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Abstract
This study compares the share of male/female as first authors, the growth of authors per 
paper, and the differences in publication productivity in the last decade of the most cited 
authors versus the field of communication (i.e., a representative sample of papers published 
in the field of communication). Results indicate that there are significantly more female 
first authors in the field than a decade ago, but their proportion among the most cited 
authors has not grown at a similar pace. Likewise, the number of authors per paper has 
significantly increased in the field, but not among the most cited authors, who, in turn, pub-
lish significantly more papers than the field, both in 2009 and 2019. And not only that, the 
productivity gap between the most cited authors and the field has substantially increased 
between the span of this decade. Theoretical implications of these findings and suggestions 
for future studies are also discussed.
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Introduction

The analysis of scholarly collaboration, publication and citation patterns is a global 
enterprise that entails the quantitative measurement of a myriad of scientific phenomena 
(Heesen & Romejin, 2019). However, like any other social subsystem, science also might 
be influenced by structural and individual factors, such as the privilege of some languages 
over the others (Curry & Lillis, 2018; Goyanes, 2020), or differences in terms of research 
competences and resources. The analysis of such potential differences is paramount to bet-
ter understand how global knowledge production unfolds and tend to be common topics 
within the scientometric tradition (Gonzalez-Brambila et al., 2016; Iyandemye & Thomas, 
2019). When it comes to the sociological and bibliometric research in communication 
studies, prior research has so far focused on a plethora of related issues, such as sex bias 
in the academia (Knobloch-Westerwick et al., 2013), citation networks (Chan & Torgler, 
2020), the uneven representation of sex and geographical region on editorial boards (Goy-
anes & de-Marcos, 2020; Lauf, 2005), or the evolving nature of research patterns across 
(sub)fields (Freelon, 2013). This paper complements these research endeavors.

Specifically, the objective of this study is twofold. First, it aims to examine the propor-
tion of male/female first author among the most cited authors and in the field of communi-
cation, while also testing the number of authors per paper at two comparable but different 
points in time: 2009 and 2019. Second, the study aims to systematically compare the pub-
lication patterns of the most cited authors versus the field for these two years. Particularly, 
we investigate whether the most cited scholars in 2019 are more productive than the most 
cited scholars in 2009, and if so, to what extent this growth significantly differs from that of 
the field. With the examination of these research patterns, our study seeks to move forward 
the scientometric analysis of communication scholarship in two meaningful ways. First, 
by investigating the proportion of male/female first authors in both the group of the most 
cited authors and the field at two different points in time, we seek to clarify whether being 
male or female has a potential impact on the likelihood of being cited over time. Although 
the study does not causally determine the individual or environmental factors affecting the 
likelihood of being a highly cited author, it offers an insightful picture of the field state 
and evolution. Second, as prior scholarship has not yet considered the empirical compari-
son of these two sets of samples (most productive vs the field), there is scattered empiri-
cal evidence examining the potentially different productivity behaviors of the most cited 
authors and the field. For this endeavor, we focus on the field of communication, which has 
a strong tradition of examining research patterns (Demeter & Goyanes, 2021).

Sex differences in research

According to several scholars, the career progress of female scholars might be burdened by 
many interconnected, structural factors (Lee & Ellemers, 2019). Sex bias can be observed 
on both horizontal and vertical dimensions. While the first dimension suggested that female 
scholars tend to occupy sectors with lower career chances and worse working conditions, 
the second documented fewer female scholars in top positions (Majcher, 2002). The pres-
tige of the university also influences sex bias, as female scholars are less represented in 
elite universities. At the top 50 research universities in the US, female scholars held only 
31% of the tenured and tenure-track positions in 2019 (NSF, 2019a).
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As documented by several studies, scholars argue that, despite all efforts to reduce 
sex bias in science, women are still “dropping out all the way long to the top rank posi-
tions and their share decreases rapidly at higher positions, even if we take into account 
the cohort effect by which female scholars in academia have a younger age structure” 
(Majcher, 2002, p. 7). Moreover, Brink and Benschop (2011) showed that the under-
representation of female scholars cannot be explained by individual motivations alone, 
as in the humanities and medical sciences the representation of women was significantly 
higher among job applicants than among recruited scholars and even from the pool of 
shortlisted applicants females had lower chances to be appointed than males.

