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Beáta Bényi
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Abstract

We investigate the generalized Stirling numbers S(n, k;α, β, γ) introduced by Hsu
and Shiue from a combinatorial point of view. We present a combinatorial inter-
pretation in terms of certain restricted distributions of labeled balls into unlabeled
cells and a special cell where all cells are divided into distinct compartments. Us-
ing our interpretation, we find combinatorial proofs of several identities involving
S(n, k;α, β, γ) and the associated generalized Bell numbers. Connections are made
with some prior combinatorial models for the r-Lah numbers and other arrays, one
via a sign-changing involution and another through a direct bijection. Finally, an
additional parameter is introduced into our model which allows for further gener-
alization.

1. Introduction

The literature on families of Stirling numbers is quite rich with many generalizations

and related sequences being introduced and studied from various standpoints. One

of the most far reaching of these generalizations is due to Hsu and Shiue [20] whose

original motivation was algebraic in nature. This work is devoted to the study of

certain combinatorial aspects of these generalized Stirling numbers.

Such a generalization is often an attempt at a unified approach to a topic that

permits one to understand various connections. It places disparate items sometimes
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having arisen in seemingly unrelated studies under one roof, finding their correct

place in a larger perspective. On the other hand, the more general a model is, then

the more complicated it may become due to additional parameters. It is frequently

not easy therefore to strike a balance between the level of generalization and the

understandability of a model. Our aim here is to provide further combinatorial

insight into the general Hsu-Shiue Stirling number model.

The Hsu-Shiue generalized Stirling numbers were introduced in [20] and are de-

fined, for real or complex α, β, γ, as the pair

(z|α)n =

n∑
k=0

S(n, k;α, β, γ)(z − γ|β)k, (1)

(z|β)n =

n∑
k=0

S(n, k;β, α,−γ)(z + γ|α)k, (2)

where (z|α)n denotes the generalized factorial (z|α)n = z(z − α)(z − 2α) · · · (z −
nα + α) if n ≥ 1, with (z|α)0 = 1. The following exponential generating function

(egf) formula for the array S(n, k;α, β, γ) is given in [20]:

∞∑
n=0

S(n, k;α, β, γ)
tn

n!
= (1 + αt)

γ
α

1

k!

[
(1+αt)

β
α−1

β

]k
. (3)

The S(n, k;α, β, γ) offer a common generalization of several well-known sequences

(see [20, 22]), including the r-Stirling, Lah, Carlitz and Howard degenerate Stirling,

Gould-Hopper, Todorov and r-Whitney numbers. By an alternative model involving

a pit and urn game, the Hsu-Shiue Stirling numbers have recently been afforded a

combinatorial interpretation in [25] as the number of ways of placing balls into urns

and a pit subject to certain restrictions.

The outline of the current paper is as follows. First, we provide a combinatorial

interpretation of the numbers S(n, k;α, β, γ) in terms of certain restricted distri-

butions of labeled balls in unlabeled cells with compartments that generalizes the

formulation given in [14] (see also [13]). Our model applies to cases where β and γ

are non-negative integers and where either α is positive and divides both β and γ

or α ≤ 0. This interpretation may be extended to the generalized Bell polynomials

Sn(x;α, β, γ) introduced in [20] and defined as

Sn(x;α, β, γ) =

n∑
k=0

S(n, k;α, β, γ)xk. (4)

Combinatorial proofs are found in terms of our model for several identities involving

S(n, k;α, β, γ) and/or Sn(x;α, β, γ), among them a generalized version of Spivey’s

Bell number formula. Connections are made to some prior models, including ones

related to extended Lah distributions, r-Lah numbers and multiparameter Stirling

numbers. Finally, we introduce a new parameter h into our model and briefly

discuss its combinatorial significance.
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2. Unfair Distributions

In this section, we present the underlying combinatorial model. We describe this

model in different languages and invite the reader to switch between these descrip-

tions according to their own taste. The goal of these various descriptions is to

reveal further the nature of the generalized Stirling numbers and to highlight the

roles played by the different parameters. For these reasons, we describe the models

in detail as such a preparation supports the proofs of the identities that follow.

2.1. Distribution of Balls into Cells with Compartments

The first description is based on a model of distributing balls into compartmental-

ized cells.

