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1. Introduction. Geometric polynomials are defined as (see [5, 17, 31]),

wn(x) =
n∑

k=0

k!

{
n

k

}
xk,(1)

where
{
n
k

}
denotes the Stirling number of the second kind, which counts the number

of ways the set {1, 2, . . . , n} can be partitioned into k non-empty blocks. Geometric

polynomials can be seen as the generalization of the generating function (2− ex)
−1

(see for instance, [5, 6, 14, 20]), since the exponential generating function of the
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geometric polynomials (1) is given by (c.f.[5]):

∞∑
n=0

wn(x)
tn

n!
=

1

1− x(et − 1)
.(2)

Geometric polynomials are related to the geometric series by (c.f.[5])

(xD)m
{

1

1− x

}
=

∞∑
k=0

kmxk =
1

1− x
wn

(
x

1− x

)
, |x| < 1.

They seem to appear first in Euler’s work [15, p. 389]. In the literature, the
polynomials (1) are also known as Fubini polynomials, since the values for x =
1, wn(1), are called the Fubini numbers by Comtet: 1, 1, 3, 13, 75, 541, 4683, . . .
[A000670] in [32].

Fubini numbers enumerate, among other combinatorial objects, ordered parti-
tions, that is, partitions in that the order of blocks is also taken into account. For
this reason, wn(1) are also known as ordered Bell numbers, preferential arrangement
numbers, or nth geometric numbers in the literature (see [16, 17, 29, 31]).

The nth geometric numbers, wn(1), appear also in the evaluation of the series

1

2

∞∑
k=0

kn

2k
= wn(1),

which are nth moments of the random variable having the geometric distribution
with success probability of 1/2 (c.f.[12]).

The polynomials (2) and their different generalizations have been extensively
studied in the literature (see, [5, 6, 9, 14, 20, 21, 22, 23, 25]).

For instance, higher order geometric polynomials

w(r)
n (x) =

n∑
k=0

{
n

k

}
r(k)xk, r > 0,

where r(k) = r(r+1)(r+2) · · · (r+ k− 1), were introduced in [5], and also studied

in [22]. The numbers w
(r)
n (1) count barred preferential arrangements, as shown in

[2].
Some generalizations of wn(x) are based on the generalization of the Stirling

number of the second kind
{
n
k

}
. Hsu and Shiue in [19] showed that various gen-

eralizations of the Stirling numbers (both first and second kind) can be unified by
introducing a variant involving three parameters, α, β, γ, as follows:

(t|α)n =
n∑

k=0

S(n, k, α, β, γ)(t− γ|β)n,

where (t|α)n is the generalized factorial polynomial (t|α)n =
n−1∏
k=0

(t − kα), n ≥ 1,

and α, β, γ are real or complex numbers not all equal to zero. A combinatorial and
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statistical approach to this unified generalization was given by Corcino et al. in
[11]. The generalized Stirling numbers play, for instance, a key role in one of the
generalizations of the Mellin derivative (see [23]),(

βx1−α/βD
)n [

xγ/βf(x)
]
= x(γ−nα)/β

n∑
k=0

S(n, k;α, β, γ)βkxkf (k)(x).(3)

Using the generalized Mellin derivative (3), Kargin and Cekim in [21] introduced

higher order generalized geometric polynomials, w
(λ)
n (x;α, β, γ), defined by

∞∑
n=0

w(λ)
n (x;α, β, γ)

tn

n!
=

(1 + αt)γ/α

(1− x((1 + αt)β/α − 1))λ
.(4)

Based on the properties of this new family of polynomials, they presented several
interesting applications.

Higher order generalized geometric polynomials, w
(λ)
n (x;α, β, γ), were investi-

gated from a combinatorial point of view in [28] and also studied in [21].
Motivated by the work of Mihoubu and Taharbouchet in [25], we study higher

order generalized geometric polynomials, where the parameters λ and γ are shifted.

More precisely, w
(λ+r)
n (x;α, β, γ + j), which we call higher order generalized geo-

metric polynomials with shifted parameters.
The generating function is,

∞∑
n=0

w(λ+r)
n (x;α, β, γ + j)

tn

n!
=

(1 + αt)(j+γ)/α

(1− x((1 + αt)β/α − 1))λ+r
,(5)

where r is a nonnegative integer, and α, β, γ, λ are positive integers, such that α|β
and α|γ. Also, in (5) j = rβ − rα.