In addition, the “individual merit ideology” (Ellemers & van Laar, 2010; Lee & Elle-
mers, 2019), which tries to explain the situation of female scholars based on individ-
ual level competence and merits, has been severely criticized and contested (Barreto 
& Ellemers, 2015; Major & Kaiser, 2017; Stroebe et al., 2010). For instance, research 
have shown that even after controlling for many legitimate factors such as age, work 
experience, performance records, or area of expertise, the academic efforts and achieve-
ments of female scholars are less valued than those of their male peers (Ellemers, 2018). 
Despite equal performance, female scholars are less likely to receive research funding 
(van der Lee & Ellemers, 2015), have lower chances of being tenured and promoted 
(Sarsons, 2017), being offered chair positions (Trevino, Gomez-Mejia, Balkin & Mixon, 
2015), and are significantly less paid in every career stage than their male colleagues 
(Shen, 2013). In short, “despite the wide endorsement of individual merit ideology, 
women in academia have less return on academic investment and achievement than men 
do (Lee & Ellemers, 2019, p. 66).

Casad et al. (2020) also argue that the underrepresentation of female scholars in aca-
demia, especially in STEM, cannot be explained by differences in individual motivations, 
as the number of female scholars in faculty positions has not increased although more 
women than before have earned doctorates in STEM (Ginther & Kahn, 2013). From a vari-
ety of social factors that hamper the career of women, research has focused on the distribu-
tion of family and household responsibilities, in which women are typically more involved 
(Stack, 2004), the possible careers gaps that can be associated with childcare (Cameron 
et al, 2016), or different role stereotypes (Eagly et al., 2020; Knoblock-Westerwick et al., 
2013). To combine career purposes and childcare, part-time work seems a reasonable path, 
but it may have a negative influence on both career progression and motivation (Dubois-
Shaik & Fusulier, 2017; Majcher, 2002).

Moreover, stereotypically masculine characteristics are more valued in STEM depart-
ments, and female scholars frequently report that they face hiring discrimination, experi-
ence higher expectations (El-Alayli et al., 2018), and are more likely to be given admin-
istrative, mentoring, and service tasks, consequently burdening their own research (Casad 
et  al., 2020). Less time for research negatively influences research output, which can be 
detrimental to their “success in earning tenure, obtaining research grants and advancing 
their careers” (Casad et al., 2020, p. 15). Moreover, due to higher expectancies regarding 
family and childcare, female scholars have lower chances for long travels and international 
networking, resulting in lower social capital (Collins & Steffen, 2019).

In one of the largest studies on sex differences in sciences, Huang et al (2020) found a 
complex picture on possible sex bias. Their study (which analyzed the publication history 
1.5 million gender identified authors across 83 countries and 13 disciplines from 1955 to 
2010), found that despite the emerging number of female scholars, sex differences even 
increased in both productivity and impact. The authors found that female and male scholars 
receive a comparable number of annual citations and publish similar number of papers, but 
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the observed higher drop-out rate and shorter career length for female scholars maintain 
the overall sex difference.

Moreover, Huang et al (2020) also observed that the sex gap in production is signifi-
cantly higher for the most productive authors and for scholars working at elite universi-
ties, and, while male scholars received significantly more citations than their female peers, 
this difference is the highest in the case of the most productive authors. As the authors 
conclude, “despite recent attempts to level the playing field, men continue to outnumber 
women 2 to 1 in the scientific workforce and, on average, have more productive careers and 
accumulate more impact” (Huang et al, 2020, p. 4613).

However, controlling for career length and drop-out rates, most sex differences dis-
appear, thus the overall gender gap in publication and impact might be explained by the 
higher likelihood of losing female scholars over their careers (Huang et al, 2020; Schröder 
et al., 2021). A Nordic research also found that there are no sex-based differences in hiring 
practices (Carlsson et al., 2021). However, the same authors emphasize that, while consid-
ering comparable performance there is no sex bias in promotion, the significantly lower 
number of female professors could be explained by male advantages on different levels 
(such as in monitoring, review boards, or peer-review assessment). In other words, when 
female scholars develop as competitive portfolios as their male peers, their odds to be pro-
moted is similar.

Despite these differences, many scholars argued that, especially in the Western world, 
gender equality policies might reduce these gaps. Indeed, several studies found no sig-
nificant sex differences in promotion after controlling for the number of publications and 
academic ranks (Jokinen & Pehkonen, 2017). Other experimental studies found that, con-
sidering the same lifestyle, recruitment panels might even support female scholars over 
their male peers (Williams & Ceci, 2015). Another study in fundamental physics found no 
significant sex differences in citations and hiring opportunities (Strumia, 2021), while the 
author still found a significant overrepresentation of male scholars. However, the author 
claims that the male overrepresentation in the field is not a consequence of sex-based dis-
crimination but a result of population level differences.

