coordinate) speed v = 1 from the origin by observer 
o, while ϕ(o, 

√
2) means the same but corresponding to the similar experiment where the speed v =

√
2.

See Fig. 10 for examples of scenarios expressed in formal terms; for further motivation of this concept, 
and for further examples, see [25]. Notice the difference between a scenario and an experiment: in every 
model, each scenario describes a family of experiments, each determined by a specific evaluation of the 
mathematical variables, x̄.

Even though ϕ(o, ̄x) is a first-order formula, this is not a real limitation on the formalisability of ex-
periments because the language L extending Lcore can be chosen arbitrarily. Typically, one does not use 
higher-order constructions in describing experiments (e.g., no quantification over sets is used in such de-
scriptions). However, even that would not be a problem with an appropriately chosen language L because 
L can contain sorts for sets, functions, etc.

We write L -Scenarios for the set of all scenarios of language L . To capture the idea that all inertial 
observers agree on the truth value of formula ϕ(o, ̄x) for every evaluation of the variables x̄, we introduce 
the following formula9

9 Here, ϕ(o′, ̄x) is the formula obtained from ϕ(o, ̄x) by replacing all free occurrences of o with o′ while avoiding collision of 
variables using any (fixed) method of changing bound variables if needed.
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Agreeϕ (o, o′) def= (∀x̄)
(
ϕ(o, x̄) ↔ ϕ(o′, x̄)

)
.

The informal meaning of Agreeϕ (o, o′) is that observers o and o′ agree as to the realisability of scenario ϕ, 
i.e., they are in experimental agreement for all experiments described by ϕ. For examples illustrating the 
use of formula Agreeϕ (o, o′) in a simple model, see Fig. 10.

Now we can formalise homogeneity and isotropy by moving the observers instead of the experiments, cf. 
e.g., Section 3.2 and [11, pp. 21–22]. Let S ⊆ L -Scenarios be some set of physically relevant scenarios, 
i.e., the ones that correspond to experiments we are interested in a certain situation. Notice that we are 
not concerned as to what those experiments might be. They will differ according to the underlying physical 
properties they are designed to investigate, but even so, our results cover all eventualities.

By homogeneity of time, we understand the following formula schema stating that inertial observers agree 
on the realisability of scenarios in S if their coordinate systems differ only by a temporal translation:

HOMS
time

def=
{
(∀o, o′)

(
woo′ ∈ Trantime → Agreeϕ (o, o′)

)
: ϕ ∈ S

}
.

Homogeneity of space is defined analogously using spatial translations instead of temporal ones:

HOMS
space

def=
{
(∀o, o′)

(
woo′ ∈ Transpace → Agreeϕ (o, o′)

)
: ϕ ∈ S

}
.

In the same way, homogeneity (of spacetime) is characterised by translations in spacetime:

HOMS def=
{
(∀o, o′)

(
woo′ ∈ Tran → Agreeϕ (o, o′)

)
: ϕ ∈ S

}
,

while isotropy is defined analogously using rotations instead of translations:

ISOS def=
{
(∀o, o′)

(
woo′ ∈ Rotspace → Agreeϕ (o, o′)

)
: ϕ ∈ S

}
.

Evidently, the logical strength of these schemas depends on the set S of ‘relevant’ experiments: increasing 
S extends the set of associated constraints. If we assume that observers in question must agree on real-
isability of all scenarios (not only the physically relevant ones) we get the strongest forms of the isotropy 
(ISO+) and homogeneity schemas (HOM+

time, HOM+
space and HOM+):

HOM+
time

def=
{
(∀o, o′)

(
woo′ ∈ Trantime → Agreeϕ (o, o′)

)
: ϕ ∈ L -Scenarios

}
,

HOM+
space

def=
{
(∀o, o′)

(
woo′ ∈ Transpace → Agreeϕ (o, o′)

)
: ϕ ∈ L -Scenarios

}
,

HOM+ def=
{
(∀o, o′)

(
woo′ ∈ Tran → Agreeϕ (o, o′)

)
: ϕ ∈ L -Scenarios

}
,

ISO+ def=
{
(∀o, o′)

(
woo′ ∈ Rotspace → Agreeϕ (o, o′)

)
: ϕ ∈ L -Scenarios

}
.

While homogeneity clearly entails homogeneity of both time and space, the converse does not hold in 
general, i.e., homogeneities of time and space together do not imply homogeneity. However, if we make some 
mild additional assumptions, this converse becomes true. See Proposition 5.1.

Throughout the paper, we assume that L is an arbitrary language extending Lcore, that some of the 
sorts of L are distinguished as mathematical sorts, and that S ⊆ L -Scenarios.

4.3.1. Connections between the formulations of isotropy and homogeneity in Section 3.2 and their 
formalisations in the present section

Definition 4.1. Let M be a model of L and suppose h, h′ ∈ IOb. We say that h and h′ agree on S in M, 
in symbols h ∼S

M h′, iff Agreeϕ (h, h′) holds in M for every ϕ ∈ S .
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Remark 4.2. Relation ∼S
M is an equivalence relation on IOb in every model M of L because, by the properties 

of biconditional ↔, formula Agreeϕ defines an equivalence relation on IOb for every ϕ ∈ S and relation 
∼S

M is the intersection of these equivalence relations.

Proposition 4.3. Let M be a model of L . Assume that the worldview transformations are functions from 
Q4 to Q4. Let wkh := wkh for every k, h ∈ IOb. Let ∼ be ∼S

M . Then, HOMS
time ⇔ H OM∼

time, HOMS
space ⇔

H OM∼
space, HOMS ⇔ H OM∼ and ISOS ⇔ I S O∼ hold in M.

Proof. These statements follow trivially from the definition of ∼S
M .

4.4. Axioms

In formalising the axioms below, we adopt the usual convention that whenever we write R(a) (where 
R is a relation), then there exists a unique b such that R(a, b) holds and R(a) denotes this unique b. In 
particular, when we write woo′(�r) we are implicitly stating that there is exactly one �s ∈ Q4 such that the 
relation woo′(�r, �s) holds and that woo′(�r) denotes this unique �s. By this convention, both AxRelocTran and 
AxAffTr below imply that worldview transformations are bijections because then, for all observers o and o′, 
both woo′ and its inverse wo′o are functions defined everywhere.

The axiom system used in this paper is

FRAME def= {AxOField, AxRelocTran, AxRelocRot, AxAffTr, Ax3Dir∃Motion},

where the five basic axioms say that:

AxOField (Q, +, ·, 0, 1, �) is an ordered field.
AxRelocTran Translations of inertial coordinate systems are inertial:

(∀o)(∀�v)(∃o′)(∀�p)(woo′(�p) = �p + �v).

AxRelocRot Rotations of inertial coordinate systems are inertial10:

(∀o)(∀R ∈ Rotspace)(∃o′)(woo′ = R).

AxAffTr Worldview transformations are affine:

(∀o, o′)(∃�v)(∀�p, �q, λ)
(
woo′(λ · �p) + �v = λ ·

(
woo′(�p) + �v

)
∧

woo′(�p + �q) = woo′(�p) + woo′(�q) + �v
)
.

