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ABSTRACT
This study aimed to map water features using a Landsat image rather than traditional land cover.
We involved the original bands, spectral indices and principal components (PCs) of a principal
component analysis (PCA) as input data, and performed random forest (RF) and support vector
machine (SVM) classification with water, saturated soil and non-water categories. The aim was to
compare the efficiency of the results based on various input data. Original bands provided 93%
overall accuracy (OA) and bands 4–5–7 were the most informative in this analysis. Except for
MNDWI (modified normalized differenced water index, with 98% OA), the performance of all
water indices was between 60 and 70% (OA). The PCA-based approach conducted on the original
bands resulted in the most accurate identification of all classes (with only 1% error in the case of
water bodies). We therefore show that both water bodies and saturated soils can be identified
successfully using this approach.
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1 Introduction

Monitoring phenomena on the surface of the Earth is
important in scientific research and decision making; in
this context, remote sensing (RS) techniques are an effec-
tive tool to accomplish these tasks (Sawaya et al. 2003,
Wallace et al. 2009). RS is widely used in landscape
assessment to identify vegetation (even at the species
level) over large areas, impervious surfaces, or water
bodies (Xu 2005, Weng 2012, Li et al. 2013, Lu et al.
2014, Burai et al. 2015). Detecting surface water resources
and saturated soil, and exploring how they change over
time, is one of the most important issues related to future
climate change (Vörösmarty et al. 2000, Barnett et al.
2004). Thus, soil moisture mapping plays an important
role in operational drought management. One basis for
predicting required regional water resources is the deter-
mination of the spatial distribution of the moisture stored
in soil (Narasimhan and Srinivasan 2005). Organizations
responsible for water resource management increasingly
demand accurate RS data calibrated by ground measure-
ments; therefore, in addition to the lack of water
resources, surplus water mapping is also important (van
Leeuwen et al. 2012). Nowadays, in many cases, the
determination of the spatial extent of floods is performed

based on ground observations, which are unsuitable for
surveying saturated soils; but, because water can be iden-
tified with a high degree of accuracy using spectra due to
their low reflectance rate above 700 nm, unique to this
electromagnetic range (Schowengerdt 2007), flood map-
ping based on RS is appropriate to measure the extent of
saturated areas as well as levels. Soils with maximum
water capacity cause similar damage to agriculture as do
floods; thus, water regime investigations based on accu-
rate soil moisture measurements also can play an impor-
tant role in describing runoff processes in hilly areas
(Melesse and Shih 2002). The development of flash floods
strongly depends on infiltration processes, which are
themselves influenced by initial soil moisture content
early phases (Hegedüs et al. 2015).

As a method, RS can be either passive (utilizing
optical sensors) or active (utilizing radar or laser
sensors). However, although radar-based RS has
fewer limiting factors (e.g. images that are indepen-
dent of cloud cover) and has been applied several
times to water-related questions (Alsdorf et al. 2000,
Di Baldassarre et al. 2009), we utilize just satellite
images captured with optical sensors in this study
because of their wide range of applications to land-
cover mapping and because they can be interpreted
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and processed in several ways. Optical RS images can
be interpreted using mathematical algorithms based
on the different spectral characteristics of surface
features and materials (Srivastava et al. 2012); one
approach often used in land-cover classification is
supervised or unsupervised classification of spectral
bands (Lu and Weng 2007). Supervised classification
requires preliminary knowledge of the area, however;
i.e. to train algorithms to identify objects we need to
classify them with the outcomes of this process com-
prising the classes we define (e.g. a forest, grassland,
or water body). In contrast, unsupervised classifica-
tions are based on cluster analysis and use only the
spectral information of the images; thus, the out-
comes of this approach are spectral classes that can
encompass the objects we try to extract. Supervised
classification methods are therefore more reliable
because of their thematic accuracy (Schowengerdt
2007, Sonka et al. 2014). One common and efficient
type of classification that is often applied in this
context is the maximum likelihood classifier (MLC),
but newer methods, such as random forest (RF) or
support vector machine (SVM), can also perform
tasks with high efficiency (Jin et al. 2005, Otukei
and Blaschke 2010).

Additional available image processing techniques
are based on band ratios and use thresholds that
indicate a phenomenon (e.g. biomass or water),
usually as an index value derived from two or more
bands (Singh 1989). Spectral indices are therefore
often calculated with a red and a near-infrared band,
enhancing the differences in the land-cover types with
the aim of more accurately distinguishing them
(Demetriades-Shah et al. 1990); vegetation indices
(VI) are widely used to provide information about
biomass (Liu et al. 2012, Marshall and Thenkabail
2015, Aly et al. 2016), and water indices (WIs) are
also often applied in Earth systems research (Estoque
and Murayama 2015, Kumar 2015).

Satellite bands and spectral indices usually correlate
with one another and thus bias classification results.
One common technique applied to mitigate this is a
multivariate approach applying an ordination (dimen-
sion reduction), the use of fewer artificial non-correlat-
ing variables (factors or principal components; PCs)
instead of the numerous original variables to enable
total variance to be retained at a high level. Principal
component analysis (PCA) is one ordination method
that is frequently used to reduce multidimensional
datasets (Eklundh and Singh 1993, Munyati 2004,
Deng et al. 2008). Classifications using this approach
can be performed on original bands, spectral indices
or PCs.