In the second section, we present the combinatorial interpretation of the higher
order generalized geometric polynomials with shifted parameters. Based on that,
we derive properties, recursions, and formulas. In the last section we consider our
polynomials from a probabilistic point of view. In particular, we show that such
polynomials can be written in terms of the expectation of a random descending
factorial involving the negative binomial process. Moreover, the probabilistic rep-
resentation allows us to show various identities and to extend Nelsen’s theorem for
arbitrary polynomials in a simple way.

2. Combinatorial results The main goal of this section is to give a combina-

torial interpretation of our polynomials, w
(λ+r)
n (x;α, β, γ + j), and to derive some

recursions. To this end, we need to recall some known facts.
The objects we will use are the so called barred preferential arrangements. Pref-

erential arrangements are ordered partitions, e.i., partitions such that the order of
the blocks counts. The use of the different names (ordered partitions and preferen-
tial arrangements) emphasizes different points of view. The ways how competitors
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can be ranked in a competition allowing ties is a preferential arrangement. One
thinks on an ordered partition as creating blocks, and then permuting the blocks,
while on a preferential arrangement as choosing elements for the first rank, then
for the second rank and so on (see [17, 24]).

We obtain a barred preferential arrangement (BPA) by inserting bars in between
(before or after) the blocks of a preferential arrangement. Barred preferential
arrangements seem to appear first in [2, 31] and are studied in [8, 28, 29].

In this paper, we are dealing with labeled barred preferential arrangements.

Definition 1. A labeled barred preferential arrangement is a barred preferential
arrangement with a labeling on the bars, i.e., an ordered partition with labeled
bars inserted between (before or after) the blocks.

Example 2. For n = 6 a labeled barred preferential arrangement (LBPA) is given
for instance: B1 = {3, 5} {2}|1 {1} |2{4, 6}, or B2 = |3{1, 3, 6} {4} {2}|1 |2{5}.

We emphasize that we can view these objects from different points of view.
For instance, B2 is obtained by inserting the labeled bars |1, |2 and |3 in between
the blocks of the ordered partition: {1, 3, 6}{4}{2}{5}, or focusing on the bars, we
can say we inserted the subsets of [n] in between the arrangement of labeled bars,
|3 |1 |2. We see that λ bars separate an LBPA into λ+ 1 pieces. We call these
pieces sections. A section may be empty as the section between the bars |1 |2 in
B2 or it contains subsets of [n] in a certain order. We will use both views in our
arguments. Labeled barred preferential arrangements were also used in [4] for the
study of symmetrized poly-Bernoulli numbers.

The other ingredient that is important for understanding our combinatorial
model is the unified generalization of Stirling numbers with three parameters
S(n, k, α, β, γ) introduced by Hsu and Shiue in [19].

The pair S(n, k, α, β, γ) is a formal generalization of the two well known alge-
braic identities involving Stirling numbers:

xn =
n∑

k=0

{
n

k

}
(x)k and

x(n) =

n∑
k=0

[
n

k

]
xk,

where (x)n = x(x − 1) · · · (x − n + 1) is the falling factorial and x(n) = x(x +
1) · · · (x+ n− 1) is the rising factorial.

The generalized factorial of t with increment α for an integer n ≥ 1 is defined
as

(t|α)n = t(t− α) · · · (t− nα+ α),

and (t|α)0 = 1. The polynomials that arise in the basic relations between Stirling
numbers are all special cases of (t|α)n with special values of α: tn = (t|0)n, (t)n =
(t|1)n and t(n) = (t| − α)n.
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The generalized Stirling pair {S1, S2} = {S(n, k;α, β, γ), S(n, k;β, α,−γ)} with
three parameters are defined in [19] by

(t|α)n =
n∑

k=0

S1(n, k)(t− γ|β)k and

(t|β)n =

n∑
k=0

S2(n, k)(t+ γ|α)k,

where n ≥ 1 is an integer and α, β, γ are any real or complex numbers with
(α, β, γ) ̸= (0, 0, 0).