Similar results were found in Sweden where female scholars have similar odds to be pro-
moted as full professors as their male peers with even lower publication and impact values 
(Madison & Fahlman, 2020). According to the findings, female scholars are even favored 
in recruitments and, as authors suggest, this might be a consequence of gender equality 
policies. Still, the authors report that less than one third of full professors in Sweden are 
female. All in all, the explanation of the uneven distribution of research production and 
impact might include, among other important factors, the higher scientific value acquired 
by the more successful academics, the differences in talent, the resources of research insti-
tutions, and many other individual, institutional, and cultural factors.

More papers, more authors

Within the domain of global knowledge production, productivity has been suggested to sig-
nificantly increase over time (Plume & Weijen, 2014). However, as both the number of (co)
authors and the cognitive capacity of academics are finite, it is widely assumed that this 
publication prosperity is, at least partially, the consequence of the rapidly growing share 
of co-authored papers (Zdenek, 2018). Several studies have suggested that increasing the 
number of authors per publication is the main reason for the increase in the total number of 
papers, although the empirical evidence is inconsistent.
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On the one hand, several studies have suggested that the increase of co-authorships is, at 
least partially, at the cost of sole studies (Goldstein et al., 2005; Greene, 2007; Zetterström, 
2004), which, according to some observers, inextricably engenders knowledge fragmenta-
tion (Valsiner, 2006). The growing specialization of social research mirrors the produc-
tive strategies of hard science, in which multiple authors working at research-intensive labs 
maximize their research efforts (Kim, 2001). Accordingly, the impact of the individual 
researcher is diminishing. Zetterström (2004) goes even further and documents question-
able practices, such as inviting influential extra authors to add prestige and, ultimately, 
increasing the odds of publication. Other scholars, in turn, addressed the pressure to pub-
lish and the publish or perish paradigm as a fundamental factor to energize productivity 
(Goyanes & Rodríguez-Gómez, 2018).

On the other hand, a number of scholars argue that it is the complexity and interdisci-
plinary nature of research that invites scientists to start new collaborations (Greene, 2007). 
Such collaborations are thought to intensify the theoretical cross-fertilization of disciplines 
and, clearly, productivity too. Multiple collaborations and research specializations also pro-
mote new ways of seeing things, solving research problems that may be difficult to answer 
with sole authorships. In addition, funding agencies also encourage interdisciplinary and 
multiple university research projects through the granting process, potentially increasing 
the number of authors per article. Ultimately, as a vocal strand of academic discourse main-
tains, research is a teamwork endeavor. While there are divergent assumptions on potential 
causes of the growing fractional authorship (Plume & Weijen, 2014), there is, in turn, a 
strong consensus about two salient assumptions of global knowledge production: produc-
tivity is becoming the golden standard of research assessments and both the number of 
published papers, and the share of co-authored studies have substantially risen over time.

Hypotheses and research question

As the literature suggests, although not without conflicting empirical results (Haslam et al., 
2008; Over, 1990), the share of female first authors has raised over time. In the Western 
world, it is generally assumed that the ratio of female to male scholars has changed in most 
domains, with less difference between the ratio of sexes in favor of men within the research 
institutions (Bolzendahl & Myers, 2004). It is plausible that these changes may also tran-
spire across communication scholars, resulting in more female scholars as first authors at 
both the level of research production and citation (Knobloch-Westerwick & Glynn, 2013). 
Accordingly, we presume that (H1) the field of communication has experienced a signifi-
cant increase in the proportion of a) female first authors in the field and b) female first 
authors within the group of most cited authors in 2019, compared to 2009.

Within the literature on global knowledge production there is extensive empirical evi-
dence pointing at an increasing number of co-authored papers at the cost of single-authored 
ones (Greene, 2007; Zetterström, 2004). Accordingly, we assume that the number of co-
authored papers may increase over time within both the group of the most cited authors and 
the representative set of all authors in communication. Thus, we hypothesize that (H2) the 
field of communication has experienced a significant increase in the number of (a) authors 
per paper in the field and (b) authors per paper within the group of most cited authors in 
2019, compared to 2009.