The aim of satellite image classification is usually
to delineate land-cover maps, but encapsulated spec-
tral information can also be used to identify other
features. Thus, the hypothesis tested in this paper is
that water and water-related objects on the surface
(such as saturated soils or vegetation under wet con-
ditions) can also be identified using these images.
Previous studies in this area have focused on the
relationship between WIs and environmental factors
(e.g. urban heat islands or soil moisture content;
Chen et al. 2006, Gu et al. 2008) or their aims were
restricted to the identification of water bodies (Ko
et al. 2015). Although the performance of supervised
classifications for water-related objects has not yet
been quantified, it is nevertheless important to deter-
mine how accurately WIs can provide information on
water bodies and wet surfaces even though their
thematic accuracy remains unclear; in other words,
where is the boundary between a water body and a
wetland, and do the highest values in these classifica-
tions actually reflect water bodies? Image classifica-
tion combined with accuracy assessment is one
approach to these questions.

The image-acquisition satellite Landsat 7 was opera-
tional for 17 years (1999–2016) and provided a huge
amount of data that was used for environmental mon-
itoring. The aim of this study was therefore to utilize
this dataset and to reveal its potential for water-related
topics because of their relevance to climate change
issues. We therefore test the efficiency of spectral
indices and evaluate a PCA-based approach vs a tradi-
tional, satellite band-based technique for the identifica-
tion of water bodies, saturated soils/vegetation under
wet conditions, and non-water-related classes. We also
evaluate the accuracy of WI efficiency in this study.
Our hypothesis is that the use of uncorrelated PCs
provides enhanced classification results compared to
the use of original bands. We also summarize the
advantages of different indices and explore their
inter-relationships.

2 Materials and methods

2.1 Study area

The study area comprised the Rétköz micro-region
(Fig. 1) in northeastern Hungary, a region (275 km2)
that is regularly at risk of inundations of excess water
and flooding. The area can be divided into two main
zones according to their genetic and geomorphological
characteristics: (a) the western part, with alluvial forms
and soils with a high clay content, which leads to sur-
face-layer impermeability; and (b) the eastern part,
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where eolic accumulations dominate and soils have a
high sand content (Pásztor et al. 2016).

One common phenomenon in Hungary is the for-
mation of surface water due to pluvial floods. These
water bodies only form in plain areas, however,
where runoff and infiltration is limited by topogra-
phy and soils have a high clay content. Such surface
water accumulations can have different extents (from
10–20 m2 to hundreds of hectares) and persist for a
number of weeks, but soils remain saturated for
longer times, which causes problems for agriculture
in ploughed lands as machine cultivation can be
impossible at the start of the vegetation period and
yields are weak (Kuti et al. 2006). The western part of
the study area contains substantial regions that are
endangered by this type of surface water, especially in
the spring when the snow melts and precipitation is
high (Pásztor et al. 2015). In contrast, the eastern
part of the study region remains rather dry due to
the high infiltration rate of the sandy soil. It is
noteworthy that, because the Landsat images applied
in this work do not cover the whole micro-region,
results were interpreted based on the section that was
covered.

2.2 Dataset and derived WIs

We used a LANDSAT 7 ETM+ (radiometrically and
atmospherically corrected) image in this research,
which was acquired on 23 April 2000. During the
period 10 March–12 May 2000, a large flood wave
had inundated the floodplain of the Tisza River and a

relatively high proportion of this area was under water
(Water Quality Report 2000).

We calculated nine spectral indices from Landsat
image bands (Table 1), all developed to enhance the
pixel intensity of those parts where the water compo-
nent could be found, and to aid their identification. As
these indices perform differently in this task; our aim
was to identify the most effective.

2.3 Principal component analysis (PCA) of original
satellite bands and WIs

We utilized a standardized PCA with Varimax rotation
in this study in order to reduce multi-dimensionality
and to reveal correlations among variables, i.e. nine
WIs or six TM bands (Davis 1986, Meglen 1992). We
also applied a log(ki + 1) transformation, where ki is
the ith element of the dataset, to improve the linearity
and normal distribution of the variables (van den Berg
et al. 2006). Thus, based on common features, we
preserved all the variables in the PCA model and,
according to Kaiser’s rule, extracted PCs with an eigen-
value greater than one (Jolliffe 2002). We then tested
the classification performance of original bands and
WIs separately to highlight the efficiency of the tradi-
tional approach and potential band ratio usage, per-
formed a PCA on the training dataset, and plotted the
results on a bi-plot diagram, which revealed the data
distribution in ordination (multivariate) space as well
as the variances and the correlations of the variables
(Gabriel 1971, Kohler and Luniak 2005). Bi-plots are
valuable tools to illustrate the discrimination of data

Figure 1. Location of the study area.
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points on the basis of pre-defined categories in multi-
variate space: if data points of different categories
intersperse then classifications cannot be successful
using the PCs, while if points occur in well-defined
clusters (along 95% ellipses or convex hulls), this
method provides a favourable classification.

We tested model fit using root mean square residuals
(RMSR; Jöreskug and Sörbom 1996) calculated from the
residuals of the correlation matrix determined from the
original dataset and the PCA model estimation
(Equation (1)), in addition to the adjusted goodness-of-
fit index (AGFI; Jaccard and Wan 1996, Jöreskug and
Sörbom 1996) (Equation (2)). Thus, RMSR values that
are below 0.1 are considered good, while those below
0.05 reflect a very good fit; similarly, AGFI are indicative
of a good fit if a recovered value is more than 0.9 and
very good if above 0.95 (Basto and Pereira 2012). Our
PCA led to generation of a new set of PC images.

RMSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Ppþq

i¼1

Pi
i¼1 ðsij � σijÞ2

pþ qð Þ pþ qþ 1ð Þ

" #vuut (1)

AGFI ¼ 1� pþ qð Þ pþ qþ 1ð Þ
2d

1� FML

F0

� �
(2)

where p + q refers to the number of observed variables,
sij is the observed covariance, σij is the reproduced
covariances, d denotes the degree of freedom in the
model, F0 is the fit function when all parameters in the
model are zero, and FML is the maximum likelihood
estimation.

All PCAs in this study were performed using the
software R 3.3 (R Core Team 2016) by applying the
psych (Revelle 2015) and GPArotation packages
(Bernaards and Jennrich 2005), while bi-plots were
generated using the factoextra and FactoMineR
packages (Lê et al. 2008, Kassambara and Mundt 2017).

2.4 Image classification

We utilized two classifier algorithms in this study, RF
and SVM, to reveal the efficiency of different
approaches, and distinguished three water-related
classes: water bodies, saturated soils/vegetation under
wet conditions (referred to as saturated soils), and non-
water. Classifications were conducted using original
bands as in the traditional approach, including the
use of spectral indices (separately, and in different
combinations), and utilizing a PCA-based image clas-
sification approach (Fig. 2).

The RF method is a modern machine learning tech-
nique that is based on decision trees (Ho 1995, Pal
2005). Thus, a large number of decision trees (in our
case 500) were incorporated with different, randomly
selected data and variables (i.e. spectral indices or
Landsat TM bands). This means that the number of
variables involved is the square root of all variables; in
all cases these were chosen randomly in a single deci-
sion tree, and the procedure was repeated 500 times.
Our final dataset used 500 independent classifications
with different thematic accuracies; based on the effect
of omitting a variable, this method is, however, able to
rank the importance of those involved, which means
that we were able to quantify the effect of dropping one
given variable, so-called mean decrease accuracy
(MDA; Breiman 2001, Louppe et al. 2013). The advan-
tage of the method is that there is no prerequisite for
normal distribution or homoscedasticity.

The alternative SVM method is another modern and
robust approach for classification based on the search
for optimal hyperplanes that maximize the margin of
data points belonging to different classes (Vapnik 1995).
In other words, this algorithm seeks the largest distance
from the nearest data point of any class; therefore, the
larger the distance, the smaller the generalization error

Table 1. Derived spectral indices (B2: green band; B3: red band; B4: near-infrared band; B5: shortwave infrared band of the Landsat
7 image).
Index Landsat band Authors

AVI: Ashburn vegetation index 2B4 − B3 Ashburn (1979)
NDVI: normalized difference vegetation index B4 − B3/B4 + B3 Rouse et al. (1974)
RVI: ratio vegetation index B3/B4 Richardson and Wiegand (1977)
NRVI: normalized ratio vegetation index RVI − 1/RVI + 1 Baret and Guyot (1991)

TVI: transformed vegetation index
ffiffiffiffiffiffiffiffiffiffi
B4�B3
B4þB3

q
þ 0:5 Deering et al. (1975)

CTVI: corrected transformed vegetation index NDVIþ0:5
ABSðNDVIþ0:5Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABSðNDVIþ 0:5Þp

Perry and Lautenschlager (1984)

TTVI: Thiam’s transformed vegetation index
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABSðNDVIþ 0:5Þp

Thiam (1997)

NDWI: normalized difference water index B4 − B2/B4 + B2 McFeeters (1996)
NDWI: normalized difference water index B5 − B4/B5 + B4 Gao (1996)
MNDWI: modified normalized difference water index B5 − B2/B5 + B2 Xu (2006)
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(classification accuracy using data other than the train-
ing dataset; Mukherjee et al. 2006). Usually, datasets
cannot be separated linearly, but due to further algo-
rithm developments this approach can also cope with
nonlinear data (Amari and Wu 1999). Data were trans-
formed into a higher dimensional space, which enables
easier separation; in these cases, data points were
replaced with kernel functions, and a maximum-margin
hyperplane fit was conducted in a so-called transformed
feature space where an n-dimensional vector of numer-
ical features represents the same objects. The method is
independent of the number of dimensions because in
feature space the input is the distance between the data
points. We therefore applied the radial basis function,
where parameters are determined automatically to mini-
mize the upper limit of the expected test error
(Schölkopf et al. 1997) when applying this approach.
Both RF and SVM classifications were performed using
the rattle package in the software R 3.3 (Williams 2011),
and images were produced using the software Idrisi
Selva (Clark Labs 2012).

We developed a training and a testing dataset for
this study, taking water surfaces and the saturation
state of soils into consideration (i.e. 1702, 292 and
426 pixels for non-water, saturated soils and water,
respectively, in proportion to their dominance in the
study area). The dataset was split 70:30 between train-
ing and testing for further analyses.