Corcino et al. [11] have introduced a combinatorial model for studying gener-
alized Stirling numbers. They showed that m!βmS(n,m;α, β, γ) is the number of
ways to distribute n distinct balls, one ball at a time into k+1 distinct cells, where
the first k of them have β distinct compartments and a last cell with γ distinct
compartments such that

(1) the compartments in each cell are given cyclic ordered numbering,

(2) the capacity of each compartment is limited to one ball,

(3) each successive α available compartment in a cell can only have the leading
compartment getting a ball,

(4) the first m cells are non-empty.

For instance, suppose the first ball lands in the 4th compartment of the 3th cell.
The next α compartments, i.e., the compartments numbered 5, 6, . . ., α+3 will be
closed. Suppose the second ball lands in compartment β − 2 in the 3th cell. Then
the compartments β − 1, β, 1, 2, 3, α+4, . . ., 2α− 3 will be closed and so on. We
recall the generating function of these numbers.

Lemma 3. ([19]) For real or complex α, β, γ, we have

(6) (1 + αt)
γ
α

[
(1+αt)

β
α −1

β

]m
= m!

∞∑
n=0

S(n,m, α, β, γ)
tn

n!
.

The number of distributions satisfying properties (1), (2) and (3), but not
requiring (4), i.e. the first m cells may be empty, is given by (βm+γ|α)n (c.f.[11]).

We consider the r-version of this model, i.e., we require that the elements
{1, 2, . . . , r} be in distinct cells in analogue to the combinatorial interpretation of
the r-Stirling numbers introduced by Broder [7]. We call our model the r−(α, β, γ)-
model.

Definition 4. (r− (α, β, γ)-model) We distribute n+ r balls into m+ r+1 cells,
where each cell is built up with cyclically labeled compartments. The first (left to
right) m+ r cells have β such compartments and the last cell has γ compartments
(will also be referred to as the γ-cell) such that:
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(1) the capacity of each compartment is limited to one ball,

(2) on each available consecutive α compartments only the first compartment
may be occupied,

(3) the first m+ r cells are non-empty,

(4) the first r balls are on distinct cells among the first m+ r cells.

We call the elements {1, 2, . . . , r} special elements and the cells containing a special
element special cells. The elements {r+1, . . . , n+r} are called non-special elements
and the cells not containing any of the special elements, the non-special cells.

Let j = r(β−α) and (m+ r)!βmS(n,m,α, β, γ+ j) denote the number of ways
n balls can be distributed in a r − (α, β, γ)-model.

The next theorem shows the relation with the Corcino-Hsu-Tan model.

Theorem 5. For n ≥ r, we have

βmS(n,m, α, β, γ + j) =
n∑

k=0

(
n

k

)
βmS(k,m, α, β, γ)(j|α)n−k.(7)

Proof. We consider a partition of [n+ r] = {1, 2, . . . , n+ r} into m+ r + 1 cells,
where m+ r of them have β compartments and one has γ compartments (γ-cell).

Let k be the number of elements that are contained in the non-special cells. The
number of ways of distributing these k elements in the non-special cells is given
by βmS(k,m, α, β, γ). Put into each special cell one of the r special elements and
distribute the remaining n − k non-special elements into one of these cells. This
can be done in (r(β−α)|α)n−k ways (since now empty cells are also allowed). 2

We now give a closed formula for the higher order generalized geometric poly-

nomials with shifted parameters w
(λ+r)
n (x;α, β, γ + j).

Theorem 6. For n ≥ 0, we have

w(λ+r)
n (x;α, β, γ + j) =

n∑
m=0

(m+ r + λ− 1)!βmS(n,m, α, β, γ + j)xm.(8)

Proof. By Lemma 3, we have

∞∑
n=0

n∑
m=0

(
m+ r + λ− 1

m+ r

)
(m+ r)!βmS(n,m, α, β, γ + j)xm

tn

n!
=

∞∑
m=0

(
m+ r + λ− 1

m+ r

)
(m+ r)!

(1 + αt)
j+γ

α

m!
[((1 + αt)

β

α − 1)x]m.

(9)
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Thus,

∞∑
n=0

n∑
m=0

(
m+ r + λ− 1

m+ r

)
(m+ r)!(λ− 1)!βmS(n,m,α, β, γ + j)xm tn

n!
=

(1 + αt)
j+γ
α

[1− ((1 + αt)
β
α − 1)x]λ+r

.

