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Abstract—Insulin therapy is a frequently applied treatment
in intensive care to normalize the patient’s blood glucose level
increased by stress-induced hyperglycaemia. This therapy is
generally referred to as Tight Glycaemic Control (TGC). The
STAR (Stochastic-TARgeted) protocol is a TGC which uses the
patient’s insulin sensitivity (SI) as a key parameter to describe
the patient’s actual state. Prediction of the future patient’s state,
i.e. prediction of the patient’s future SI value, is a crucial step
of the protocol currently implemented by using the so-called
Intensive Care INsulin Glucose (ICING) model of the human
glucose-insulin system and an associated stochastic model. In
our previous studies, we have shown that the Recurrent Neural
Network (RNN) models are efficient alternative methods of SI
prediction. In this paper, we suggest applying the so-called
transfer learning technique to further enhance the accuracy of the
SI prediction by using the SI history of the current patient. The
paper presents the proposed methodology for applying transfer
learning in SI prediction and the evaluation of the method’s
accuracy by comparing the outcomes with the currently applied
solution. Insilico validation using real patients’ data is involved
in this validation.

Index Terms—machine learning, artificial intelligence, mixture
density network, deep neural network, insulin sensitivity, tight
glycaemic control, intensive care, STAR protocol, validation, in-
silico validation

I. INTRODUCTION

Stress-induced hyperglycaemia is a frequent complication

in the intensive therapy [1], [2] increasing the mortality and

morbidity of the patients.

Controlling the blood glucose (BG) level of these hyper-

glycaemic patients into the so-called normoglycaemic range

shows definite clinical benefits [3]–[6].

The STAR (Stochastic-TARgeted) TGC protocol is the most

widely applied clinical therapy used to control the BG of the

hyperglycaemic patients in the intensive care [7]. STAR uses

a clinically validated physiological model, called Intensive

Control Insulin-Nutrition-Glucose (ICING) to describe the

glucose-insulin dynamics, and a population-based stochastic

model to manage patient-specific metabolic variability [8].

STAR uses the patient-specific insulin sensitivity (SI) [9]

in the method selecting optimal treatment. This method uses

simulations with different treatment parameters and calculate

the blood glucose (BG) levels at the end of these simulated

treatments. From the results the protocol can recommend the

optimal treatment parameters [10].

The treatment selection process [11] requires the prediction

of a confidence interval on the future value of SI that comes

from a conditional distribution. In the 2D case this distribution

is made up from {SI(t);SI(t + 1)} data points [12]. The

dimension refers to the dimension of the data points. We call

the prediction higher dimensional if the data points in the

distribution has more than 2 dimension.

The STAR protocol uses a confidence interval that contains

the SI(t+1) value with 90% probability in the prediction. To

calculate this interval, the conditional distribution is approxi-

mated with normal distribution. With this approximation the

5th and the 95th percentile can be used as the border values of

the interval. It has 90% probability that the SI(t+1) will be

between these two points, moreover the width of the interval

is minimal.

Recently new artificial intelligence, especially neural net-

work based models were created [13] with the aim of replacing

the currently used prediction method. There are studies that

analysed the effects of involving additional parameters into the

prediction [14], [15]. They showed clear benefits by develop-
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ing models on the so called 3D SI distributions. These models

can easily handle the involvement of additional prediction pa-

rameter that makes possible to create even higher dimensional

models and make the treatment more personalized.

In this paper the results of the in-silico validation [16] are

presented when the clinical treatment is simulated on virtual

patients that were created from the historical treatment data.

In the next chapter the used artificial intelligence models

and methods are presented together with the patient data set

applied. In the third chapter the details of the results are

introduced followed by the discussion in chapter four. The

relevant results are summarized in chapter five, Conclusions.

II. METHODS AND DATA

A. Patient Selection and SI Data Set Used

The patient’s dataset under STAR treatment is collected

in several studies. The training data used in this study was

collected between June 2016 and August 2019 and filtered by

the following excluding rules:

• patients treated less than 10 hours by STAR;

• sections of treatments where the higher border of the BG

target band was above 9 mmol/L;

• sections of treatments where lower border of the BG

target band was above 6 mmol/L.