Suppose we wish to distribute one at a time some distinguishable balls into cells

that are divided further into distinct compartments. A ball will be said to either

close some consecutive compartments or create some new compartments. This

property is fixed by the parameter α. If α is a positive integer, each ball that is

inserted closes the compartment receiving the ball and the next α−1 compartments

in the cell, in the sense that no more balls can be placed in these compartments.

If α is a negative integer, each ball creates (or opens) −α + 1 new compartments

next to the compartment to which it belongs which is itself closed. If α = 0, then

compartments are allowed to contain more than one ball. The compartments within

a cell may be thought of as being cyclically ordered.

Note that these three cases for α are in accordance with the combinatorial models

of xn, xn = x(x−1) · · · (x−n+1) and xn = x(x+1) · · · (x+n−1) as follows: xn counts

the number of ways of placing n distinguishable balls into x distinguishable cells; xn

counts the number of ways of placing n distinguishable balls into x distinguishable

cells such that each cell contains at most one ball; xn counts the number of ways

of placing n distinguishable flags on x distinguishable flagpoles. See the beautiful

paper of Joni et al. [21] for a detailed description. These classical cases correspond

to α = 0, α = 1 and α = −1, respectively.

For α ≥ 1, we will refer to α available consecutive compartments as an α-block.

An inserted ball may then be thought of as closing an α-block which depends upon

the point of insertion. For example, if the first ball in a cell with c compartments

where α|c goes into compartment x, then the α-block comprising the compartments

x, x+1, . . . x+α−1 would be closed where addition is done mod c (as compartments

are arranged cyclicly). If the second ball were then to go in compartment x − 2,

then the α-block x− 2, x− 1, x+ α, x+ α+ 1, . . . , x+ 2α− 3 would be closed and

so on for additional balls.

Now say that in a cell we have a “favorite” α-block, denoted by α′, and the first

ball that is inserted into a cell always goes into α′ in a particular compartment, i.e.,

the “favorite” compartment (this is an extension of the interpretation presented in
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[14], where also the cells were assumed to be labeled). This justifies our calling such

distributions “unfair”.

Assume that we distribute in this way n labeled balls into a cell that has β

compartments, where β is assumed to be a multiple of α. How many possibilities

are there? The position of the first ball is fixed (our favorite compartment), for the

next ball there are β − α compartments available, and so on, until the n-th ball is

placed for which there are β − (n − 1)α available compartments. Thus, we have
(β|α)n
β = (β−α|α)n−1 possibilities. Let an denote the number of ways of distributing

n balls into a single cell in the manner described above and let A(t) =
∑∞
n=1 an

tn

n!

be the corresponding egf. Then we have

A(t) =
(1 + αt)

β
α − 1

β
.

Consider now k + 1 cells with the following properties:

1. The first k cells each have β compartments and are nonempty. We call these

cells ordinary cells.

2. The last cell has γ compartments where α|γ and may be empty. We call this

cell a special cell.

Let S(n, k;α, β, γ) denote the number of ways of placing n labeled balls into these

k+ 1 cells as described. For example, if n = 3, k = 1, α = 2, β = 8 and γ = 4, then

there are 24, 72 and 24 possibilities for ` = 0, 1, 2, respectively, where ` denotes

the number of balls that are placed in the special cell, whence S(3, 1; 2, 8, 4) =

24 + 72 + 24 = 120. This agrees with the value found by formula (12) below. For

the sake of simplicity, we will refer to a distribution of balls into cells as described

above as an (α, β, γ)-partition.

By the construction above, we have that S(n, k;α, β, γ) has egf formula given by

∞∑
n=0

S(n, k;α, β, γ)
tn

n!
= (1 + αt)

γ
α

1

k!

[
(1 + αt)

β
α − 1

β

]k
.

Remark 1. The special cell corresponds to the parameter r in models for the r-

Stirling, r-Lah and r-Whitney numbers, among others. For instance, the r-Stirling

numbers of the second kind enumerate partitions of [n] into k nonempty blocks

such that the elements of [r] belong to distinct blocks. In terms of our model, this

corresponds to a (0, 1, r)-partition of n − r balls where the r compartments in the

special cell can be regarded as each already containing a ball.
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2.2. Reformulation: Boxes

To motivate this reformulation, note the following identity:

(β|α)n
β

=
n!