(10)

2

When x is a nonnegative integer we can interpret the numbers w
(λ+r)
n (x;α, β, γ+

j) combinatorially. Let Hr,j
n (α, β, γ, λ;x) denote the set of labeled barred prefer-

ential arrangements where the underlying partition satisfies the conditions of the
r − (α, β, γ) model and the non-special cells are colored with a color out of x
available colors.

Lemma 7. We have

|Hr,j
n (α, β, γ, λ;x)| = w(λ+r)

n (x;α, β, γ + j).

Proof. To see this, recall that βmS(n,m, α, β, γ + j) is the number of ways of
partitioning an (n + r) element set into m + r + 1 unordered cells satisfying the
conditions of the r − (α, β, γ) model. We obtain from such a partition an LBPA if
we permute the m+ r cells together with the λ− 1 labeled bars. 2

We present some recursive relations and provide for all a combinatorial proof
using the above interpretation.

Theorem 8. For n ≥ 0, we have

(11) w
(λ+r)
n+1 (x;α, β, γ + j) =

(j + γ)w(λ+r)
n (x;α, β, γ + j − α) + xβ(λ+ r)w(λ+1+r)

n (x;α, β, γ + j + β − α).

Proof. We enumerate the set Hr,j
n (α, β, γ, λ;x) based on the position of the

(n+ 1)th non-special element.
Case 1: The (n + 1)th element is in one of the special cells. Given an LBPA

from the set Hr,j−α
n (α, β, γ, λ;x) one can insert the (n+1)th element into a special

cell in j ways.
Case 2: The (n + 1)th element is in the γ-cell. Given an LBPA from the set

Hr,j
n (α, β, γ − α, λ;x), (n+ 1) can be inserted into a γ cell in γ ways, choosing the

compartment for it.
Case 3: The (n+ 1)th element is in one of the non-special cells having β com-

partments. Call the cell B. Inside the cell B the (n+ 1)th element can be placed
in β ways. The cell B can be colored in x ways. Think of the γ-cell and the cell B
as a single unit, call it A. Note that A has γ + β −α available compartments after
the (n + 1)th element has been placed. On both sides of B, cells can be formed,
hence, B acts as an extra bar. Thus, the number of LBPAs formed in this case is
xβ|Hr,j

n (α, β, γ + β − α, λ+ 1;x)|. 2
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The next theorem gives a similar recursion. However some additional ideas are
involved.

Theorem 9. For n ≥ 0, we have

w
(λ+r)
n+1 (x;α, β, γ + j) =

γ
n∑

k=0

(
n

k

)
(γ − α|α)kw(λ+r)

n−k (x;α, β, j) + jw(λ+r)
n (x;α, β, γ − α+ j)+

+ xβ
n∑

k=0

(
n

k

)
(β − α|α)k(λ+ r)w

(λ+1+r)
n−k (x;α, β, γ + j).

Proof. We count the elements in the set Hr,j
n (α, β, γ, λ;x) also according the

position of the (n+ 1)th non-special element.
Case 1: The (n + 1)th element is in the cell having γ compartments. There

are γ ways of placing the (n + 1)th element into the γ-cell. Let k be the number
of other non-special elements in the γ-cell. These k elements can be chosen in(
n
k

)
ways. The number of ways of placing the k elements is (γ − α|α)k. The

remaining n− k elements form a LBPA with an empty γ-cell, an element from the
set Hr,j

n−k(α, β, 0, λ;x). Thus, the number of ways of forming LBPAs in this case is

γ
n∑

k=0

(
n

k

)
(γ − α|α)kw(λ+r)

n−k (x;α, β, j).