We reported thematic accuracy using a cross-tabula-
tion matrix, where columns represent the reference data
and rows denote classified (modelled) ones. Thus, based
on this table, we report overall accuracy (OA) and pro-
ducer’s accuracy (PA). In this case, OA represents the
diagonal fields in which classified and reference pixels
are the same (i.e. the model was accurate); this value is a
general expression of percentage accuracy, while PA is

the omission error when we summarize the accurate
pixels and take into account misclassifications at the
class level. As these values show how accurate the maps
are for each class (Congalton 1991), we were able to
evaluate the advantages and disadvantages of each clas-
sification in this study.

Similarly, ground truth data were collected with the
help of thematic maps of surface water formed by
pluvial floods (and soils with poor permeability) sur-
veyed by the water management directorates each year,
and we also used aerial images. The thematic maps
used in this study contained surface water patches
that encompassed a different extent each year, depend-
ing on the amount and distribution of melting snow
and precipitation. We used these maps as auxiliary data
to limit the area where surface water can occur and
delineated just those pixels as a “water body” or “satu-
rated soil” when discrimination was also obvious on
satellite images. However, even though aerial images
are usually not captured at the right time of year to be
useful for mapping water features, these images never-
theless contain trait-based information which can be
extracted via visual interpretation. Accordingly, we
identified direct (e.g. water bodies or dark soil patches
indicating saturation) and indirect (i.e. deviances in
patch texture such as a dark/light patch within a larger
patch) traits. We assembled a dataset of 2420 pixels
(1702, 292 and 426 pixels for non-water, saturated soil
and water, respectively, all proportional to dominance
within the study area), shared 70:30 between training
and testing.

We classified original bands as well as WIs and PCs
into several combinations, defining target objects as
water bodies, saturated soils/vegetation under wet condi-
tions, and the dry environment (soils and vegetation with
dry conditions) as categorical data. We initially

Figure 2. Flowchart of the classification process.
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performed classifications involving all possible input data
via bands and WIs and then repeated the classification
using MDA values of the RF classification incorporating
the most relevant variables. This involved the first three
components in the case of PCs, and we evaluated the
final outcomes of this analysis using both PA and OA.

2.5 Uncertainty of pixel classification

Classifications result in different outcomes as certain
pixels belong to the same class independently of the
technique applied, while others change their category.
Thus, depending on the variables involved, pixels are
classified into any one of a number of possible
classes. As the aim of this study was to determine
whether or not different classification outcomes
(using different input data and/or classification algo-
rithm) result in the same categories considering a
given pixel, and because our classes took numerical
values between 1 and 3 (i.e. non-water: 1; saturated
soil: 2; water body: 3), these numbers were also used
for statistical evaluation. We chose the seven most
accurate outcomes (having >98% OA) and then cal-
culated their standard deviation (SD) by pixels.
Lower values indicated lower uncertainty (i.e. zero
values indicated that all the seven methods resulted
the same category for a pixel, and 0.89 indicated
pixels classified into several classes using the different
methods). We then summarized these uncertainties
based on the land-cover classes of Corine Land Cover
(CLC) 2000 (EEA), calculating average SD values for
each land-cover class.

We presented the proportional distribution of our
classification categories on each map based on CLC
land-cover classes. To do this, we calculated propor-
tional ranges in a similar way to uncertainty analysis,
involving the six most accurate classified maps.
Because NDVI can be used to reflect the amount of
biomass (positive values) or water bodies (negative
values), as discussed in several previous studies (e.g.
Wright and Gallant 2007, Nyarko et al. 2015, Szabó
et al. 2016), we also determined these values using CLC
classes to show that not just land-cover types deter-
mine water-related categories but that water and high
soil moisture also have a significant influence.

2.6 Confirmation of our classification procedure

We performed a further classification based on the
results of our initial algorithm and using input data
from another satellite image as a confirmation that
also included large inundated areas and surface
water patches. The aim of this process was to

prove that our classification is repeatable and can
be successfully applied to other datasets. To do this,
we used a Landsat 5 TM image captured on 19 June
2006 in the same study area. However, in this case,
the amount of precipitation during the first half of
2006 was higher (373 mm) than the mean of the
past 10 years (269 mm), which means that the
occurrence of surface water patches related to plu-
vial floods was high, and thus this image was
appropriate for evaluation (i.e. we were able find
all the categories we had previously applied). We
also defined training and test areas with the help of
inundation maps from the water management direc-
torate alongside aerial images, delineated 1836 pix-
els as our ground truth dataset, and again shared
the training and testing samples 70:30. We repeated
this analysis utilizing the experiences gained pre-
viously to focus on solutions with OA greater
than 98%.

3 Results

3.1 Classification with TM bands

The results of this study show that when a classification
was performed on the original bands of the Landsat
image, this led to an acceptable outcome with a classi-
fication accuracy of 91%. Data show that all six avail-
able bands produced the same result (91%) with both
RF and SVM; thus, using RF MDA values, we were able
to reduce the number of bands involved in the analysis
and retain just 4–5–7 (MDAs were 19–32–25, respec-
tively; Fig. 3(a)) so that the MDA of all the others
remained below 7%. This band selection process pro-
duced a slight improvement in accuracy to 94% when
using the SVM classifier (Table 2).