Ax3Dir∃Motion There is an inertial observer according to which there are three inertial observers moving 
in linearly independent spatial directions (see Fig. 3):

(∃o, o1, o2, o3)(∃�p 1, �p 2, �p 3)
(
Indep(�p 1

s , �p
2
s , �p

3
s ) ∧

∧3
i=1

(
�o, �p i ∈ wlo(oi)

))
,

where Indep(�p 1
s , �p

2
s , �p

3
s ) abbreviates the following formula:

10 Quantification over Rotspace appears to be second-order. However, because spatial rotations are determined by the images of 
the three spatial unit vectors, this axiom can be formalised in our first-order language by quantifying over the 12 parameters 
representing the images of the three spatial unit vectors.
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(∀λ1, λ2, λ3)
(
λ1�p

1
s + λ2�p

2
s + λ3�p

3
s = (0, 0, 0) → λ1 = λ2 = λ3 = 0

)
.

Models for language L will be called L -models. If M is some L -model, and Σ is a collection of formulas 
in L , we write M |= Σ to mean that every σ ∈ Σ is valid when interpreted in M. In this case, we will 
also say that σ holds in M. We write Σ1 |= Σ2 to mean that M |= Σ2 whenever M |= Σ1. If language L
contains Lcore, we define

Σ1 |=|=|= frm Σ2
def⇐⇒ Σ1 + FRAME |= Σ2,

Σ1 |=|=|=|=|=|= frm Σ2
def⇐⇒ (Σ1 |=|=|= frm Σ2 and Σ2 |=|=|= frm Σ1).

A number of our results refer to the notion of clocks “losing synchrony”. This is captured by the formula 
ASync, which is not treated as an axiom because it is not a natural basic assumption for kinematics.

ASync There are clocks that get out of sync, i.e., there are events which are simultaneous for one observer 
but not for another one (see Fig. 3):

(∃o, o′)(∃�p, �p ′, �q, �q ′) (wo′o(�p, �p ′) ∧ wo′o(�q, �q ′) ∧ �pt �= �qt ∧ �p ′
t = �q ′

t) .

Proposition 4.4. Both

FRAME + ASync + HOM+ + ISO+ and FRAME + ¬ASync + HOM+ + ISO+

are consistent.

This follows by Propositions 5.13 and 5.12.
In most of our negative results we will refer to the formula

m(o, �x) def= (∃b)
(
W(o, b,�o) ∧ W(o, b, �x)

)
,

which describes the simple experimental scenario testing whether a body b can move from �o to �x.
In Proposition 5.20 we connect ASync and the axioms of the present section to the assumptions formulated 

in the simple language of Section 3.3.

4.5. Defining new scenarios

Recall that we assume that L is an arbitrary language extending Lcore, that some of the sorts of L are 
distinguished as mathematical sorts, and that S ⊆ L -Scenarios.

For each ϕ ∈ L -Scenarios, we will define a new scenario ϕ̂ ∈ L -Scenarios (in some of our theorems, we 

will assume that ϕ ∈ S ⇒ ϕ̂ ∈ S ). To define ϕ̂, let �e0
def= �o (the origin) and recall that �e1

def= (1, 0, 0, 0), 
�e2

def= (0, 1, 0, 0), �e3
def= (0, 0, 1, 0), �e4

def= (0, 0, 0, 1). Let �y0, . . . , �y4 be 4-tuples of variables of type Q, which 
are all distinct and which do not occur in ϕ. Given ϕ(o, ̄x) ∈ L -Scenarios we define formula ϕ̂ (see Fig. 11), 
in which these variables occur free, by

ϕ̂(o, x̄, �y0, . . . , �y4)
def= (∃ǒ)

(∧4
i=0 (woǒ(�ei) = �yi) ∧ ϕ(ǒ, x̄)

)
.

The definition of ϕ̂ is unique apart from the freedom we have in choosing the new variables. Clearly, 
ϕ̂ ∈ L -Scenarios for all allowed choices of �y0, . . . , �y4. There are several ways to make this choice deterministic, 
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Fig. 11. In ϕ̂, rather than perform the experiment itself, observer o asks ǒ to perform it.

so let us choose one of them for use in all situations. Then for each ϕ we can treat ϕ̂ as a uniquely and 
well-defined formula of our language L .

Experimental scenario ϕ̂ together with the choice of the parameters in a model describes the following 
situation from the point of view of observer o: o asks a colleague ǒ related to o by the transformation 
determined by the parameters corresponding to �y0, . . . , �y4 to perform the experiment described by scenario 
ϕ. If more such colleagues exist, the worldview transformation between them is the identity function by 
AxAffTr, hence, it is natural to assume that they all agree on the realisability of ϕ.11 In this case, o can 
ask any of them to perform the experiment. Therefore, if ϕ describes an experiment, ϕ̂ also describes an 
experiment. If no such colleague exists, then the experiment corresponding to ϕ̂ is not realisable and so fails. 
For example, if �y0, . . . , �y4 all evaluate to �o, then the experiment corresponding to ϕ̂ should fail (because 
worldview transformations are bijections by AxAffTr).

5. Main results

5.1. Connections between homogeneities

In this section, we collect together the various connections we will establish between versions of homo-
geneity defined over any language L containing Lcore.

Proposition 5.1.

(i) HOMS |= HOMS
time + HOMS

space and
HOM+ |= HOM+

time + HOM+
space.

(ii) HOM+
time + HOM+

space �|= HOMS if L = Lcore and (∃b)W(o, b, �o) ∈ S , thus
HOM+

time + HOM+
space �|= HOM+ if L = Lcore.

(iii) HOMS
time + HOMS

space |=|=|=|=|=|= frm HOMS , and hence,
HOM+

time + HOM+
space |=|=|=|=|=|= frm HOM+. Moreover, this remains true even if we omit assumptions 

AxRelocRot, AxAffTr and Ax3Dir∃Motion.

Here, (i) follows by definition since temporal and spatial translations are also spacetime translations; (ii) 
follows from Proposition 5.24 below; (iii) follows from Lemma 5.23 and (i).

Theorem 5.2. Homogeneity of time implies homogeneity of space:

HOMS
time |=|=|= frm HOMS

space if ϕ ∈ S ⇒ ϕ̂ ∈ S ,

and hence, HOM+
time |=|=|= frm HOM+

space.

11 We do not include this assumption into our axiom system FRAME, because in our theorems this will follow from other assump-
tions.
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This follows from Lemma 5.21, Lemma 5.27 and Remark 5.28 below. Moreover, by Lemma 5.21 and 
Lemma 5.27, it remains true even if we omit assumption AxRelocRot.

Theorem 5.3. Strong homogeneity of space does not imply homogeneity of time: Assume L = Lcore. Then

HOM+
space �|=�|=�|= frm HOMS

time if m(o, �x) ∈ S ,

and hence, HOM+
space �|=�|=�|= frm HOM+

time.

This follows by Proposition 5.13 and Theorem 5.17 below.

Theorem 5.4. Homogeneity of space implies homogeneity of time if there are clocks that get out of sync:

HOMS
space + ASync |=|=|= frm HOMS

time if ϕ ∈ S ⇒ ϕ̂ ∈ S ,

and hence, HOM+
space + ASync |=|=|= frm HOM+

time.

This follows by Lemma 5.22, Lemma 5.27 and Remark 5.28 below. Moreover, by Lemma 5.22 and 
Lemma 5.27, it remains true even if we omit assumptions AxRelocRot and Ax3Dir∃Motion.