The dataset consists of 797 SI trajectory, widely variated in

length.

For the training the trajectories were split into 20 element

long chunks. For the normalization the z-score normalization

was used. This transforms the datapoints by the mean and

variance of their distribution as they were zero and one.

The dataset was separated for training and test sets on a

per-trajectory basis. 10% of the dataset was used for testing

and from the remaining training set also 10% was used for

validation to avoid overfitting during the training. The short

trajectories on which the specific model can not be applied

were also filtered out.

B. RNN

The recurrent neural networks have great potential of fore-

casting and processing time series in multiple application

fields [17], such as natural language modelling [18], speech

recognition [19] and image captioning [20]. In the biomedical

field [21] it showed great potential in image segmentation [22],

medical treatment optimization [23] and asynchronous event

detection during mechanical-ventilation [24].

The base concept of RNNs is that during the model’s train-

ing phase they extract the hidden state (see Figure 1) transition

model encoded in the training dataset. Our solution uses the

Gated Recurrent Unit [25] which shows better performance

in several applications than the widely used Long Short Term

Memory (LSTM) RNN architecture [26].

The proposed models use a sequence of historical SI values

to predict the distribution of the future SI. During the training

the number of inputs is fixed. However, due to the feedback

loop, in the prediction the model can use arbitrary long SI

sequences. This property makes a significant difference com-

pared to the state of art methods of SI prediction. The current

techniques used in practice are based on autoregressive kernel

models. These methods do not scale well with the number of

input parameters and datapoints used for the prediction. The

prediction usually uses only the SI(t) value as a first-order

Markov chain. Our RNN based method can extract information

from arbitrary long SI series from which we expect more

accurate prediction as more values become available during

the treatment of the patients. The output is calculated not only

from the input but also from the inner state. Therefore it is

more expressive than the first-order Markov chain. Also, as a

neural network based method, it scales well with the number

of datapoints which only affects the offline training cost.

The model outputs are the mean and the variance of the pre-

dicted SI distribution. Assuming a normal distribution the 5th

and 95th percentile define a 90% confidence interval required

by the protocol. Due to this special output configuration, a

special loss function have to be used as well. This loss function

can be resulted from the negative log likelihood of the normal

distribution.

The models are trained on 20 long SI time series chunks.

This long sequences tends to face overfitting. Thus, early

stopping was applied with the help of a 10% validation set

separated from the training data.

C. Transfer learning

Transfer learning is a machine learning method in which a

pre-trained model is trained on another dataset from a similar

problem class. Transfer learning can fine-tune the model for a

specific, new task and reduce the time and computation cost

of the training as it is kickstarted from a general model.

Transfer learning was used to create patient specific models

by training the RNN model on the trajectory of the patient

under treatment. At the beginning of the treatment the specific

model can not be used because there is no sufficient data

to train on. Therefore, the initial treatment phase where the

general model could be applied only was excluded from the

evaluation.

The specific model can be created when there are at least

one more measurement in the trajectory than the recurrence

length of the model. After that, the specific model can be

recreated as new BG measurements are gathered. The creation

of a specific model means that a copy of the general model

is created and trained with the data of the given patient’s

trajectory for some epochs. The number of measurements

between recreation and the number of training epochs is

hyperparameters that can significantly affect the method’s

performance.

In this study, we recreated the model when additional

measurements were taken in the size of the recurrence length.

This means that the specific model was recreated and trained

at every 20 new measurements for 10 epochs. We expect that

the transfer learning moves the model to predict the specific

distribution of the given patient, potentially leading to more

accurate prediction. We observed that the variance of the whole
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dataset is larger than one can occur in the scope of one

patient’s trajectory. Our motivation is to exploit this observed

property and narrow the confidence intervals by using transfer

learning.