While there is extensive research on the linkage between quantity and quality in pub-
lication trends (Győrffy et al., 2020; Larivière & Costas, 2016), previous analyses exam-
ined either a general pool of authors (Kurambayev & Freedman, 2020) or top-performing 
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authors (Fahy, 2018; Lincoln et  al., 2012). Thus far, little empirical research has exam-
ined both subsamples. Our study directly compares the productivity of top-cited authors 
with that of the field. In line with the assumption that the most cited authors publish more 
papers (Sandström & van den Besselaar, 2016), we hypothesize that (H3) the group of most 
cited authors publish more papers than (the general trend of authors in) the field in (a) 
2009 and (b) 2019.

The last hypothesis is based on two corresponding assumptions. First, there is ample 
evidence suggesting that the overall scientific output, measured by the absolute number of 
published articles, has increased over time (Chang et al., 2020; Zetterström, 2004). Second, 
it is also well-known that authors with more impact, measured by the number of citations, 
publish more papers than their average peers (Győrffy et  al., 2020; Lariviere & Costas, 
2016) since a reasonable pathway for bolstering citations is productivity (Sandstrom & van 
den Besselaar, 2016). Accordingly, we assumed that these two combined factors result in 
an even more pronounced increase in the number of published articles for the most cited 
authors than for the less cited authors. Thus, we predict that (H4) there has been a statisti-
cally significant increase in the number of published papers by the group of most-cited 
authors with respect to the field in 2019 compared to 2009.

Finally, our research question relates to the possible association between co-authorship 
and productivity (as measured by the total number of individual published papers) in the 
case of the most cited authors. Specifically, based on Greene’s (2007) research that found 
a significant positive association between the number of published articles and the number 
of co-authors, we empirically test the association between the number of co-authors and 
productivity. This empirical testing would provide a better contextualization of the differ-
ences in publication productivity of the most cited authors in 2019, in contrast to those of 
2009. Accordingly, we pose the following research question, (RQ1) which are the main 
productivity behaviors within the group of most cited authors in 2009 and 2019, as it is 
represented by the number of authors per paper and the total number of different authors?

Methods

We used SciVal, a platform that works with Scopus data, to list the most cited authors in 
communication in 2009 and 2019. While SciVal is a relatively new tool, it is widely used 
to examine research frontiers and evaluate top scholarly performance (Santos et al., 2020). 
We selected the 50 most cited authors in each period to implement a parsimonious analy-
sis. In restricting our analysis to the 50 most cited authors we followed the methodology of 
Shapiro (2000) who also considered the 50 most cited authors in his analysis of the citation 
patterns of legal scholars. As the citation-based distribution of scholars tends to follow a 
Pareto distribution (Wang & Barabási, 2021), this set of authors represents the “top of the 
top” with specific properties of citation records that make it interesting to compare them 
with the field.

We decided to work with these two periods because we aimed to analyze the wid-
est interval possible. For 2019, SciVal works with citation data between 2017 and 2019. 
Unfortunately, there was no such an option for 2009. Thus, we imported data on published 
papers from Scopus (between 2007 and 2009) and then computed the list of the most cited 
authors in SciVal.

For data gathering, first, we collected the names of the most cited authors (different in 
each period of study, 2009 and 2019) and every co-author’s name whom the most cited 
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authors worked with in the analyzed years. Second, we accumulated the number of co-
authors and computed the number of published papers by the most cited author without 
any co-author. Third, we gathered the proportion of papers in which the most cited author 
worked with one or more co-authors separately and cumulated the names of every co-
author, including the most-cited author, to estimate how many authors worked altogether in 
the projects where the most cited author was involved. Finally, we coded manually the sex 
of the most cited authors by looking at their names in their Curriculum Vitaes (CVs).

Another dataset based on the Journal Citation Reports (JCR) was built for the analysis 
of the field of “Communication” in both 2009 (N of articles considered = 315) and 2019 
(N of articles considered = 356). The JCR ranking was selected because it is arguably the 
most common classification tool in research assessments. In 2009 a total of 1756 articles 
were published in JCR journals, while in 2019 this number had increased to 4800. Thus, 
the sample sizes considered are representative of the respective target population and pro-
portional to the number of published papers per year of each journal at 5% margin of error. 
Special issues were discarded from the analysis as they might introduce bias. After acquir-
ing the proportional sample sizes, we randomly selected articles with the help of a random 
number generator to create a representative sample that will be eventually coded. Then, we 
listed the relevant papers, counted and searched the total numbers and names of authors in 
every published paper from the sample. According to our calculations, 645 and 823 schol-
ars, including the first authors, worked on the selected papers in 2009 and 2019.