3.2 Classification with WIs

We also analysed the identification performance of all
calculated WIs in each of our three categories. The
results show that MNDWI was by far the best, produ-
cing a 98% OA (Table 3; Fig. 3(d)), and was also
successful at identifying saturated soils (PA: 93%).
However, all the other indices provided only 43–63%
accuracy, which is far below the result produced on the
basis of the original band approach.

We repeated the classification step involving all the
WIs and showed that with RF it is possible to attain
98% accuracy, although this can also be achieved when
just using MNDWI (Table 4; Fig. 3(c)). Next, and in
order to avoid overfitting, we also reduced the number
of variables based on the MDA values of RF; in this
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case, accuracy remained at 98% and the most impor-
tant WIs were the MNDWI (MDA: 57), and the
NDWIs (both of McFeeters (1996) and of Gao (1996),
with MDA: 17 and 19, respectively; the MDA of all
other WIs was <9). The classification accuracy of the

saturated soil class was 94% with RF, but this varied
between 75 and 78% with SVM, while omitting the Gao
NDWI led to a reduction in accuracy of just 1%.

3.3 PC classification

The PCA performed on the original TM bands
explained 99.0% of the total variance and justified
three PCs; of these, both RMSR and AGFI fit very
well (0.01 and 0.99, respectively), while PC1 accounted
for 50% of the variance and was correlated with B1–B3,
PC2 explained 28% and was correlated with B5 and B7,
and PC3 explained 21% and was correlated with B4.

We also performed a PCA including WIs (we
excluded the AAVI due to its low communality); this
step explained 98.5% of the total variance and resulted
in two PCs, justified by the RMSR (0.01) and AGFI
(0.99, a very good fit). In this case, PC1 accounted for
72.2% of the variance and was strongly correlated with

Figure 3. RF classification results using (a) 4–5–7 TM bands; (b) PCA, all TM bands; (c) all WIs; and (d) MNDWI.

Table 2. Producer’s accuracy of water features and overall
accuracy (OA) % of the classifications performed on original
Landsat 7 bands using RF and SVM classifiers.
Class Original bands 4–5–7 bands

RF SVM RF SVM

Non-water 98 100 100 100
Saturated soil 74 76 78 81
Water 100 97 100 100
OA 91 91 93 94

Table 3. Producer’s accuracy of water features and overall
accuracy (OA) % of the classifications performed on WIs derived
from Landsat 7 bands using RF and SVM classifiers.
Class MNDWI AAVI NDVI NDWI

Gao
NDWI

McFeeters

RF SVM RF SVM RF SVM RF SVM RF SVM

Non-water 100 100 87 86 99 98 91 92 93 99
Saturated soil 93 91 3 4 9 6 14 5 7 0
Water 100 100 39 56 93 86 83 85 99 99
OA 98 97 43 49 64 63 63 61 67 65

Class NRVI RVI TVI CTVI TTVI

RF SVM RF SVM RF SVM RF SVM RF SVM

Non-water 92 97 98 97 92 97 92 97 92 97
Saturated soil 8 4 9 7 9 7 9 7 9 7
Water 94 86 93 85 94 85 94 85 94 86
OA 65 62 64 63 65 63 65 63 65 63

Table 4. Producer’s accuracy of water features and overall
accuracy (OA) % of the classifications with all WIs and with a
set of WIs (McF: McFeeters).
Class All WI Gao + NDWI

(McF) + MNDWI
NDWI

(McF) + MNDWI

RF SVM RF SVM RF SVM

Non-water 100 100 100 100 100 100
Saturated soil 94 59 94 72 90 75
Water 100 93 100 100 100 100
OA 98 84 98 91 97 92
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NRVI, NDVI, RVI, CTVI, TTVI, TVI and NDWI
(McFeeters 1996), while PC2 accounted for 26.3% of
the variance and was strongly correlated with the
remaining two NDWIs, as well as NDWI (Gao 1996)
and the MNDWI.

A further bi-plot of this PCA based on TM bands
revealed an almost perfect class discrimination with
just a small overlap between the non-water and satu-
rated soil classes (Fig. 4). However, both RF (Fig. 3(b))
and SVM resulted in 100% OA (Table 6); the only
misclassification in this case was in the use of RF,
where one pixel was classified into the saturated soil
class instead of as a body of water.

The bi-plot diagram of WIs, PC1 and PC2 revealed
good discrimination between the categories of water-
related features (Fig. 5). In this case, classification
accuracy was 99% for RF and 100% for SVM; there
were four pixel misclassifications using RF and just one
for SVM (Table 5).

3.4 Uncertainty of CLC class classifications

We calculated uncertainty from the following out-
comes (input data and classifier) based on their relative

performance (>98% OA): (a) PCs derived from TM
bands with RF; (b) PCs derived from TM bands with
SVM; (c) TM bands with RF; (d) WIs with RF; (e)
Gao + NDWI + MNDWI with RF; (f) MNDWI with
RF; and (g) PCs derived from WIs with SVM. The
average SD was the largest in the case of linear artificial
landscape elements summarized by CLC categories (i.e.
roads and railways, Table 6), while the second largest
value belonged to the water body class. This result
indicates that, although these methods produced a
good performance, there were relevant differences in
terms of spatial projection.

The distribution of the calculated SD is shown in
Figure 6. According to the six most accurate classifica-
tion methods, more than half of the interpreted area is
classified with maximal certainty (SD = 0). Larger SDs
can be detected in the western part of the sample area,
mostly covered by high clay-content sediments where
persistent shallow water cover (or inland inundation)
can occur.