Case 2: The (n+1)th element is on one of the r special cells. Given an element
from the set Hr,j−α

n (α, β, γ, λ;x), the (n + 1)th element can be placed into the
special cells in α ways. Thus, LBPAs can be formed in this case in

jw(λ+r)
n (x;α, β, γ − α+ j)

ways.
Case 3: The (n + 1)th element is in one of the non-special cells having β

compartments. The compartment and color of the cell to which the (n + 1)th
element belongs to can be chosen in xβ ways, call this cell B. From the n other
non-special elements choose k to be in the same cell as the (n + 1)th element.
The k elements can be chosen in

(
n
k

)
ways. The k elements can be placed into

B in (β − α|α)k ways. The remaining n − k elements form an LBPA of the set
Hr,j

n−k(α, β, γ, λ+1;x) To the right and to the left of B cells can be formed. Hence,
B acts as an extra bar. Thus, in this case the number is

xβ
n∑

k=0

(
n

k

)
(β − α|α)k(λ+ r)w

(λ+1+r)
n−k (x;α, β, γ + j). 2

Next, we give a formula for the case when γ = 0, i.e., the model does not contain
an extra (possible empty) cell with γ compartments.
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Theorem 10. For n ≥ 0, we have

(12) w(λ+r)
n (x;α, β, j) =

n∑
k=0

(
n

k

)
(−1)n−k(γ|α)n−kw

(λ+r)
k (x;α, β, γ + j).

Proof. Let Bk be the number of barred preferential arrangement of the set
Hr,j

n (α, β, γ, λ;x) having (n− k) elements in their γ-cells. So, |Bk| =
(

n
n−k

)
|Hr,j

k (α,
β, γ, λ;x)|(γ|α)n−k. The application of the inclusion-exclusion principle completes
the proof. 2

Our next recursion is based on the order of the objects in the LBPA model.

Theorem 11. For n ≥ 0, we have

(13)

w(λ+r)
n (x;α, β, γ+j)=w(λ−1+r)

n (x;α, β, γ+j)+x
n∑

k=1

(
n

k

)
(β|α)kw(λ+r)

n−k (x;α, β, γ+j).

Proof. Recall that an element of the set Hr,j
n (α, β, γ, λ;x) is an arrangement of

three kinds of objects, special cells, non-special cells and labeled bars. Hence, the
set Hr,j

n (α, β, γ, λ;x) can be partitioned into three classes based on the first object
from left to right in an element of the set Hr,j

n (α, β, γ, λ;x). Namely, a labeled bar,
a special cell, or a non-special cell.

Case 1. The first object is a labeled bar. There are λ− 1 ways of labelling the
bar. Hence, the number of barred preferential arrangements with a bar on the far
left is

(λ− 1)
n∑

m=0

(m+ r + λ− 2)!βmS(n,m,α, β, γ + j)xm.

Case 2. The first object is a special cell. There are r ways of choosing a special
cell. The number of barred preferential arrangements with a special cell as a first
object is

r
n∑

m=0

(m+ r + λ− 2)!βmS(n,m, α, β, γ + j)xm.

Case 3. The first object is a non-special cell. We denote this first non-special
cell from left to right by B. The cell B can be colored in x ways. Say there are k
elements in B. Surely the non-special cell is nonempty, hence k runs from 1 to n.
The k elements can be chosen in

(
n
k

)
ways. The k elements going into B can be

arranged in (β|α)k ways. Barred preferential arrangements can be formed in

x
n∑

k=1

(
n

k

)
(β|α)k|Hr,j

n−k(α, β, γ, λ;x)|



10 J.A. Adell, B. Bényi and S. Nkonkobe

in this class. 2

Special cases of the recursion given in Theorem 11 can be found in the litera-
ture. For instance, Theorem 3.3 of [10], Proposition 4 of [14], Equation 4.9 of [13],
Equation 6 of [33], and Theorem 3.2 of [28].

Finally, we want to show how our model can give a combinatorial explanation
of a generalization of Nelsen’s theorem. In [18], Nelsen conjectured that

n∑
k=0

k∑
s=0

(
k

s

)
(−1)k−s(γ + s)n =

1

2

∞∑
s=0

(γ + s)n

2s
,(14)

for γ ∈ R, and non-negative integer n.
In [26], Donald Knuth et al. give several alternative proofs of the conjecture,

of which none includes a combinatorial interpretation. In order to reveal the con-
nection, we derive an appropriate formula and prove it combinatorially.

Proposition 12. For n ≥ 0, we have

(15) w(λ+r)
n (x;α, β, γ + j) =

n∑
k=0

k∑
s=0

(
k

s

)
xk(−1)k−s

n∑
d=0

(
n

d

)
(sβ|α)n−dw

(λ−1+r)
d (x;α, β, γ + j).