The following is a corollary of Theorem 5.2, Theorem 5.4 and Proposition 5.1:

Corollary 5.5. Homogeneities of time, space and spacetime are equivalent if there are clocks that get out of 
sync: If ϕ ∈ S ⇒ ϕ̂ ∈ S ,

HOMS
time + ASync |=|=|=|=|=|= frm HOMS

space + ASync |=|=|=|=|=|= frm HOMS + ASync.

Hence,

HOM+
time + ASync |=|=|=|=|=|= frm HOM+

space + ASync |=|=|=|=|=|= frm HOM+ + ASync.

5.2. Connections between isotropy and homogeneity

We continue with the connections between isotropy and the various homogeneities of time, space and 
spacetime.

Theorem 5.6. Isotropy of space implies homogeneity of space:

ISOS |=|=|= frm HOMS
space if ϕ ∈ S ⇒ ϕ̂ ∈ S ,

and hence, ISO+ |=|=|= frm HOM+
space.

This follows by Lemma 5.25, Lemma 5.27 and Remark 5.28 below. Moreover, by Lemma 5.25 and 
Lemma 5.27, it remains true even if we omit assumption Ax3Dir∃Motion.

Theorem 5.7. Strong isotropy does not imply homogeneity of time: Assume L = Lcore. Then

ISO+ �|=�|=�|= frm HOMS
time if m(o, �x) ∈ S ,

and hence, ISO+ �|=�|=�|= frm HOM+
time.
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This follows by Proposition 5.13 and Theorem 5.17 below.

The following is a corollary of Theorem 5.6, Theorem 5.4 and Proposition 5.1(iii):

Corollary 5.8. Isotropy implies homogeneity if there are clocks that get out of sync:

ISOS + ASync |=|=|= frm HOMS if ϕ ∈ S ⇒ ϕ̂ ∈ S ,

and hence, ISO+ + ASync |=|=|= frm HOM+.

Theorem 5.9. Strong homogeneity does not imply isotropy (whether or not there are clocks that get out of 
sync). Let L = Lcore. Then if m(o, �x) ∈ S ,

HOM+ + ASync �|=�|=�|= frm ISOS and HOM+ + ¬ASync �|=�|=�|= frm ISOS .

Hence,

HOM+ + ASync �|=�|=�|= frm ISO+ and HOM+ + ¬ASync �|=�|=�|= frm ISO+.

This follows by Proposition 5.13 and Theorem 5.15 below.

5.3. Some models

We have looked, so far, at general logical connections between homogeneity and isotropy. We now turn 
our attention towards more specific models. To introduce these models precisely, we need some definitions. 
Throughout this section, we assume AxOField. This allows us to use the derived operation of unary negation 
(−).

We say that an affine transformation A : Q4 → Q4 is proper orthochronous iff A(�e1)t > A(�o)t and the 
determinant representing the linear part of A is positive. Intuitively, proper orthochronous affine transfor-
mations preserve both the direction of time and the orientation of space. A map P : Q4 → Q4 is a Poincaré 
transformation iff it is an affine transformation that preserves squared Minkowski distances, i.e., for every 
�p, �q ∈ Q4,

|P (�p)t − P (�q)t|2 − |P (�p)s − P (�q)s|2 = |�pt − �qt|2 − |�ps − �qs|2.

The set of Poincaré transformations is denoted Poi and the set of proper orthochronous Poincaré transfor-
mations is denoted Poi↑+. A map G : Q4 → Q4 is a Galilean transformation iff it is an affine transformation 
and, for every �p, �q ∈ Q4,

|G(�p)t −G(�q)t|2 = |�pt − �qt|2 and �pt = �qt ⇒ |G(�p)s −G(�q)s|2 = |�ps − �qs|2.

The set of Galilean transformations is denoted Gal and the set of proper orthochronous Galilean transfor-
mation is denoted Gal↑+.

Let M be an L -model. The set Wk of worldview transformations associated with a specific observer 
k ∈ IOb is defined by

Wk
def= {wkh : h ∈ IOb}.

Definition 5.10. We call an L -model M a Poi-based L -model iff for every k ∈ IOb, Poi↑+ ⊆ Wk ⊆ Poi.
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Definition 5.11. We call an L -model M a Gal-based L -model iff for every k ∈ IOb, Gal↑+ ⊆ Wk ⊆ Gal.

It is worth noting that both Gal-based and Poi-based models exist which are homogeneous and isotropic 
(whence the results shown in this paper are non-vacuous).

Proposition 5.12. Over any ordered field, there exists a Poi-based Lcore-model MP and a Gal-based Lcore-
model MG such that MP , MG |= HOM+ ∪ ISO+.

This is proven on page 33.

Proposition 5.13. For every Poi-based L -model MP and Gal-based L -model MG,

MP |= FRAME + ASync and MG |= FRAME + ¬ASync.

Proof. AxOField and AxAffTr hold in both models by Definitions 5.10 and 5.11. A trivial reformulation of 
AxRelocTran is that Tran ⊆ Wk for all k ∈ IOb, and AxRelocRot can similarly be reformulated as saying that 
Rotspace ⊆ Wk for all k ∈ IOb. It is also easy to see that Tran∪Rotspace ⊆ Poi↑+∩Gal↑+. Therefore, AxRelocTran

and AxRelocRot hold in both models. To prove that Ax3Dir∃Motion holds, let o be an arbitrary observer. It 
is enough to show that there are o1, o2, o3 ∈ IOb and �p 1, �p 2, �p 3 ∈ Q4 such that

�p 1
s , �p

2
s , �p

3
s are lin. independent and �o, �p i ∈ wlo(oi) for every i ∈ {1, 2, 3}. (2)

We will first prove this for the Poi-based model MP . It is not difficult to see that there are linear proper 
orthochronous Poincaré transformations f1, f2 and f3 taking the time unit vector �e1, respectively, to �p 1 :=
(5/3, 4/3, 0, 0), �p 2 := (5/3, 0, 4/3, 0) and �p 3 := (5/3, 0, 0, 4/3).12 By Poi↑+ ⊆ Wo, we can choose o1, o2, o3
such that woo1 = f1, woo2 = f2 and woo3 = f3. By definition of worldline, for the choice of o1, o2, o3 and 
�p 1, �p 2, �p 3 above, (2) holds. Therefore, Ax3Dir∃Motion holds in MP . For the case of Gal-based model MG

the proof is analogous: First we choose linear proper orthochronous Galilean transformations f1, f2 and f3
which take the time unit vector �e1, respectively, to �p 1 := (1, 1, 0, 0), �p 2 := (1, 0, 1, 0) and �p 3 := (1, 0, 0, 1); 
and then choose o1, o2, o3 such that woo1 = f1, woo2 = f2 and woo3 = f3. This completes the proof that 
FRAME holds in both models.

If worldview transformations are bijections from Q4 to Q4 (which is true in both MP and MG because 
Wk ⊆ Poi and Wk ⊆ Gal, respectively), then ASync is equivalent to the statement that there exists a 
worldview transformation f = wkh and points �p, �q ∈ Q4 such that

�pt �= �qt and f(�p)t = f(�q)t, (3)

see Fig. 3. It is not difficult to see that there exist f ∈ Poi↑+ and �p, �q ∈ Q4 such that (3) holds. Therefore, 
MP |= ASync because every transformation in Poi↑+ is a worldview transformation of MP . On the other hand, 
there is no transformation f ∈ Gal (and points �p, �q ∈ Q4) such that (3) holds. Therefore, MG |= ¬ASync
because every worldview transformation of MG is an element of Gal.