Data analysis protocol

We ran different statistical techniques to test our hypotheses and answer our research ques-
tion. For H1a and H1b, we compared probability distributions between sex (male/female) 
and years (2009/2019), for the most cited authors and the field (i.e., a representative sample 
of papers in the field of communication), independently. Accordingly, we ran a series of 
Chi-square homogeneity tests (χ2) with Yate’s correction (2 × 2 cross-tables). Similarly, for 
H2a and H2b, we compared probability distributions of the number of authors per paper 
(one author, two or three authors, and four or more authors) and years (2009/2019). In 
order to test if there are statically significant differences, we ran Chi-square homogeneity 
tests (χ2) and Kendall’s rank correlation coefficients Tau-b (τb) and Tau-c (τc).

For testing H3a and H3b, we first computed the productivity of the most cited authors 
(i.e., the number of published papers) in both 2009 and 2019. Secondly, we estimated the 
papers per author in the field. Conceivably, straightforward estimations can be obtained by 
computing sample statistics in both 2009 and 2019. However, by estimating the probability 
distribution of the mean (or the median) by resampling techniques (i.e., bootstrapping), we 
obtained a more unbiased estimation as resampling does not only provide point estimators, 
but also confidence intervals. A brief explanation of the methodological protocol is found 
below.

In this analysis, “PP” is the total number of published papers for a given year and “N” 
is the number of different authors. The author productivity can be estimated by computing 
the number of papers within those PP in which they have collaborated, yielding a set of N 
values, and registering the productivity per author. By bootstrapping the set of N produc-
tivities, we get B sets n productivities. In our case, we took B = 1,000. Finally, we com-
puted the statistical measure of interest (in our case, the mean) in each of the B groups. 
This yielded to a sample of B values from which a (1-α)100%-confidence interval can be 
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composed by considering the percentiles α/2 and 1-α/2 of the probability distribution, for 
0 ≤ α ≤ 1.

Finally, for testing H4 we estimated the difference between the average productivity in 
the field in 2009 and 2019 using resampling techniques. Our methodological protocol was 
performed as follows. Let us consider y1 and y2 the two different years of examination 
(i.e., 2009 and 2019). We propose to perform a test with a null hypothesis , where repre-
sents the mean productivity in the target population in the corresponding year  yi (i = 1,2), 
by using the following test statistic:

were x
y1

 is the sample mean productivity in year  yi (i = 1,2). The distribution of the sta-
tistic under the null was computed from B = 1000 bootstrap samples of sizes  n1 and  n2, 
where  ni is the number of published papers in year  yi, i = 1,2. A (1-α)100%-confidence 
interval is obtained by considering the percentiles α/2 and 1-α/2 of the probability distribu-
tion, for 0 ≤ α ≤ 1.

Finally, for answering RQ1, we employed a different mechanism for visualizing and 
testing the potential actions of the most cited authors to increase their productivity levels 
in 2009 and 2019. First, we plotted their (1) productivity and the total number of different 
co-authors and their (2) productivity and the number of authors per paper in both years. 
We also ran a Spearman’s correlation and described their productive behavior according to 
these variables. Finally, we plotted the whole sample distribution. Specifically, we used the 
“functional boxplot” (Sun & Genton, 2011) of the sample curves. A functional boxplot is 
a graphical tool that allows visualizing a set of curves or functions highlighting the central 
bulk of curves and outlying curves, equivalently as a boxplot allows to visualize the distri-
bution of univariate data.

Results

Hypothesis 1

Hypothesis H1a predicted a significant increase in the proportion of female first authors 
within the field in 2019 with respect to 2009. In 2009 the proportion of female first authors 
was 45%, and in 2009 it had increased to 57%. These observed differences are statistically 
significant at a 5% significance level (χ2(1) = 8.694, p = 0.0032). These results are reported 
in Table 1. H1a was supported.

Hypothesis H1b predicted a significant increase in the proportion of female first authors 
within the group of most cited authors in 2019 with respect to 2009. In 2009 the proportion 

productivity_increase = xy1 − xy2

Table 1  Results of the Chi-
square test for H1a

Chi-square test (with Yates correction): χ2(1) = 8.694, p = 0.0032

First author sex

Male Female All authors

2009 167 138 305
2019 147 194 341
Total 315 332 646
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of female first authors was 34%, and in 2019 it was 42%. However, these observed differ-
ences are not statistically significant at a 5% significance level (χ2(1) = 0.382, p = 0.537). 
The results are shown in Table 2. H1b was not supported.

Hypothesis 2

H2a predicted a significant increase in the number of (a) authors per paper within the rep-
resentative field and (b) authors per paper within the group of most cited authors in 2019 
with respect to 2009. These distributions are reported in Table 3.