According to the proportional distribution of water-
related categories based on classification by CLC class,
we found that the category of saturated soils belongs to
non-irrigated arable lands and pastures (Table 7). The
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Figure 4. Bi-plot diagram of the PCs derived from TM bands (categories are grouped by colours: (a) non-water; (b) saturated soil; (c)
water; 95% ellipses).
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NDVI values had large variance, indicating varied dis-
tribution and proportion of water features. However,
while in the case of arable lands or pastures, negative

values can refer to the presence of water, the “discon-
tinuous urban fabric” class had artificial causes.

3.5 Confirmation of the extraction of water-
related features

The classification performed on the 2006 satellite
image resulted in good results with an accuracy of
96–98% OA. In this case, PCs of PCA (either with
TM bands or with WIs) did not perform better than
the original variables and resulted in a slightly (1%)
weaker accuracy (Table 8). The PCs were the most
efficient to identify dry areas and water bodies but
had misclassifications for saturated soils.
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Figure 5. Bi-plot diagram of the PCs derived from WIs (categories are grouped by colours: (a) non-water; (b) saturated soil; (c) water;
95% ellipses).

Table 5. Producer’s accuracy of water features and overall
accuracy (OA) %of the classifications performed on PCs derived
from original Landsat 7 bands (TM bands) and WIs, using RF
and SVM classifiers.
Class PCA (WIs) PCA (TM bands)

RF SVM RF SVM

Non-water 100 100 100 100
Saturated soil 99 99 100 100
Water 98 100 99 100
OA 99 100 100 100

Table 6. Distribution of water-related categories by land-cover classes of CLC 2000 (minimum and maximum values).
CLC code CLC type Proportion of CLC type (%) Non-water (%) Saturated soil (%) Water (%) NDVI mean ± SD

112 Discontinuous urban fabric 4.30 3.83–4.20 0.09–0.45 0.01–0.02 –0.08 ± 0.10
211 Non-irrigated arable land 68.66 57.67–59.66 8.33–10.17 0.68–0.88 –0.05 ± 0.18
222 Fruit trees and berry plantations 1.46 1.26–1.43 0.03–0.2 0 0.11 ± 0.10
231 Pastures (grassland) 15.38 11.50–12.02 3.12–3.66 0.22–0.25 0.13 ± 0.15
242 Complex cultivation 2.76 2.41–2.48 0.25–0.32 0.02–0.03 –0.01 ± 0.13
243 Agriculture with natural vegetation 3.12 2.20–2.22 0.78–0.80 0.11–0.12 0.02 ± 0.15
311 Broad-leaved forest 1.62 1.03–1.20 0.39–0.56 0.03–0.04 0.14 ± 0.15
324 Transitional woodland shrub 0.50 0.34–0.35 0.12–0.16 0.01 0.16 ± 0.13
0.13 Inland marshes 1.75 0.97–1.03 0.67–0.73 0.06–0.07 0.01 ± 0.13
512 Water bodies 0.44 0.02–0.03 0.07–0.08 0.33–0.34 –0.26 ± 0.14
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4 Discussion

A classification based on the original bands of a
Landsat 7 image, as well as a WI-based classification,
and ordinations (PCA) of TM bands and WIs represent
four distinct approaches to identify water bodies, satu-
rated soils and non-water areas. Traditional methods,
using original bands, have usually been used for map-
ping land cover (Keuchel et al. 2003, Cingolani et al.
2004, Churches et al. 2014), to monitor changes in the
surface based on multi-temporal images (Fichera et al.

2012), and to determine different urban surfaces, e.g.
roofing materials (Szabó et al. 2014). However, OA
values obtained using these methods were rarely
above 90%. In contrast, other studies (Gao 1996, de
Alwis et al. 2007) calculated spectral indices, and, with
optimal thresholds, the accuracy in these cases, e.g. for
water detection (McFeeters 1996), reached more than
99%. This kind of PCA-based classification has been
widely applied, especially for change analysis; this
method can reduce the dimensions of multi-temporal
datasets and, using PCs, the areas most subject to
change can be detected. Many authors have calculated
PCs from original spectral bands (e.g. Munyati 2004,
Khan et al. 2005, Forzieri et al. 2011, Kit et al. 2012),
but these can also be determined from various sets of
variables (Byrne et al. 1980, Richards 1984), or from
spectral index time series (Hirosawa et al. 1996, Mills
et al. 2013, Dronova et al. 2015). The accuracy demon-
strated with PCA-based methodology varies in the
relevant literature, and depends on the feature classes
involved (Table 9).

Generally speaking, all the methods applied in this
paper performed well, but usually exhibited classifica-
tion errors when addressing the saturated soil class.
This transitional category experienced most problems
because we often identified a type of vegetation for this

Figure 6. Map of standard deviation (SD) calculated from the six most accurate classifications including the cumulative histogram of
the SD values.