The following statements are corollaries of Theorem 5.2, Theorem 5.6 and Proposition 5.13.

Corollary 5.14. Let M be a Poi-based or a Gal-based L -model. Then

12 Linear transformations given by matrices 

⎡⎢⎣ 5/3 4/3 0 0
4/3 5/3 0 0
0 0 1 0

⎤⎥⎦, 

⎡⎢⎣ 5/3 0 4/3 0
0 1 0 0

4/3 0 5/3 0

⎤⎥⎦, and 

⎡⎢⎣
5/3 0 0 4/3
0 1 0 0
0 0 1 0

⎤⎥⎦ are such.
0 0 0 1 0 0 0 1 4/3 0 0 5/3
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• M |= HOMS
time ⇒⇒⇒ M |= HOMS

space if ϕ ∈ S ⇒ ϕ̂ ∈ S ,
• M |= HOM+

time ⇒⇒⇒ M |= HOM+
space,

• M |= ISOS ⇒⇒⇒ M |= HOMS
space if ϕ ∈ S ⇒ ϕ̂ ∈ S , and

• M |= ISO+ ⇒⇒⇒ M |= HOM+
space.

Theorem 5.15. Strong homogeneity does not imply isotropy in Gal-based and Poi-based models: Over any 
ordered field, there exists a Poi-based Lcore-model MP and a Gal-based Lcore-model MG such that

• MG, MP |= HOM+ ,
• MG, MP �|= ISOS if m(o, �x) ∈ S , and hence, MG, MP �|= ISO+.

This is proven on page 30.

The following is a corollary of Corollary 5.5, Corollary 5.8 and Proposition 5.13:

Corollary 5.16. Let M be a Poi-based L -model. Then

• M |= HOMS
time ⇔⇔⇔ M |= HOMS

space ⇔⇔⇔ M |= HOMS if ϕ ∈ S ⇒ ϕ̂ ∈ S ,
• M |= HOM+

time ⇔⇔⇔ M |= HOM+
space ⇔⇔⇔ M |= HOM+,

• M |= ISOS ⇒⇒⇒ M |= HOMS if ϕ ∈ S ⇒ ϕ̂ ∈ S , and
• M |= ISO+ ⇒⇒⇒ M |= HOM+.

Theorem 5.17. Strong isotropy and homogeneity of space do not imply homogeneity of time in Gal-based 
models: Over any ordered field, there is a Gal-based Lcore-model M such that

• M |= ISO+ + HOM+
space ,

• M �|= HOMS
time if m(o, �x) ∈ S , and hence M �|= HOM+

time.

This is proven on page 31.

5.4. Lemmas

In this section, we state and prove some underpinning lemmas and propositions on which many of the 
proofs in Section 5.1 and Section 5.2 are based.

We assume the standard compositional properties of (binary) relations and functions: we define the 
composition of relations R and S by

R ◦ S def= {(a, b) : ∃c
(
(a, c) ∈ S ∧ (c, b) ∈ R

)
},

so that (f ◦ g)(x) = f
(
g(x)

)
when f and g are functions, and recall that we write Id for the identity relation 

on Q4.

Proposition 5.18. For all k, h, m ∈ IOb, we have:

(i) w−1
kh = whk.

(ii) Id ⊆ wkk.
(iii) wkk = Id if wkk is a function.
(iv) wkm ◦ wmh ⊆ wkh.
(v) wkm ◦ wmh = wkh if wmh is a function from Q4 to Q4.
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Proof. (i), (ii), (iii) and (iv) follow immediately from the definition of the worldview transformation.
(v) By (iv), it is enough to show that wkh ⊆ wkm ◦ wmh. To prove this, let (�p, �q) ∈ wkh. Then evh(�p) =

evk(�q). Let �r be such that (�p, �r) ∈ wmh. Then evm(�r) = evh(�p) = evk(�q). Thus (�r, �q) ∈ wkm, which together 
with (�p, �r) ∈ wmh imply that (�p, �q) ∈ wkm ◦ wmh.

Recall that ∼S
M was defined in Definition 4.1.

Definition 5.19. We say that L -model M has the S -transformation property iff for every m, k, m′, k′ ∈ IOb, 
if wmk = wm′k′ and whenever m ∼S

M m′, then k ∼S
M k′, see Fig. 4. Intuitively if m and m′ agree on every 

scenario in S and k is related to m the same way as k′ is related to m′, then k and k′ must agree on every 
scenario in S , too.

The following proposition connects ASync, the axioms of Section 4.4, and the S -transformation property 
to the assumptions of Section 3.3.

Proposition 5.20. Let M be an L -model for which AxOField holds and the worldview transformations are 
functions from Q4 to Q4. For every k, h ∈ IOb, let wkh := wkh. Then:

(i) AxRelocTran ⇔ RelocTran, AxRelocRot ⇔ RelocRot, AxAffTr ⇔ AffTr, Ax3Dir∃Motion ⇔ 3Dir∃Motion, 
ASync ⇔ async and Wvt all hold in M.

(ii) Model M has the S -transformation property iff relation ∼S
M has the transformation property.

Proof. Wvt holds by Proposition 5.18. ASync ⇔ async holds because wo′o(�p, �p ′) and wo′o(�q, �q ′) in ASync are 
equivalent to �p ′ = wo′o(�p) and �q ′ = wo′o(�q) since wo′o is a function. The rest of the proof is straightforward.13

Lemma 5.21. Let M be an L -model which has the S -transformation property. Then

M |= HOMS
time ∪ FRAME \ {AxRelocRot} ⇒⇒⇒ M |= HOMS

space.

Proof. The lemma easily follows from Theorem 3.1 by Propositions 4.3, 5.20 and Remark 4.2. In more 
detail: Assume HOMS

time ∪ FRAME \ {AxRelocRot}. Then the worldview transformations are functions by 
AxAffTr. For every o, o′ ∈ IOb, let woo′ := woo′ and let ∼ be ∼S

M . By Propositions 4.3, 5.20 and Remark 4.2, 
H OM∼

time, AxOField, Wvt, RelocTran, AffTr and 3Dir∃Motion hold. Furthermore, ∼ is an equivalence relation 
on IOb that has the transformation property. Then, by Theorem 3.1, H OM∼

space holds, which is equivalent 
to HOMS

space by Proposition 4.3.

Lemma 5.22. Let M be an L -model which has the S -transformation property. Then

M |= HOMS
space ∪ {AxOField,AxRelocTran,AxAffTr,ASync} ⇒⇒⇒ M |= HOMS

time.

Proof. The lemma easily follows from Theorem 3.2 by Propositions 4.3, 5.20 and Remark 4.2: Assume 
HOMS

space ∪ {AxOField, AxRelocTran, AxAffTr, ASync}. Then the worldview transformations are functions by 
AxAffTr. For every o, o′ let woo′ := woo′ and let ∼ be ∼S

M . By Propositions 4.3, 5.20 and Remark 4.2, 
H OM∼

space, AxOField, Wvt, RelocTran, AffTr and async hold. Furthermore, ∼ is an equivalence relation on 
IOb that has the transformation property. Then by Theorem 3.2, H OM∼

time holds, which is equivalent to 
HOMS

time by Proposition 4.3.

13 For proving Ax3Dir∃Motion ⇔ 3Dir∃Motion we have to notice that wl k(h) = wlk(h).
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Lemma 5.23. Let M be an L -model. Then

M |= HOMS
time ∪ HOMS

space ∪ {AxOField,AxRelocTran} ⇒⇒⇒ M |= HOMS .