β

(
β/α

n

)
αn. (5)

The right-hand side of the formula (5) suggests combinatorially the following. Sup-

pose we have β
α boxes with α compartments each and a favorite compartment (out

of all the boxes). We then distribute n labeled balls into the boxes such that at

most one ball can be placed in each box in any one of its compartments, where the

favorite compartment is always occupied when at least one box is nonempty. As a

consequence, we may conclude

S(n, k;α, β, γ) =
∑(

n

n0, n1, . . . , nk

)
1

k!

k∏
i=1

(β|α)ni
β

(γ|α)n0
, (6)

where
(

n
n0,n1,...,nk

)
denotes a multinomial coefficient and the sum is over all integers

n1, n2, . . . , nk ≥ 1 with n0 ≥ 0 such that n0 + n1 + · · ·+ nk = n.

In other words, S(n, k;α, β, γ) counts the partitions of n balls into k nonempty

groups of β
α boxes each (called ordinary groups), and a special group with γ

α boxes

that may be empty, in the manner described above. We take S(n, k;α, β, γ) to be

zero if k < 0 or k > n, which is in accordance with our combinatorial interpretations

of this array.

2.3. Reformulation: Colored Partitions

Assume we have α ≥ 1, with α|β and α|γ. The notion of compartments in a cell

may be replaced/exchanged with the notion of colored elements. Suppose we have

a partition of n elements into k nonempty ordinary blocks and a special block. The

elements are colored in the following way. For each color, there are α shades of the

hue; for instance, instead of having a single color “red”, we have a set of colors, e.g.,

{pink, ruby,burgundy, crimson}. Elements within the blocks are colored subject to

the following rules.

1. In an ordinary block, there are β colors available altogether (counting all of

the possible shades), while in the special block, there are γ colors altogether.

2. Only one shade from a given color set can be used to color an element in a

block.

3. We have in each ordinary block a favorite color, with the first element in the

block always receiving that color.

Let us call such a partition an (α, β, γ)-colored partition. It is clear that the number

of (α, β, γ)-colored partitions of n elements into k ordinary blocks and a special block

is given by S(n, k;α, β, γ).
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3. Combinatorial Proofs of Identities

In this section, we demonstrate by providing explanations of several identities the

potential usefulness of our combinatorial interpretation. The identities are known

in the literature as noted, however the elementary proofs we present here are new.

First, we show the basic recurrence relation.

Theorem 1 ([20]). For n non-negative and k, α, β, γ positive integers such that

α|β and α|γ, the following identity holds:

S(n+ 1, k;α, β, γ) = S(n, k − 1;α, β, γ) + (kβ − nα+ γ)S(n, k;α, β, γ). (7)

Proof. The proof is based on the placement of the element n+ 1.

Case 1: The element n + 1 is a singleton, i.e., in the cell containing it there

are no other elements. The members of [n] can be arranged in S(n, k − 1;α, β, γ)

ways. Suppose initially a cell having β compartments is empty. The unfairness

property, i.e., the property that the first element in a cell be placed in the favorite

compartment which then closes α compartments, implies that the position of n+ 1

is fixed in this case. So if n + 1 is a singleton, we have S(n, k − 1;α, β, γ) ways in

which to construct a partition.

Case 2 : The element n+ 1 is in a cell together with at least one other element.

The elements of [n] can be partitioned in S(n, k;α, β, γ) ways into k ordinary cells

and a special cell. After placing the elements of [n] into these k+ 1 cells, how many

free compartments are still available? There are kβ + γ in total, with each of the n

prior elements having closed α compartments. Hence, the number of compartments

available is kβ − nα + γ, where we may assume here nα ≤ kβ + γ (for otherwise,

S(n, k;α, β, γ) = 0 making the contribution from this case zero automatically).

Thus, the element n+1 can be inserted in kβ−nα+γ ways into the given partition,

which completes the proof.

Next, we present the proof of a convolution formula.

Theorem 2 ([20]). The identity(k1 + k2

k1

)
S(n, k1 + k2;α, β, γ1 + γ2) =

n∑
m=0

(n
m

)
S(m, k1;α, β, γ1)S(n−m, k2;α, β, γ2) (8)

holds for n, k1, k2 non-negative and α, β, γ1, γ2 positive integers such that α|β,
α|γ1, and α|γ2.