In order to test if these differences are statistically significant, we conducted a Chi-
square test of homogeneity (χ2(1) = 9.674, p = 0.008) (see Table 4). Thus, we conclude that 
these populations do not follow the same probability distribution. Moreover, Kendall’s 
Tau-b and Tau-c lead us to conclude that the number of authors per paper has increased 
over time. Therefore, H2a is supported. 

For H2b, the most cited authors in 2009 published a total of 165 papers, co-authored 
by 316 different authors, while the most cited authors in 2019 published a total of 280 
papers, co-authored by 499 different authors. These distributions are shown in Table 5. We 
observe a slight increase in mean from 3.32 authors in 2009 to 3.55 in 2019. The median of 
authors is 3 in both cases. However, the 64th percentile indicates that in 2009 the number 
of papers authored by three or fewer authors was greater than those in 2019. Indeed, when 

Table 2  Results of the Chi-
square test for H1b

Chi-square test (with Yates correction): χ2(1) = 0.382, p = 0.537

First author sex

Male Female All authors

2009 33 17 50
2019 29 21 50
Total 62 38 100

Table 3  Distribution of the 
number of authors per paper 
within the field in 2009 and 2019 
and summary statistics

Number of authors per 
paper

Percentage in 2009 (315 
papers)

Percentage 
in 2019 (356 
papers)

1 43.3% 31.7%
2 30.9% 32.6%
3 14.6% 21.3%
4 6.1% 7.6%
5 2.5% 4%
6 or more 2.5% 2%
Total 100.0% 100.0%
Mean 2.03 2.31
Median 2 2
40th percentile 1 2
Maximum 8 17
SD 1.28 1.48
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the cumulated percentages are computed, the cumulated percentage at 3 is 64.8% in 2009, 
while this value is 59.3% in 2019. These observed differences are not statistically signifi-
cant at a 5% significance level (χ2(1) = 1.130, p = 0.288). The results are shown in Table 6. 
H2b was not supported.

Hypothesis 3

H3 predicted that the group of most cited authors publish more papers than the general 
trend of authors in the field in (a) 2009 and (b) 2019. For H3a, an estimation of the aver-
age number of papers per author in the field is 1.022 (SD of 0.148) and the median is 1. A 
bootstrap confidence interval for the field in 2009 is developed by taking PP = 315, N = 624 
and B = 1000. In particular, we consider α = 0.05 and get the 95%-confidence interval as 
(1.0128, 1.0353).

For the most cited authors in 2009, the estimated average number of papers per author 
was 3.32, which is not included in the previous 95% CI. Accordingly, with a 5% signifi-
cance level, the productivity of this group of authors does not follow that of the field. Addi-
tionally, since their estimated average productivity is greater than the upper bound of the 
95%-CI, our results indicate that, on average, the most cited authors published more papers 
than the general trend of authors in the field in 2009. H3a was supported.

Table 5  Distribution of the 
number of authors per paper 
within the group of most cited 
authors in 2009 and 2019 and 
summary statistics

Number of authors per 
paper

Percentage in 2009 (165 
papers)

Percentage 
in 2019 (280 
papers)

1 10.3% 11.8%
2 24.2% 21.4%
3 30.3% 26.1%
4 18.8% 19.3%
5 6.7% 8.2%
6 or more 9.7% 13.2%
Total 100.0% 100.0%
Mean 3.32 3.55
Median 3 3
64th percentile 3 4
Maximum 11 10
SD 1.85 2.08

Table 6  Results of the Chi-
square test for H2b

Chi-square test (with Yates correction): χ2(1) = 1.130, p = 0.288

Number of authors per paper

Three or less 
authors

Four or more 
authors

All papers

2009 107 58 165
2019 166 114 280
Total 273 172 445
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For H3b, the average number of papers per author in the field in 2019 is 1.028 (SD of 
0.164) and the median is 1. A bootstrap confidence interval for the field in 2019 is devel-
oped by taking PP = 356, N = 792 and B = 1000. In this case, we get the 95%-confidence 
interval as (1.0152, 1.0366). The estimated average number of papers per author is 3.55, 
which is not included in the previous 95%-CI. Thus, with a 5% significance level, the pro-
ductivity of the most cited authors do not follow that of the field. Additionally, since their 
estimated average number of papers per author is greater than the upper bound of the 95%-
CI, we conclude that the most cited authors publish more papers than the general trend of 
authors in the field in 2019. Therefore, H3b was supported.