Proof. We cannot apply Proposition 3.3 directly because the worldview transformations are not necessarily 
functions. However, the proof of Proposition 3.3 goes through for Lemma 5.23 with the obvious modifica-
tions. The only nontrivial modification is when we have to replace the reference to Wvt with reference to 
Proposition 5.18.

By Proposition 5.24, Lemma 5.23 does not remain true if we omit assumption AxRelocTran.

Proposition 5.24. Suppose S ⊆ Lcore-Scenarios. If (∃b)W(o, b, �o) ∈ S , there is an Lcore-model M such that

M |= HOM+
time ∪ HOM+

space ∪ {AxOField} but M �|= HOMS .

We will prove Proposition 5.24 in Section 5.5 (Constructions of Counterexamples).

Lemma 5.25. Let M be an L -model which has the S -transformation property. Then

M |= ISOS ∪ {AxOField,AxRelocTran,AxRelocRot,AxAffTr} ⇒⇒⇒ M |= HOMS
space.

Proof. The lemma easily follows from Theorem 3.4 by Propositions 4.3, 5.20 and Remark 4.2.

Lemma 5.26. Let M be an L -model. Assume ϕ(o, ̄x) ∈ L -Scenarios, and h, h′ ∈ IOb. Then Agreeϕ (h, h′)
holds in M if and only if for every evaluation q̄ of variables x̄ in M, ϕ(h, q̄) holds in M iff ϕ(h′, q̄) holds in 
M.

Proof. The proof is straightforward.

Lemma 5.27. Let M be a model of language L . Assume ϕ ∈ S ⇒ ϕ̂ ∈ S , M |= {AxOField, AxAffTr}, and 
for every h, h′ ∈ IOb,

whh′ = Id ⇒ h ∼S
M h′. (4)

Then M has the S -transformation property.

Remark 5.28. Let M be an L -model such that M |= AxOField and

M |= HOMS
time or M |= HOMS

space or M |= HOMS or M |= ISOS .

Then, by Proposition 4.3 and the fact that Id ∈ Trantime∩Transpace∩Rotspace, assumption (4) in Lemma 5.27
holds in M.

Proof of Lemma 5.27. Let m, m′, k, k′ ∈ IOb such that m ∼S
M m′ and wmk = wm′k′ . We have to prove 

that k ∼S
M k′, so by Lemma 5.26 and symmetry of ∼S

M , it is enough to prove that for every ϕ(o, ̄x) ∈ S

and evaluation q̄ of variables x̄ in M, if ϕ(k, q̄) holds in M, then ϕ(k′, q̄) holds in M. To prove this, let 
ϕ(o, ̄x) ∈ S and q̄ be an evaluation of variables x̄ in M, and assume that ϕ(k, q̄) holds in M. We have to 

prove that ϕ(k′, q̄) holds in M, too. Recall that ϕ̂(o, ̄x, �y0, . . . , �y4) 
def= (∃ǒ) 

(∧4
i=0

(
woǒ(�ei) = �yi

)
∧ ϕ(ǒ, x̄)

)
. 

Since ϕ(k, q̄) holds in M, 
∧4

i=0
(
wmk(�ei) = wmk(�ei)

)
∧ ϕ(k, q̄) holds in M. Taking ǒ = k, it fol-

lows that (∃ǒ) 
(∧4 (

wmǒ(�ei) = wmk(�ei)
)
∧ ϕ(ǒ, q̄)

)
holds in M, i.e., ϕ̂

(
m, q̄, wmk(�e0), . . . , wmk(�e4)

)
holds 
i=0
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Fig. 12. Illustration for Definition 5.29.

in M. We have m ∼S
M m′ by assumption, and ϕ̂ ∈ S since ϕ ∈ S . Therefore, by definition 

of ∼S
M , Agreeϕ̂ (m,m′). Therefore, by Lemma 5.26, ϕ̂

(
m′, q̄, wmk(�e0), . . . , wmk(�e4)

)
holds in M, i.e., 

(∃ǒ) 
(∧4

i=0
(
wm′ǒ(�ei) = wmk(�ei)

)
∧ ϕ(ǒ, q̄)

)
holds in M. Let k

̂
∈ IOb be such that 

∧4
i=0

(
wm′k

̂ (�ei) =
wmk(�ei)

)
∧ ϕ(k

̂
, q̄) holds in M. Since wmk = wm′k′ , it follows that 

∧4
i=0

(
wm′k

̂ (�ei) = wm′k′(�ei)
)

and so, 
by Proposition 5.18 and AxAffTr, we have wk

̂
k′(�ei) = wk

̂
m′ ◦ wm′k′(�ei) = w−1

m′k
̂ ◦ wm′k

̂ (�ei) = �ei for every 
i ∈ {0, 1, 2, 3, 4}. Since wk

̂
k′ fixes every �ei and (by AxAffTr) is an affine transformation on a vector space 

(by AxOField), we have wk
̂
k′ = Id. But then k

̂
∼S

M k′ holds by assumption. Hence, Agreeϕ
(
k
̂
, k′

)
because 

ϕ ∈ S . Then, by Lemma 5.26 and the fact that ϕ(k
̂
, q̄) holds in M, we conclude that ϕ(k′, q̄) holds in M, 

as required.

5.5. Constructions of counterexamples

In this section, we prove Theorem 5.15, Theorem 5.17, and Proposition 5.24 by constructing appropriate 
counterexamples. Using a similar construction, we also prove Proposition 5.12.

As usual, if f is a function and H is a set, then the f -image of H is defined by f [H] def= {f(x) : x ∈ H}. 
Recall that Sym(Q4), the set of bijections of Q4 onto itself, forms a group under composition (with identity 
Id).

Definition 5.29. Let Q = (Q, +, ·, 0, 1, �) be an arbitrary structure in the language of ordered fields, IOb ⊆
Sym(Q4) and B ⊆ P(Q4). We define model M(IOb, B, Q) of Lcore (see Fig. 12) by:

M(IOb,B,Q) def= (IOb,B,Q,+, ·, 0, 1,�,W), where W(m, b, �p) def⇐⇒ �p ∈ m[b].

It is easy to see that in model M(IOb, B, Q), we have wlm(b) = m[b] for every m ∈ IOb and b ∈ B. 
Furthermore, k ◦ h−1 ⊆ wkh for every k, h ∈ IOb, cf. the proof of Lemma 5.31 below.

Lemma 5.30. Let M be an L -model. Let Smat denote the union of mathematical sorts in M. Let k, h ∈ IOb. 
Assume that there is an automorphism of M which maps k to h and leaves all the elements of Smat fixed. 
Then for every ϕ ∈ L -Scenarios, Agreeϕ (k, h) holds in M.