D. Metrics

To compare the newly created methods with each other and

with the currently used method we need metrics that are close

to the application requirements. The success rate (SR) metric

captures the 90% confidence requirement. It is calculated by

dividing the number of predictions where the future SI was in

the predicted interval by the total number of datapoints:

mSR =
Nin

N
(1)

where mSR is the success rate, Nin is the number of data-

points that are in the predicted interval, N is the number of

datapoints, li and hi are the endpoints of the i-th confidence

interval and ti is the i-th datapoint. The greater SR is preferred.

The narrower predicted intervals assumed to be beneficial

for the protocol because they gives more space to optimize the

treatment parameters. With the Interval Ration (IR) metric we

want to capture this beneficial property of the newly created

model compared to another prediction method. The metric is

calculated as:

mIR =
1

N

N
∑

i=0

hi − li

ri
, (2)

where mIR is the interval ratio, N is the number of datapoints,

li and hi are the endpoints of the i-th confidence interval, and

ri is the width of predicted interval calculated by the other

prediction method as a basis of comparison. The lesser IR is

preferred.

These two properties are in a trade-off relation. We created

a single metric that helps us evaluate the relation. It is called

i-score (IS) and calculated as:

mIS =
icdf

(

0.5 + mSR

2

)

icdf(0.95) ·mIR

(3)

where mSR is the success rate, mIR is the average interval ratio

and icdf is the inverse cumulative distribution function of the

standard normal distribution. The higher i-score is preferred.

All metrics can be calculated on a per datapoint basis and

on a per-patient basis. More about these metrics can be read

in [27].

III. RESULTS

In the evaluation we wanted information on a global and on

a per-patient basis. Averaging the results on the whole dataset

gives us an image of the performance of the models in the

long while on a per-patient basis it helps us to identify unique

properties of the models based on a specific trajectory and

also to detect anomalies and resolve them during the model

development.

Table I shows the numerical, per-datapoint results of the

newly developed specific method compared to the general

RNN based method. The individual intervals has a distribution

Fig. 1. Schematic figure of the RNN architecture.

TABLE I
STATISTICAL RESULTS OF THE GENERAL AND SPECIFIC MODEL.

General Specific

Success rate 0.9034 0.8812

Interval ratio 1.0 0.9111

which can be seen in Figure 2 as a histogram with marked

mean.

In the per-patient evaluation success rate also creates a

distribution as it can be evaluated for each patient. This success

rate histograms of the two models can be seen in Figure 6.

The per-patient average interval ratio histogram can be seen

in Figure 3.

Because the success rate and interval ratio are in a trade-off

relation the per-patient results were visualized in a scatter plot

where the x axis was the success rate and the y axis is the

interval ratio. In this plot we can also draw the i-score = 1

curve. In this case the datapoints under the curve represents

the treatments where the success rate was improved or the

interval ratio was reduced as much that they belong to a better

prediction performance. This plot can be seen in Figure 5.

Figure 4 shows how the trajectory length affects the success

rate, as the values of the trajectory creates the transfer learning

dataset for the specific model. We also visualized some actual

trajectory to compare the two methods. On these plots, the

specific model starts later as it gets enough information for the

first transfer learning cycle. For both methods the confidence

intervals were visualized as well. These trajectories can be

seen in Figure 7-10.

It is important to note that these results were produced on

a test trajectory set which was excluded from the training set

and even from the validation set. So these results represent the

practical case with new, unseen patients of the models.

IV. DISCUSSION

The numerical results from Table I show that the newly

developed method does not improved on the success rate

metrics on a global scale. The success rate decreased to 88%

INES 2022 • 26th IEEE International Conference on Intelligent Engineering Systems • August  12-15, 2022 • Crete, Greece

000029

Authorized licensed use limited to: National University of Public Service. Downloaded on March 10,2023 at 10:59:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Histogram of the interval ratio per datapoint. The red line is the mean
of the distribution.

Fig. 3. Histogram of the interval ratio per patient. The red line is the mean
of the distribution.

which can be tolerated. Figure 4 shows that the lowest per-

patient success rates comes from the shortest treatment length.