Table 7. Classification uncertainty of the best six classified
maps (PCs derived from TM bands with RF; TM bands with
RF; 4–5–7 TM bands with SVM; PCs derived from WIs with SVM;
WIs with RF; MNDWI with RF) considering the standard devia-
tion (SD) of the categories by CLC class.
CLC
code

CLC class Average SD by
CLC class

512 Water body 0.252
324 Transitional woodland shrub 0.210
222 Fruit trees and berry plantations 0.145
311 Broad-leaved forest 0.138
112 Discontinuous urban fabric 0.133
231 Pastures (grassland) 0.126
243 Land principally occupied by agriculture, with

significant areas of natural vegetation
0.120

211 Non-irrigated arable land 0.117
242 Complex cultivation 0.116
411 Inland marsh 0.079

Table 8. Classification accuracies of the Landsat 5 image of 19 June 2006 using different input data (WIs: water indices; TM bands;
and PCs of PCA solutions) and classification algorithms. RF: random forest; SVM: support vector machine.
Category MNDWI (RF) All WI (RF) Gao + NDWI + MNDWI (RF) PCA WIs (RF) PCA WIs (SVM) PCA TM bands (RF) PCA TM bands (SVM)

Dry area 97 99 100 99 100 100 100
Saturated soil 96 96 96 93 91 96 95
Water body 98 100 99 99 100 99 100
OA 97 98 98 97 97 98 98
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category and not the bare moist topsoil itself due to
land cover. The situation was similar to that for the
dry, non-water-related soil class, but was more obvious;
if the soil is dry, the vegetation also reflects this. This
means that a higher proportion of saturated soil mis-
classifications occurred with dry surfaces rather than
with water bodies. This is noteworthy because,
although the discrimination of water bodies seemed
straightforward, they are not pure surfaces; thus,
uncertainty analysis revealed that these areas, as well
as transitional woodland shrub classes, had the largest
variance through the six classes, leading to inaccurate
results (Table 6). Permanent water bodies are also often
covered with aquatic vegetation and surface water sub-
merges grasslands and pastures, which can also add
bias to the classification; shoreline areas were also
misclassified in some cases, a result similar to that
reported by Zlinszky et al. (2015).

The dominant land-cover type within the area dis-
cussed in this study was arable land, including all
water-related categories. Mostly, however, this land-
use type was considered as non-water (83–84%),
although a smaller proportion was classified as satu-
rated soil (14–15%) and as a water body in cases where
the ratio was less than 1%, which is related to the high
(68%) proportion of arable lands (Table 7).
Considering the intensive rainfall and groundwater
persistence during this period of the year, both dry

areas and wet conditions can occur; this means that
sand dunes are already dry while the valleys between
them are still wet. Furthermore, arable land is covered
with different types of plants in different phenophases,
which biases the spectral features of the area. The
results of this study nevertheless corroborate the idea
that, in spite of various influencing factors, we are able
to discriminate different water content classes. Pastures
were mostly classified within the non-water category
(74–75%) and as saturated soil (20–21%). Therefore,
considering that NDVI values are usually negative in
the case of water bodies and arable lands, and pastures
had large variance for NDVI (Table 7), it is likely that
these areas were inundated or in saturated states.

Compared to the satellite-based classification per-
formed using an original WI-based band approach,
use of MNDWI yielded better accuracy for both water
bodies and wetlands. However, although PCA, espe-
cially with MNF transformation (Frassy et al. 2013), is
often used successfully for hyperspectral images, i.e. a
large number of bands (Rodarmel and Shan 2002), the
best performance in this study was achieved via the use
of PCs with just a few bands: the results show that both
the PCA performed on the original bands and the one
performed on WIs provided the most accurate results.
Furthermore, misclassification errors per class were
almost zero, between just one and four pixels were
classified into another class in each case. RF usually

Table 9. Accuracy of image analysis techniques by the data types involved in previous studies.
Author Study area Image Accuracy Note

Original bands
Keuchel et al. (2003) Tenerife, Spain Landsat 90% Land-cover detection
Cingolani et al. (2004) Argentina Landsat 78% Vegetation mapping
Atkinson (2004) – Simulated images 89–93%
Fichera et al. (2012) Avellino, Italy Landsat 86–95% Land-cover change
Churches et al. (2014) Haiti Landsat 78% Forest detection
Szabó et al. (2014) Debrecen, Hungary Airborne hyperspectral

data
~85% Asbestos roof identification

Spectral indices
de Alwis et al. (2007) Town Brook, USA Landsat 78–79% Land-cover detection
Xu (2006) Xiamen City; Luoyuan Bay; Min River,

China
Landsat 99.85% Water detection

Fisher and Danaher
(2013)

New South Wales, Australia SPOT 98% LDAWI for water detection

PCA-based
Byrne et al. (1980) Batemans Bay, New South Wales,

Australia
Landsat Land-cover change detection

Richards (1984) New South Wales, Australia Landsat Change detection (bush fire)
Hirosawa et al. (1996) Arizona, USA AVHRR Vegetation mapping
Munyati (2004) Kaufe Flats, Zambia Landsat
Khan et al. (2005) Indus Basin, Pakistan IRS LISS-II Salt-affected soils detection
Koutsias et al. (2009) Island of Samos, Greece Landsat Separability value was used:

1.89
Burnt land mapping, change
detection

Forzieri et al. (2011) Avisio River, Italy SPOT-5 69.29%, Kappa 0.78 Land-cover extraction
Kit et al. (2012) Hyderabad, India QuickBird Identification probability:

83.33%
Slum detection

Mills et al. (2013) Southern Rockies–Colorado Plateau,
USA

MODIS Change detection

Dronova et al. (2015) Poyang Lake, China Beijing-1; ASAR 94.7% OA, Kappa 0.938 Land-cover mapping
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provided slightly better results than SVM; however,
when the PCs were introduced (which provided the
best outcomes), SVM was the better classifier.