Proof. Let α be an automorphism of M such that α(k) = h and α(q) = q for every q ∈ Smat. Let 
ϕ(o, x1, . . . , xn) ∈ L -Scenarios. Since α is an automorphism of M, for every q1, . . . , qn ∈ Smat, ϕ(k, q1, . . . , qn)
holds in M iff ϕ(h, q1, . . . , qn) = ϕ(α(k), α(q1), . . . , α(qn)) holds in M. Then, by Lemma 5.26, Agreeϕ (k, h)
holds in M.
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Lemma 5.31. Let Q = (Q, +, ·, 0, 1, �) be an arbitrary structure, B ⊆ P(Q4), and IOb ⊆ Sym(Q4). Assume 
that for every distinct �p, �q ∈ Q4 there is b ∈ B such that �p ∈ b, �q /∈ b or �p /∈ b, �q ∈ b. Then in model 
M(IOb, B, Q), we have:

(i) wkh = k ◦ h−1 for every k, h ∈ IOb.
(ii) Assume that IOb forms a group under operation of composition. Then:

(a) Wk = IOb for every k ∈ IOb. (b) If k, h ∈ IOb agree on the set of worldlines of bodies, i.e., 
{k[b] : b ∈ B} = {h[b] : b ∈ B}, then Agreeϕ (k, h) holds for every ϕ ∈ Lcore-Scenarios.

Proof. (i) First we prove that every observer sees distinct events at distinct coordinate points. To prove 
this, choose m ∈ IOb and let �p, �q be distinct elements of Q4. We show that evm(�p) �= evm(�q). By definition 
of events and the worldview relation in M(IOb, B, Q), we have

evm(�p) = {b ∈ B : W(m, b, �p)} = {b ∈ B : �p ∈ m[b]} =
{
b ∈ B : m−1(�p) ∈ b

}
.

Analogously, evm(�q) =
{
b ∈ B : m−1(�q) ∈ b

}
. Since �p �= �q and m−1 is a bijection, we have m−1(�p) �=

m−1(�q). Then, by assumption, there is b ∈ B such that m−1(�p) ∈ b, m−1(�q) /∈ b or m−1(�p) /∈ b, m−1(�q) ∈ b. 
Then, for such b we have that b ∈ evm(�p), b /∈ evm(�q) or b /∈ evm(�p), b ∈ evm(�q). Hence evm(�p) �= evm(�q), 
i.e., every observer sees distinct events at distinct coordinate points, as claimed.

Next we prove that wkh = k ◦ h−1 for every k, h ∈ IOb. Let us notice that

k ◦ h−1 =
{(

h(�p), k(�p)
)

: p ∈ Q4} (5)

and that k ◦ h−1 is a bijection from Q4 to Q4 because k and h are bijections.
We claim that k ◦ h−1 ⊆ wkh. By (5) and the definition of wkh, it is enough to prove that for every 

�p ∈ Q4, evk(k(�p)) = evh(h(�p)). Let �p ∈ Q4. Then by the definitions of events and W in M(IOb, B, Q), and 
the fact that k, h are bijections, we have:

evk
(
k(�p)

)
= {b ∈ B : W(k, b, k(�p))} = {b ∈ B : k(�p) ∈ k[b]} =

{b ∈ B : �p ∈ b} =
{
b ∈ B : W

(
h, b, h(�p)

)}
= evh

(
h(�p)

)
.

Therefore, k ◦ h−1 ⊆ wkh as claimed.
Recall that wkh is a binary relation on Q4 and that k ◦ h−1 is a bijection from Q4 to Q4. Assume on the 

contrary that wkh �= k ◦ h−1, and hence wkh is not a bijection from Q4 to Q4. Then there are �r ∈ Q4 and 
distinct �p, �q ∈ Q4 such that wkh(�p, �r), wkh(�q, �r) or wkh(�r, �p), wkh(�r, �q). Therefore, by definition of worldview 
transformation, there are distinct �p, �q ∈ Q4 such that evh(�p) = evh(�q) or evk(�p) = evk(�q), which cannot 
hold because every observer sees distinct events at distinct coordinate points. Therefore, wkh is a bijection 
and wkh = k ◦ h−1.

(ii)(a) Let k ∈ IOb. By definition of Wk, by Lemma 5.31(i) and properties of groups, we have

Wk = {wkh : h ∈ IOb} =
{
k ◦ h−1 : h ∈ IOb

}
= k ◦

{
h−1 : h ∈ IOb

}
= k ◦ IOb = IOb.

(ii)(b) Assume k, h ∈ IOb are such that

{k[b] : b ∈ B} = {h[b] : b ∈ B}. (6)

By Lemma 5.30, it is enough to find an automorphism α of our model that takes k to h and fixes all the 
elements of Q. To this end we define
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Fig. 13. Illustration for the proof of Theorem 5.15.

α(x) def=

⎧⎪⎪⎨⎪⎪⎩
x ◦ k−1 ◦ h if x ∈ IOb,
(h−1 ◦ k)[x] if x ∈ B, and
x if x ∈ Q.

If x ∈ IOb, then α(x) = x ◦ k−1 ◦ h ∈ IOb, because IOb forms a group under composition. If x ∈ B, then 
choose x′ ∈ B such that k[x] = h[x′] (this exists by assumption (6)). Then α(x) = (h−1 ◦ k)[x] = x′ ∈ B as 
well. This α also takes k to h because α(k) = k ◦ k−1 ◦ h = h, and by definition, α fixes the elements of Q.

To prove that α is an automorphism, it remains to show that for every m ∈ IOb, b ∈ B and �p ∈ Q4, 
W
(
α(m), α(b), �p

)
⇔ W(m, b, �p). To prove this, let m ∈ IOb, b ∈ B and �p ∈ Q4. Now, by definition of 

α, we have α(m)[α(b)] = (m ◦ k−1 ◦ h)
[
(h−1 ◦ k)[b]

]
= m[b]. By this and the definition of W, we have 

W(α(m), α(b), �p) ⇔ �p ∈ α(m)[α(b)] ⇔ �p ∈ m[b] ⇔ W(m, b, �p).
Thus, α is an automorphism, and the claim follows.

Proof of Theorem 5.15. Assume Q = (Q, +, ·, 0, 1, �) is an ordered field. For every (straight) line14 �, the 
set of lines parallel15 to line � is denoted by PL�. We note that parallelism is an equivalence relation on the 
set of lines because Q is assumed to be a field. Hence PL� = PL�′ iff lines � and �′ are parallel.

Let l be the line containing �o and (1, 1, 0, 0), i.e., l := {λ(1, 1, 0, 0) : λ ∈ Q}. Let B := PLl ∪{
{�q} : �q ∈ Q4}. Let MG := M(Gal↑+, B, Q) and MP := M(Poi↑+, B, Q), see Fig. 13. Since both Gal↑+

and Poi↑+ form groups under composition, by Lemma 5.31(ii)(a) we have Wk = Gal↑+ in MG and Wk = Poi↑+
in MP for every inertial observer k. Thus MG is a Gal-based model and MP is a Poi-based model.