Proof. First we count the number of LBPAs such that the first objects are
non-special cells from which may be some of them empty and then we apply the
inclusion-exclusion principle to obtain the result. We choose d elements out of the
n non-special elements in

(
n
d

)
ways and form a LBPA of the d + r elements such

that the first object is a bar or a special cell. Let Rd(α, β, γ) denote the set of such
LBPAs. According to the argument of Theorem 11, we have

|Rd(α, β, γ)| = (λ+ r − 1)
n∑

m=0

(m+ r + λ− 2)!βmS(d,m, α, β, γ + j)xm.

To the left of the LBPA of Rd(α, β, γ) we insert k non-special cells formed from
the remaining n − d elements such that s cells are non-empty, which can be done
in (sβ|α)n−d ways. Finally, we apply the inclusion-exclusion principle to obtain
the number of LBPAs where there are no empty non-special cells to the left of the
LBPA from Rd(α, β, γ) with that we started the construction:

|Hr,j
n (α, β, γ, λ;x)| =

n∑
k=0

k∑
s=0

(
k

s

)
xk(−1)k−s

n∑
d=0

(
n

d

)
(sβ|α)n−d|Rd(α, β, γ)|.

2
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From the generating function (10) we obtain:

w(λ+r)
n (x;α, β, γ + j) =

∞∑
k=0

xk

(1 + x)k+1
w(λ+r−1)

n (x;α, β, γ + j + kβ).(16)

Some special cases of (16) appear in the literature. For instance, Equation 10
of [3], Theorem 3.2 of [10], Proposition 4.12 of [13], and Corollary 2 of [25].

By (16) and Proposition 12, we have

(17)
n∑

k=0

k∑
s=0

(
k

s

)
xk(−1)k−s

n∑
d=0

(
n

d

)
w

(λ+r−1)
d (x;α, β, γ + j)(sβ|α)n−d =

∞∑
k=0

xk

(1 + x)k+1
w(λ+r−1)

n (x;α, β, γ + j + kβ).

Remark that (17) is a generalization of Nelsen’s identity in (14). An analogue of
the special case α = 0, β = 1, x = 1 r = 1 of (17) appears in Theorem 4.1 of
[27, p. 48], another in [30] for α = 0, x = 1. In both discussions the identities are
connected to the number of barred preferential arrangements (unlabeled version).

3. Probabilistic results In this section, we denote by N the set of positive
integers and by N0 = N ∪ {0}. For any m ∈ N, let (Zm(x))x≥0 be the negative
binomial process defined as

(18) P (Zm(x) = i) =

(
−m

i

)(
− x

x+ 1

)i(
1

x+ 1

)m

, i ∈ N0.

Such stochastic processes are the main tool to describe the higher order gen-
eralized geometric polynomials considered here. To this end, some properties of
these processes will be needed. Let τ > 0 be such that

(19) τ < log(1 + 1/x).

Observe that for any m ∈ N, x ≥ 0, and τ > 0 satisfying (19), we have

(20) EeτZm(x) =
∞∑
i=0

(
−m

i

)(
− eτx

x+ 1

)i(
1

x+ 1

)m

=
1

(1− (eτ − 1)x)m
< ∞,

where E stands for mathematical expectation. Denote by Eτ the set of functions
ϕ : N0 → R such that

|ϕ(i)| ≤ Aeτi, i ∈ N0,

where A > 0 and τ > 0 satisfies (19). Observe that any polynomial belongs to Eτ .
On the other hand, formula (20) implies that Eϕ(Zm(x)) is finite for any ϕ ∈ Eτ .
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If ϕ ∈ Eτ , we denote by ∆kϕ the usual kth forward difference of ϕ, that is,

∆kϕ(l) =

k∑
i=0

(
k

i

)
(−1)k−iϕ(l + i), k, l ∈ N0.

It is well known that if qn(x) is a polynomial of degree n, then

(21) ∆kqn(l) = 0, l ∈ N0, k = n+ 1, n+ 2, ...