Hypothesis 4

H4 predicted a significant increase in the number of published papers by the group of most 
cited authors with respect to that of the field in 2019 compared to 2009. In order to test this 
hypothesis, we separately tested the difference across time within each group (the field and 
the most cited authors) to finally compare them. We started by analyzing the difference 
between the average productivity in the field in 2019 and then, in 2009. A straightforward 
estimation is given by the difference of the corresponding averages, which yields 0.005. 
Additionally, we obtained a bootstrap confidence interval for the difference in average pro-
ductivity in the field in 2019 and 2009 (at a 95% confidence level) by taking  n1 = 792 and 
 n2 = 624 and B = 1000 and obtain (−0.0200, 0.0136). Since zero is included in the 95%-CI, 
we conclude that the increase in the average number of papers per author in the field is not 
statistically significant at a 5% significance level.

Going back to the most cited authors in 2019 and 2009, the estimated difference for 
their average productivity is 0.23, which is not included in the previous 95%-CI. Indeed, 
the estimated difference is greater than the upper bound of the 95%-CI. Thus, our findings 
indicate that the increase in the average productivity of the most cited authors is statisti-
cally significant and greater than that of the field. Therefore, H4 was supported.

Research question 1

Figure  1 illustrates the number of published papers versus the total number of different 
co-authors among the most cited authors, where a trend can be observed (RQ1): the higher 
the number of different co-authors, the higher the number of published papers. Indeed, in 
2009, Spearman’s correlation coefficient between this pair of variables was 0.652 and in 
2019 was 0.778 (both being statistically significant at a 5% significance level).

Looking at the two time periods, a change in productivity behavior can be detected. 
The median of the total number of co-authors was 4 in 2009, while the median value in 
2019 was 8. That is, in 2019, 50% of the most cited authors collaborated with eight or 
more authors, which is twice the corresponding value in 2009. As a result, the median of 
published papers in 2019 reached 5, whilst in 2009 this value was 3. Thus, it seems that 
doubling the number of co-authors is a successful way to increase productivity.

The average number of authors per paper among the most cited authors ranged from 1 to 
7.50 in 2009, with a median of 3. In 2019, the average number of authors per paper among 
the most cited authors took greater values, ranging from 1 to 9, with a median of 3.3. Fig-
ure  2 shows the number of published papers versus the average number of authors per 
paper among the most cited authors, where three productivity behaviors can be sketched. 
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The first group of three authors with the highest level of productivity (more than 14 papers) 
and an average number of co-authors between 2 and 4. The second group of six authors 
with low levels of productivity (in general, less than 4 papers) and the highest average of 
co-authors per paper (larger than 7). The rest of the authors have productivity levels rang-
ing from 1 to 11 and an average number of co-authors from 1 to 5 and can be classified into 
several groups. For example, we may consider that those authors who publish more than 6 
papers per year have a high productivity level, while those with 4–6 papers and those with 
less that 2 papers per year can have a medium and low productivity levels.

An analysis of the number of publications for each author as a function of the num-
ber of collaborators also yields relevant conclusions. Figure 3 displays data as curves 
where each line represents the publication activity of one author in each of the analyzed 
years. The black line stands for the pointwise mean: at each given number of co-authors, 
the corresponding point in this mean line is the average number of publications with 
that given number of co-authors over every author in the sample. Comparing the sample 

Fig. 1  Number of published papers versus total number of different co-authors among the most cited schol-
ars
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graphics for 2009 and 2019, we observe some differences, with slightly more publica-
tions and more collaborators in 2019 than in 2009.

However, the two mean curves are visually different from 0 to 4 co-authors, but then 
very similar for 4 or more co-authors. If we look at the bigger picture, not focusing on 
the number of publications for each number of co-authors, but the number of publica-
tions up to a given number of co-authors, we look at the cumulative number of papers 
for each author as a number of its co-authors. The corresponding sample curves and 
means are presented in Fig. 4.
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Another interesting analysis is to focus not only on the mean behavior, but also the 
whole sample distribution. Figures 5 and 6 represent the functional boxplots for the sam-
ples of curves in Figs. 3 and 4, respectively.