Next we prove that MG, MP |= HOM+. We will prove this for both models simultaneously. We have to 
prove, for all inertial observers k and h, that if wkh ∈ Tran, then for every ϕ ∈ Lcore-Scenarios, Agreeϕ (k, h)
holds. To prove this, let k and h be inertial observers such that wkh ∈ Tran. By Lemma 5.31(ii)(b), to prove 
that for every ϕ ∈ Lcore-Scenarios, Agreeϕ (k, h) holds it is enough to show that

{k[b] : b ∈ B} = {h[b] : b ∈ B}. (7)

By Lemma 5.31(i), wkh = k◦h−1. Transformation wkh takes h[l] to k[l] because wkh[h[l]] = k◦h−1◦h[l] = k[l]. 
Since wkh is a translation, h[l] and k[l] are parallel. Therefore, PLh[l] = PLk[l]. Let us note that if A is an 

14 We call � ⊆ Q4 a line iff there are distinct �p, �q ∈ Q4 such that � = {�p + λ(�q − �p) : λ ∈ Q}.
15 Lines � and �′ are parallel iff there are distinct �p, �q ∈ � and distinct �p ′, �q ′ ∈ �′ such that �q − �p = �q ′ − �p ′.
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affine transformation, then {A[�] : � ∈ PLl} = PLA[l] and 
{
A[{�q}] : �q ∈ Q4} =

{
{�q} : �q ∈ Q4}, the latter 

holding because A is a bijection. Since k and h are affine transformations, unfolding the definition of B and 
using PLh[l] = PLk[l] gives

{k[b] : b ∈ B} = {k[�] : � ∈ PLl} ∪
{
k[{�q}] : �q ∈ Q4} =

PLk[l] ∪
{
{�q} : �q ∈ Q4} = PLh[l] ∪

{
{�q} : �q ∈ Q4} =

{h[�] : � ∈ PLl} ∪
{
h[{�p}] : �p ∈ Q4} = {h[b] : b ∈ B}.

Thus (7) holds, and hence by Lemma 5.31(ii)(b), for every ϕ ∈ Lcore-Scenarios, Agreeϕ (k, h) holds. Therefore, 
MG, MP |= HOM+.

Finally we prove that MG, MP �|= ISOS if

m(o, �x) def= (∃b)
(
W(o, b,�o) ∧ W(o, b, �x)

)
∈ S .

We will again prove this for both models simultaneously. Assume m ∈ S and define R : Q4 → Q4 by 
R(t, x, y, z) := (t, −x, −y, z). Then R ∈ Rotspace ∩ Gal↑+ ∩ Poi↑+, so R is an inertial observer in both models. 
By definition of W, m

(
Id, (1, 1, 0, 0)

)
is equivalent to (∃b)

(
�o ∈ b ∧ (1, 1, 0, 0) ∈ b

)
, which holds because 

�o, (1, 1, 0, 0) ∈ l. On the other hand, m
(
R, (1, 1, 0, 0)

)
is equivalent to (∃b)

(
�o ∈ R[b] ∧ (1, 1, 0, 0) ∈ R[b]

)
, 

which by definition of R is equivalent to (∃b)
(
�o ∈ b ∧ (1, −1, 0, 0) ∈ b

)
, which cannot hold in either model 

because there is no line parallel with l containing �o and (1, −1, 0, 0). Thus Agreem (R, Id) does not hold in 
either model. But by Lemma 5.31(i), wR Id = R ◦ Id−1 = R ∈ Rotspace. Therefore, MG, MP �|= ISOS .

Proof of Theorem 5.17. Assume Q = (Q, +, ·, 0, 1, �) is an ordered field. For every time instant t ∈ Q, the 
simultaneity at t is defined as:

St :=
{
�p ∈ Q4 : �pt = t

}
.

Clearly S0 = S. Let �e := (1, 0, 0, 0). We will prove that for every G ∈ Gal,

G[S0] = SG(�o)t and G[S1] = SG(�e)t . (8)

To prove this, first we will prove G[S0] ⊆ SG(�o)t and G[S1] ⊆ SG(�e)t . Let �p ∈ S0 and �q ∈ S1. Then 
�pt = �ot = 0 and �qt = �et = 1. Hence, G(�p)t = G(�o)t and G(�q)t = G(�e)t. So G(�p) ∈ SG(�o)t and G(�q) ∈ SG(�e)t , 
whence G[S0] ⊆ SG(�o)t and G[S1] ⊆ SG(�e)t , as claimed. Now, since G is an affine transformation, it maps 
hyperplanes onto hyperplanes, so because St is a hyperplane for every t ∈ Q, we conclude that (8) holds.

For any two distinct coordinate points �p, �q ∈ Q4, let �p�q denote the half-line with initial point �p containing 
�q, i.e., �p�q := {�p + λ(�q − �p) : 0 � λ ∈ Q}.

Now let IOb := Gal↑+ and B := {�p�q : �p ∈ S0, �q ∈ S1} ∪
{
{�q} : �q ∈ Q4}, and consider the model M :=

M(IOb, B, Q), see Fig. 14. By Lemma 5.31(ii)(a), M is Gal-based because IOb = Gal↑+ forms a group under 
composition.

Notice that if A is an affine transformation, then A[�p�q] = A(�p)A(�q). Since the elements of Gal↑+ are affine 
transformations, we have by (8) that for every m ∈ IOb = Gal↑+, {m[�p�q] : �p ∈ S0, �q ∈ S1} = {m(�p)m(�q) :
�p ∈ S0, �q ∈ S1} =

{
�p�q : �p ∈ Sm(�o)t , �q ∈ Sm(�e)t

}
and 

{
m[{�q}] : �q ∈ Q4} =

{
{�q} : �q ∈ Q4}. Therefore, for 

every m ∈ IOb,

{m[b] : b ∈ B} =
{
�p�q : �p ∈ Sm(�o)t , �q ∈ Sm(�e)t

}
∪
{
{�q} : �q ∈ Q4} . (9)

We now prove that M |= HOM+
space+ISO+ by showing that for every k, h ∈ IOb if wkh ∈ Transpace∪Rotspace, 

then for every ϕ ∈ Lcore-Scenarios, Agreeϕ (k, h) holds. To prove this, let k, h ∈ IOb be such that wkh ∈
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Fig. 14. Illustration for the proof of Theorem 5.17.

Trantime ∪ Rotspace. Worldview transformation wkh maps h(�o) to k(�o) by Lemma 5.31(i): wkh(h(�o)) = k ◦
h−1(h(�o)) = k(�o). Analogously, wkh maps h(�e) to k(�e). Then h(�o)t = k(�o)t and h(�e)t = k(�e)t because spatial 
rotations and spatial translations preserve the time components of coordinate points. By h(�o)t = k(�o)t, 
h(�e)t = k(�e)t and (9), {k[b] : b ∈ B} = {h[b] : b ∈ B}. But then, by Lemma 5.31(ii)(b), Agreeϕ (k, h) holds 
for every ϕ ∈ Lcore-Scenarios. Therefore, M |= HOM+

space + ISO+.
Finally, we prove that if m(o, �x) def= (∃b)

(
W(o, b, �o) ∧ W(o, b, �x)

)
∈ S , then M �|= HOMS

time. To this end, 
define T : Q4 → Q4 by T (t, x, y, z) := (t + 1, x, y, z), and note that T ∈ Trantime ⊆ Gal↑+, i.e., T ∈ IOb. 
Given the definition of W, m(Id, (1, 1, 0, 0)) is equivalent to (∃b)

(
�o ∈ b ∧ (1, 1, 0, 0) ∈ b

)
which holds in M

because �o(1, 1, 0, 0) ∈ B. Likewise, m(T, (1, 1, 0, 0)) is equivalent to ∃b
(
�o ∈ T [b] ∧ (1, 1, 0, 0) ∈ T [b]

)
, which 

is equivalent to (∃b)
(
(−1, 0, 0, 0) ∈ b ∧ (0, 1, 0, 0) ∈ b

)
which does not hold in M. Thus m(Id, (1, 1, 0, 0))

holds in M but m(T, (1, 1, 0, 0)) does not, so Agreem (T, Id) does not hold in M. But by Lemma 5.31(i), 
wT Id = T ∈ Trantime. Therefore, M �|= HOMS

time.