Taking into account all the input data used during
this study, the most favourable option was to use the
PCs of the original band ordination. Although WIs
have usually performed better in other studies, we
only achieved good results at a convincing level of
accuracy in this case with MNDWI, as all other WIs
had only 60–70% OA values. Although it is possible
that WIs might provide better results via the addition
of more dimensions, including two or more variables/
bands (Afifi et al. 2012), in this case they did not
augment any combinations either on their own,
together, or as PCs in the creation of more accurate
maps. In a similar work, Fisher and Danaher (2013)
also applied the multivariate linear discriminant analy-
sis (LDA) method using original bands and their linear
combinations, and then compared their results with the
McFeeters (1996) and Xu (2006) NDWIs. These
authors all found that their multivariate approach per-
formed with a higher degree of accuracy in identifying
water bodies, as in this study. However, PCA without a
target variable provided an errorless outcome in our
case using just original bands. Our final conclusion is
therefore that PCA increased the accuracy of class
identifications with different water contents, while of
the WIs, just the MNDWI was efficient.

Our confirmation analysis shows that a final classi-
fication outcome can be exact and report the right
information, whether or not the extraction of water-
related features is repeatable. This depends, however,
on designating the right training areas using satellite
image and auxiliary data sources, including the the-
matic map of surface water patches and aerial images.
It is also important to ensure that training areas are
carefully delineated, following the traces of current or
former water cover, and that all collected information
should correspond with the satellite image. In other
words, only patches are allowed that can be found on
both data sources. Our second analysis using the 2006
Landsat 5 satellite image required a new training data-
set, as water-related features change temporally and
depend on the level of soil saturation, precipitation
and the combination of the two. In other words, it is
important to know the saturation level due to melting
snow after precipitation has fallen on the area in the
spring. Our new analysis resulted in similar results to
the previous statements except that PCA did not ensure
better thematic accuracy: dry areas and water bodies
were identified almost perfectly, but, as we pointed out
previously, saturated soil, the transitional category, had
misclassification issues. This means only 1% less OA

and issues can originate from two sources: land cover
of dry and saturated areas has similar reflectance pro-
files and their interspersion is natural, and/or training
areas contained some pixel(s) belonging to the other
category (Ozesmi and Bauer 2002).

Although satellite images enable a wide range of
information extraction possibilities, they are neverthe-
less archive data, and thus it is always a challenge to
collect the right information to validate the results of
their processing. Our approach for data collection
using direct (maps of water authorities) and indirect
(with auxiliary data, i.e. searching the clues to saturated
soils using aerial images) presents one possible solu-
tion. The method also has its limitations, but the final
results are accurate, with a minimum OA of 97% and
PA of 91%. Success depends on the given situation in a
specific year and the date when the image was cap-
tured: when the amount of precipitation is large, and
the image is captured close to the maximal extent of
patches of pluvial flood, the predictable accuracy is
good. However, when there is a time lag between the
maximal extent and the date of the available image, or
the amount of precipitation is not enough to fill all the
possible sinks, the accuracy can be lower. This was the
case with the image of 2006, when the classification
performance was 91–96% (regarding the PA), which
was lower but still acceptable compared to the image of
2000, where we obtained 98–99% PA.

Given the local future climate change scenarios for the
Carpathian Basin, increasing drought sensitivity and
extremes of weather have to be considered (Mika 2013,
Ladányi et al. 2015). In view of the changing distribution
of precipitation in both time and space, according to
earlier predictions (Bartholy et al. 2009), periods of
drought may last longer and surface water may be
formed, both phenomena that threaten agricultural pro-
duction. Therefore, research investigating water
resources will also play a significant role in the future.
The approach presented here can contribute to mapping
those areas that are relevant for water management,
where agricultural production will be threatened by the
risk of drought, and where, as a consequence, the instal-
lation of watering systems will be needed, or crop type
selection should be considered in line with the severity of
decreasing water resources. Although this study has only
dealt with the mapping phase itself, this methodology
can also be used to reveal spatial and temporal trends.

5 Conclusions

Four approaches were tested in this study: (a) origi-
nal bands; (b) WIs; (c) PCA conducted on original
bands; and (d) PCA conducted on WIs. The
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performance of original bands was acceptable, with
an overall accuracy of 93%. However, the use of WIs
did not help to improve the outcomes, as their per-
formance was between 60 and 70%, with the excep-
tion of MNDWI, which was very effective, with an
overall accuracy of 98%. Combining the WIs did not
bring any increase; in fact, the accuracy decreased to
96%. However, PCA, conducted both on the original
bands and on WIs, had the best performance, with a
99–100% overall accuracy. SVM performed on the
original bands provided slightly better results than
RF. Although more variables can generally improve
the accuracy of the classifications, only one WI
(MNDWI) had a particularly good performance; in
this case, the other variables reduced it and, there-
fore, PCA performed on the WIs was not as success-
ful as was the case with original bands. Calculating
standard deviation from different classification results
can reveal the uncertainty of the classifications.
Although there are limitations of the satellite images
in mapping the water and water-related features, this
study confirmed their applicability.
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