Let m ∈ N, x ≥ 0, and ϕ ∈ Eτ . The following crucial formula, shown in [1, Theorem
8.1], computes expectations of functions ϕ acting on the negative binomial process
in terms of its forward differences ∆kϕ as follows

(22) Eϕ(Zm(x)) =
∞∑
i=0

ϕ(i)P (Zm(x) = i) =
∞∑
k=0

(
m− 1 + k

k

)
∆kϕ(0)xk.

On the other hand, the following auxiliary result will be very useful.

Lemma 13. Let m, ν ∈ N, x ≥ 0, and ϕ ∈ Eτ . Then,

(23) Eϕ(Zm+1(x)) =
1

m(x+ 1)
Eϕ(Zm(x))(Zm(x) +m)

and

(24) Eϕ(Zm+ν(x)) =
∞∑
i=0

Eϕ(Zm(x) + i)

(
ν − 1 + i

i

)(
x

x+ 1

)i(
1

x+ 1

)ν

.

Proof. From (18), we see that

P (Zm+1(x) = i) =
i+m

m(x+ 1)
P (Zm(x) = i), i ∈ N0.

We therefore have

Eϕ(Zm+1(x)) =

∞∑
i=0

ϕ(i)P (Zm+1(x) = i) =
1

m(x+ 1)

∞∑
i=0

ϕ(i)(i+m)P (Zm(x) = i),

thus showing (23). As follows from (20),

EeτZm+ν(x) = EeτZm(x)EeτZν(x).

By the uniqueness theorem for Laplace transforms, this means that the law of
Zm+ν(x) is the same as the law of Zm(x) + Zν(x), where the random variables
Zm(x) and Zν(x) are supposed to be independent. Hence, we have from (18)

Eϕ(Zm+ν(x)) = Eϕ(Zm(x) + Zν(x))

=
∞∑
i=0

Eϕ(Zm(x) + i)

(
ν − 1 + i

i

)(
x

x+ 1

)i(
1

x+ 1

)ν

.
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This shows (24) and completes the proof. 2

We apply the preceding properties to the problems considered in this paper.
We start from the following result which generalizes Nelsen’s theorem.

Theorem 14. Let m ∈ N and x ≥ 0. If qn(x) is a polynomial of degree n, then

Eqn(Zm(x)) =
∞∑
i=0

qn(i)

(
m− 1 + i

i

)(
x

x+ 1

)i(
1

x+ 1

)m

=

n∑
k=0

(
m− 1 + k

k

)
∆kqn(0)x

k.

As a consequence, Nelsen’s theorem is true.

Proof. The first statement readily follows from (18), (21), and (22), by choosing
ϕ = qn. Nelsen’s theorem follows by choosing m = 1, x = 1, and qn(x) = (γ + x)n.
The proof is complete. 2

As in the previous sections, we assume from now on that r ∈ N0, α, β, γ, λ ∈ N,
with α|β and α|γ and j = rβ − rα. We also assume that x, t ≥ 0 satisfy

(25) |αt| < 1, (1 + αt)β/α < 1 + 1/x.

The following result is the key tool to give a probabilistic interpretation of higher
order generalized geometric polynomials with shifted parameters.

Theorem 15. With the assumptions in (25), we have

E(1 + αt)(βZλ+r(x)+j+γ)/α =
(1 + αt)(j+γ)/α

(1− ((1 + αt)β/α − 1)x)λ+r
=

∞∑
n=0

E
(
βZλ+r(x) + j + γ)

α

)
n

αn t
n

n!
.

(26)

As a consequence,

w(λ+r)
n (x;α, β, γ + j) = E

(
βZλ+r(x) + j + γ)

α

)
n

αn

= E (βZλ+r(x) + j + γ)/α)n .

(27)

Proof. The first equality in (26) is shown as in (20). Note that the assumptions
in (25) guarantee that all the computations performed make sense. On the other
hand, the binomial expansion implies that

(1 + αt)(βZλ+r(x)+j+γ)/α =
∞∑

n=0

(
βZλ+r(x) + j + γ)

α

)
n

αn t
n

n!
.
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Therefore, the second equality in (26) follows by taking expectations in this last
expression. Note again that the assumptions in (25) allow us to interchange sum
and expectation. Finally, formula (27) is an immediate consequence of definition
(5) and identity (26). 2

According to this result, higher order generalized geometric polynomials are,
up to a constant factor, the expectation of a random descending factorial involving
the negative binomial process. In order to obtain an analogue to Theorem 14, we
need to compute the kth forward difference of the polynomial

(28) Qn(y) =

(
βy + j + γ

α

)
n

.