This tells us that the new method has a requirement on the

data quantity after which it can produce as good predictions as

the general model. Therefore the application of new method is

preferred in the long, protracted treatments. The high outliers

of this figures (where the success rate is 1.0) comes from the

cases when the treatment length is close to the recurrence size

of the model.

The per-datapoint and per-patient interval ratio histograms

(Figure 2 and 3) show that the mean interval ratio of the new

method under one in both case. This means that in a regular

case the new method reduces the interval widths which is

beneficial for the treatment optimization. In Figure 2 it can

be seen that there is significant amount of datapoint where

the intervals were widened. On the per patient basis it is not

that significant. The per-patient success rate histogram of the

specific model became wider. It has lower values than the

histogram of the general model. We assume that the reason

behind these results is the interval reducing manner of the

Fig. 4. Scatter plot of the success rate based on the length of the treatment.

Fig. 5. Scatter plot of the interval ratio based on success rate. The orange
curve represent the 1 i-score value. Under the curve the trajectory has a greater
i-score than 1.

B. Szabó et al. • Increasing Patient Specificity of the Recurrent Neural Network Based Insulin Sensitivity Prediction …

000030

Authorized licensed use limited to: National University of Public Service. Downloaded on March 10,2023 at 10:59:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Histogram of the per-patient success rate for the general (blue) and
the specific (orange) models.

Fig. 7. Example prediction trajectory. The green curve is the original
trajectory, blue is the general model and orange is the specific method. The
confidence intervals are coloured as well.

Fig. 8. Example prediction trajectory. The green curve is the original
trajectory, blue is the general model and orange is the specific method. The
confidence intervals are coloured as well.

Fig. 9. Example prediction trajectory. The green curve is the original
trajectory, blue is the general model and orange is the specific method. The
confidence intervals are coloured as well.

Fig. 10. Example prediction trajectory. The green curve is the original
trajectory, blue is the general model and orange is the specific method. The
confidence intervals are coloured as well.

new specific model.

Figure 5 shows how the per-patient success rate and average

interval ratio relates to each other. The i-score=1 curve is

displayed on the figure as well. Under this curve the cases have

larger i-score than one which means that they improved on the

success rate and interval ratio trade-off. There are numerous

cases under this curve. Therefore, we can say that there are

patients whose treatment benefited from the specific model.

From the evaluated trajectories we concluded that the

specific model can significantly reduce the interval width

compared to the general model. An interesting property is that

the intervals are often reduced only from the lower endpoint.

There is also an exception example in Figure 9. Here we can

see that the intervals of the specific model is wider than the

ones of the general models. It is not clear what combination

of properties led to this anomaly but one can notice that the

initial transfer learning phase of the specific model connects

to a great drop on the SI trajectory.

Overall, it can be said that the novel method can enhance the
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treatment in some special cases but the general applicability

of the model did not reach our expectations. However, the

development of the novel method deepened our understanding

on the SI trajectory. In the further research the diversity of

the SI trajectories should be distinguished as intra-patient and

inter-patient diversity. We should analyse how the SI can

change in the scope of the treatment of the patient (intra-

patient) and how the patients can differ in their SI trajectory.

V. CONCLUSIONS

In this research a new neural network based method was

presented. The method applies transfer learning on a general

recurrent network model to increase patient specificity by train

it with a specific insulin sensitivity trajectory.

We found this new method beneficial in several cases as it

can reduce the width of the predicted confidence intervals. The

prediction performance of the novel method greatly depends

on the length of the treatment. Therefore it is suggested to be

used in the longer treatments.

As a further step of the research we plan to analyse the

variances of the patient specific SI trajectories and how they

relate to the global datapoint variance.
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and B. I. Benyó, “Deep neural network based methods for predicting
human insulin sensitivity in thight glycaemic control,” in Proceedings of

the Workshop on the Advances of Information Technology 2020, 2020,
pp. 39–46.

[14] V. Uyttendaele, J. Knopp, K. Stewart, T. Desaive, B. Benyó, N. Szabó-
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