Proof of Proposition 5.24. Let Q = (Q, +, ·, 0, 1, �) be an arbitrary ordered field, and define T : Q4 → Q4 by 
T (t, x, y, z) = (t +1, x +1, y, z). Clearly T ∈ Tran but T /∈ Trantime∪Transpace. Let B :=

{
{�q} : �q ∈ Q4 \ {�o}

}
and IOb := {Id, T}, and consider the model M := M(B, IOb, Q). Then M |= AxOField by construction. By 
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Lemma 5.31(i), the only worldview transformations in M are T , T−1 and Id. So there are no worldview 
transformations between distinct observers in Trantime ∪ Transpace, and M |= HOM+

time ∪ HOM+
space holds 

vacuously. Assume ψ(o) def= (∃b)W(o, b, �o) ∈ S . We will show that M �|= HOMS . By definition of W, 
W(Id, b, �o) ⇔ �o ∈ Id[b] ⇔ �o ∈ b and W(T, b, �o) ⇔ �o ∈ T [b] ⇔ T−1(�o) ∈ b ⇔ (−1, −1, 0, 0) ∈ b. Therefore, 
ψ(Id) does not hold in M but ψ(T ) does, whence Agreeψ (T, Id) does not hold in M. By Lemma 5.31(i), 
wT Id = T ∈ Tran. Therefore, M �|= HOMS .

Proof of Proposition 5.12. Assume Q = (Q, +, ·, 0, 1, �) is an ordered field. For any distinct �p, �q ∈ Q4, ��p�q
denotes the straight line containing �p and �q. Let

BG := {��p�q : �p, �q ∈ Q4, �pt �= �qt} and BP := {��p�q : �p, �q ∈ Q4, |�ps − �qs| < |�pt − �qt|}

and define MG := M(Gal↑+, BG, Q) and MP := M(Poi↑+, BP , Q). Since both Gal↑+ and Poi↑+ are groups 
under composition, Lemma 5.31(ii)(a) tells us that Wk = Gal↑+ in MG and Wk = Poi↑+ in MP for every 
inertial observer k. Thus MG is a Gal-based model and MP is a Poi-based model. It is not difficult to see 
that m ∈ Poi↑+ ⇒ {m[b] : b ∈ BP } = BP and m ∈ Gal↑+ ⇒ {m[b] : b ∈ BG} = BG, whence, by 
Lemma 5.31(ii)(b), Agreeϕ (k, h) holds for all observers k, h and all ϕ ∈ Lcore-Scenarios in both models. This 
proves that MP , MG |= HOM+ ∪ ISO+.

6. Discussion

A number of different axiomatisations of relativity theory have appeared in the literature (e.g., [2,4,8,10,
15,28,29,34,31,35]), and Andréka and Németi have recently pioneered work investigating ways to connect 
axiom systems using interpretations (translation functions between logics) [7]. Various recent studies discuss 
axiomatising the principle of relativity itself [16,17], and this can be done in many different, non-equivalent, 
ways [25]. There are also many ways to formulate isotropy and homogeneity. One key factor is what we 
understand by “inertial coordinate systems”, and whether this concept should be defined a priori or derived 
from the axioms. In our work, we introduce them as a basic concept and then define axioms which capture the 
idea that they coordinatise some kind of non-accelerated laboratory. For us, it is natural that spatial rotation 
should not influence the types of experiments that can be carried out, since looking at an experiment from 
another fixed vantage point involves no acceleration. Nonetheless, other approaches also exist, and these may 
lead to apparently contradictory findings when investigating such basic questions as whether the principle of 
relativity implies isotropy [11,30]. For example, Budden [9] and Mamone Capria [27] have considered systems 
which are inherently anisotropic – the question obviously arises whether their work therefore contradicts 
our own findings. Close examination of their axiom systems shows, however, that this is not the case – for 
example, Mamone Capria bans certain worldview transformations a priori by declaring various rotations to 
be unrealisable, which limits the set of viewpoints from which experiments can be observed; this in turn leads 
to a different interpretation of what it means for two frames to be inertially related to one another. These 
apparent contradictions nonetheless serve to highlight how important it is to approach matters formally, 
for without the ability to study the axioms underpinning different authors’ findings, one is left with no 
opportunity to decide whether different approaches are compatible or contradictory, nor any way to decide 
which approach is best suited to the problem at hand.

By axiom Ax3Dir∃Motion, we have only assumed the possibility that observers can be seen moving in 3 
directions according to one observer. It can be shown that axioms Ax3Dir∃Motion, AxAffTr and AxOField
imply that observers can move in at least 3 independent directions according to every observer. Related to 
this, one may wonder whether it is possible for observers to move in every direction with every speed slower 
than the speed of light (i.e., slower than 1) in every Poi-based model no matter which ordered field is the 
structure of the quantities. In fact, this is not true if the structure of quantities is the field Q of rational 
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numbers, for example, because no observer can move with speed 1
2 in direction (1, 1, 0). This is so because 

the time unit vector of such an observer should be mapped to (2
√

2, 1, 1, 0) /∈ Q4. There are observers 
moving in direction (1, 1, 0) over the field Q moving with some speed, but not with speed 1

2 . Related to this 
subject, the following natural question is still open:

Question 6.1. Can observers move in every direction with some speed in every Poi-based model over every 
ordered field?

It is worth mentioning some results from the literature related to this open question. Let us start this with 
the following observation: if observers can move in every direction with every speed slower than light, then 
every positive quantity has to have a square root. This is so because the time unit vector of an observer 
moving with speed v < 1 according to another observer seeing the same event at the origin should be 
mapped by the worldview transformation between these two observers to a vector having time component 

1√
1−v2 . Therefore, 1 − v2 has to have a square root for all positive v ∈ Q for which v < 1. From this, since 

every positive x ∈ Q can be expressed as

x =
(
x + 1

2

)2
(

1 −
(
x− 1
x + 1

)2
)
,

it follows that every positive x has to have a square root in Q because −1 < (x − 1)/(x + 1) < 1 for 
all x > 0. By [6, Thm. 3.6.17(i)], even more is true if the dimension of spacetime is 3. In the scale free 
Poi-based models, where the transformations between inertial observers are compositions of dilations and 
Poincaré transformations,16 if the spacetime dimension is 3 and if observers can move in every direction with 
every speed slower than light, then every positive quantity in Q has to have a square root. In general, this 
implication is not true. If the dimension of spacetime is an even number, then there are scale free Poi-based 
models over certain fields in which some square roots are missing yet observers can move in every direction 
with every speed slower than light [5, Thm. 3.9]. The question “What happens in odd dimensions higher 
than 3?” is open, as is the question “Over which fields is it possible to construct scale free Poi-based models 
in which observers can move in every direction with every speed slower than light?”, see [5, Question 3.10]. 
By the results in [26], it follows that in Poi-based models over the field of rational numbers observers can 
move approximately in every direction with approximately any speed slower than light.

In Poi-based models over the field Q, the fact that there are directions in which observers cannot move with 
certain speeds while in other directions they can move with those speeds is a kind of anisotropy. However, 
this anisotropy is different from what is captured by axiom scheme ISO because over every ordered field 
there is a Poi-based model satisfying ISO by Proposition 5.12. This kind of quantity-induced anisotropy 
disappears if we assume that every positive quantity in Q has a square root, because in that case it can be 
shown that observers can move with the same speeds in every direction in every Poi-based model.
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