To this end, recall that

(29) (y)i =
i∑

l=0

[
i

l

]
(−1)i−lyl, yi =

i∑
l=0

{
i

l

}
(y)l, i ∈ N0.

Also, recall that

(30)

{
i

l

}
=

1

l!
∆lIi(0), i ∈ N0,

where Ii(y) = yi is the ith monomial function.

Lemma 16. Let Qn(y) be as in (28). For any k = 0, 1, ..., n, we have

∆kQn(0) = k!
n∑

i=k

(
n

i

)(
j + γ

α

)
n−i

i∑
l=k

(−1)i−l

[
i

l

]{
l

k

}(
β

α

)l

.

Proof. Denote by a = β/α and by b = (j + γ)/α. Using the Chu-Vandermonde
identity, we get

(31) Qn(y) = n!

(
ay + b

n

)
= n!

n∑
i=0

(
ay

i

)(
b

n− i

)
=

n∑
i=0

(
n

i

)
(ay)i(b)n−i.

For any i = 0, 1, ..., n, define the polynomial pi(y) = (ay)i. From (21), (29), and
(30), we have

∆kpi(0) =
i∑

l=k

(−1)i−l

[
i

l

]
al∆kIl(0) = k!

i∑
l=k

(−1)i−l

[
i

l

]{
l

k

}
al.

This, together with (31), shows the result. 2

Observe that if α = β, Lemma 16 takes on the simple form

∆kQn(0) = (n)k

(
j + γ

α

)
n−k

, k = 0, 1, ..., n.

We are in a position to compute w
(λ+r)
n (x;α, β, γ + j) in terms of a finite sum.
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Theorem 17. With the preceding notations, we have

w(λ+r)
n (x;α, β, γ + j) =

αn
∞∑
i=0

(
βi+ j + γ

α

)
n

(
λ+ r − 1 + i

i

)(
x

x+ 1

)i(
1

x+ 1

)λ+r

= αn
n∑

k=0

(
m− 1 + k

k

)
∆kQn(0)x

k,

where ∆kQn(0) is computed in Lemma 16.

Proof. It suffices to apply Theorem 14 with qn(y) = Qn(y), as defined in (28), as
well as formula (27). 2

The properties given in Lemma 13 are used to establish the following two results.

Theorem 18. The following relation holds true:

β(x+ 1)(λ+ r)w(λ+r+1)
n (x;α, β, γ + j) =

w
(λ+r)
n+1 (x;α, β, γ + j + α) + (βλ+ α(r − 1)− γ)w(λ+r)

n (x;α, β, γ + j).

Proof. Denote by a = β/α, b = (j + γ)/α, and m = λ + r. Choosing ϕ(y) =
(ay + b)n in (23), we get

ma(x+ 1)E(aZm+1(x) + b)n = E(aZm(x) + b)n(aZm(x) +ma)

= E(aZm(x) + b)n(aZm(x) + b+ 1 +ma− b− 1)

= E(aZm(x) + b+ 1)n+1 + (ma− b− 1)E(aZm(x) + b)n.(32)

Multiplying both sides of (32) by (m − 1)!αn+1, the result follows from the first
equality in (27). 2

Theorem 19. For any ν ∈ N, we have

w(λ+r+ν)
n (x;α, β, γ + j) = (λ+ r + ν − 1)ν

∞∑
i=0

w(λ+r)
n (x;α, β, γ + j + βi)

×
(
ν − 1 + i

i

)(
x

x+ 1

)i(
1

x+ 1

)ν

.

Proof. We use the same notations as in the proof of Theorem 18. Choosing
ϕ(y) = (ay + b)n in (24), we obtain

E(aZm+ν(x) + b)n =
∞∑
i=0

E(aZm(x) + aj + b)n

(
ν − 1 + i

i

)(
x

x+ 1

)i(
1

x+ 1

)ν

.
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Multiplying both sides of this equation by (λ+ r+ν−1)να
n and recalling the first

equality in (27), we get the result. 2
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