The pink area in these plots represents the region in which 50% of the most “central” 
curves lie, whereas the red lines stand for atypical curves. Blue lines are the equivalent 
of the “whiskers” in a standard boxplot. Finally, the black line stands for the “functional 
median” or most central curve, which represents the central pattern of the curves in the 
sample. As opposed to the pointwise mean, the median curve is one of the curves of the 
sample, so it represents a real trajectory, and it is not smoothed.
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In Fig. 5, we appreciate again the growing number of papers and co-authors in 2019 
with respect to 2009. We can also see that a significant number of authors have different 
behavior than the central one (red lines represent outlying trajectories) in both years. When 
we look at the functional boxplot of the cumulative number of published papers, now the 
behavior is more homogeneous across authors, and there are only three or four atypical 
authors (depending on the year) that outstand the rest with significantly higher production.

Discussion and conclusions

This study provides several inter-related contributions to move forward the growing sci-
entometric literature on communication. First, at the field level, our findings indicate 
that the share of female first authors (57%) is greater in 2019 than the share of their male 
counterparts (43%). However, among the top-cited authors in 2019, male first authors still 
outperform female authors with a share of 58%. Additionally, we found that the female’s 
share was 45 percent in the field in 2009, while their share was 34 percent among the most 
cited authors. In 2019, the overall female contribution raised to 57 percent, and their share 
among the top authors was 42 percent. This suggests that, while the average share of female 
authors in the field has significantly increased, their proportion among the most cited ones 
remained the same (34/45 = 0.73; 43/57 = 0.74). This outcome at different levels suggests a 
slow progression within female authors’ ratio among top-cited authors that are more visible 
at the field frontier than among the most cited authors.

Second, our study revealed that the average author/paper quotient have raised over time 
in the field, but not among the most cited authors. Notwithstanding, we found a significant 
correlation between the number of co-authors and the number of published papers. These 
two findings suggest that the most cited authors are those who can maximize the number 
of published papers by working with more authors, but without raising the average num-
ber of authors per paper. This trend indicates that a growth in the number of co-authors 
boosts productivity only to a certain point, after which productivity gets stagnant or even 
decreases if the number of co-authors per paper increases. Nonetheless, it is important to 
mention that other factors, not considered in this study, may also affect productivity. For 
instance, scholars with more funding might be approached by more scholars who aim to 
participate in the funded research in exchange for authorship and wage. Additionally, more 
motivated researchers might produce more papers and they might also attract a larger num-
ber of colleagues who strive to join such research ambitions (Zdenek, 2018).

Our study also provides illustrative insight to the scholarly discussion over the relation-
ship between quantity and quality (Chang et al., 2020; Zetterström, 2004). First, we found 
that top-cited authors publish more papers than the field in both 2009 and 2019. Second, 
we found that top-cited authors have risen their annual productivity in the last 10  years 
relative to that of the field. All together, these findings clearly indicate that the productivity 
gap between top cited authors and the field is increasing over time. Similarly, our findings 
are consistent with the publish or perish paradigm significantly increasing the number of 
published papers (Goyanes & Rodríguez-Gómez, 2018).

We found notable differences in publication productivity between the field and the 
most cited authors. In short, the number of papers per scholar have increased for both 
groups (the field and the most cited authors), but the number of authors per paper have 
only increased in the field. Accordingly, adding the number of co-authors seems to be a 
good way to boost productivity. Still, in the case of the most cited authors, productivity, as 
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related to the number of co-authors per paper seem to follow a Bell curve: the most pro-
ductive authors are those with papers with 2–4 co-authors and both authors with less than 2 
and more than 4 typically underperform them. It follows that raising the number of authors 
is rewarding only as the authors per paper quotient reach 4, while the behavior of involving 
more co-authors might reduce productivity. Overall, our empirical examination opens new 
avenues of research to better understand research productivity and sex differences in global 
science (Knobloch-Westerwick et al., 2013; Author, XXXXX; Gliboff, 2018).

Limitations

This study has some limitations that should be addressed by future research. The random 
sample of papers in the field for both 2009 and 2019 is representative of the total popula-
tion of papers published, but not representative of the authors that published a paper during 
these years. Accordingly, the number of papers in the sample for an author may be lower 
or equal than the total number of papers published by that author. The value of N_authors-
year is difficult to obtain since it would imply accessing each and every published article 
to account for all the authors. Then, the best approximation we can get implies using the 
empirical average from the sample of articles, even if we acknowledge the potential limita-
tion of this technique.

Finally, as we decided to analyze the top 50 most cited authors, we can assume that 
the trends would be different if we choose a narrower or a wider selection. Following the 
Pareto distribution, citations tend to be accumulated by a limited set of authors, while regu-
lar scholars have a limited number of publications only. While in selecting the 50 most 
cited authors, we followed Shapiro’s (2000) analysis, we should admit that different sam-
pling technics and different sample sizes might influence the results.
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