Proof. Consider an (α, β, γ)-partition of [n] having k (k = k1 + k2) ordinary cells

such that the special cell has γ1 + γ2 compartments. Mark some ordinary cells, say

k1 of them. Clearly, the left-hand side counts these marked partitions. On the other

hand, one can also obtain such partitions as follows. Let S denote the set of elements

that either occur in one of the first γ1 compartments or are contained in one of the
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k1 marked cells. Let |S| = m. Choose m members of [n] and construct an (α, β, γ1)-

partition into k1 ordinary cells and a special cell with γ1 compartments. Mark the

ordinary cells in this partition. Using the remaining n−m elements, construct an

(α, β, γ2)-partition into k2 ordinary cells and a special cell with γ2 compartments.

Considering all possible values of m, we obtain the right-hand side.

We also can give a simple proof of the following recursion on the parameter n.

Theorem 3 ([11]). For n, k, α, β, γ positive integers such that α|β and α|γ, the
following identity holds:

kS(n, k;α, β, γ) =

n−1∑
j=0

(
n

j

)
(β − α|α)n−j−1S(j, k − 1;α, β, γ). (9)

Proof. Consider an (α, β, γ)-partition of [n] into k ordinary cells and a special cell.

Mark an ordinary cell. The number of ways of doing this is clearly counted by the

left-hand side. On the other hand, let n − j be the number of elements that are

contained in the marked cell. We can construct this cell in
(
n
n−j
)
(β − α|α)n−j−1

ways. We partition the remaining j elements into k− 1 ordinary cells and a special

cell in S(j, k − 1;α, β, γ) ways.

Note that (9) corresponds to the special case of (8) when k1 = k − 1, k2 = 1,

γ1 = γ and γ2 = 0, as S(n−m, 1;α, β, 0) = (β − α|α)n−m−1 if m ≤ n− 1.

In the combinatorial proof of the next identity, we use the reformulation in terms

of boxes.

Theorem 4 ([11]). For n, k non-negative and α, β, γ positive integers such that

α|β and α|γ, we have

k∑
j=0

kjβjS(n, j;α, β, γ) = (kβ + γ|α)n. (10)

Proof. The right-hand side gives the number of distributions of n labeled balls into

(β/α)k + (γ/α) labeled boxes each having α distinct compartments with each box

restricted to having at most one ball. How do we get this from the left-hand side?

Imagine that there are k groups of β/α boxes and another group with γ/α boxes.

Let j be the number out of the k groups of boxes that contain at least one ball

(within all boxes in the group). First, choose these j groups in kj ways and then

designate one particular compartment out of each of the chosen groups of boxes to

be the favorite compartment, which can be done in βj ways.

After this preparation, consider a distribution of the n labeled balls into the j

selected groups of β/α boxes, along with the special group of γ/α boxes, such that at

least one ball goes into each of the j selected groups with the first ball always going
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into the favorite compartment for the group. Thus, there are kjβjS(n, j;α, β, γ)

possible distributions in which exactly j of the k groups of β/α boxes contain at

least one ball for each j. Summing over all j, we obtain the identity.

In order to provide a combinatorial proof of the explicit formula for S(n, k;α, β, γ)

given in Theorem 5 below, we first express (kβ + γ|α)n in a different way.

Lemma 1. For n non-negative and α, β, γ positive integers such that α|β and α|γ,
we have

(kβ + γ|α)n = n!

(
(β/α)k + (γ/α)

n

)
αn. (11)

Proof. The left-hand side of (11) gives the number of ways of placing the elements

of [n] into k ordinary cells and a special cell, such that whenever a ball is placed

in a cell into any one of the compartments qα + 1, qα + 2, . . . , (q + 1)α for some

q ≥ 0, then all of the compartments within this group are closed (we will refer to

such a group in this setting as an α-block). Note that here (and in the proof of the

subsequent theorem) the ordinary cells are labeled and need not contain an element,

with the first element not required to go in a fixed compartment as before.

Alternatively, first consider the n groups of compartments into which we will

place the elements. In an ordinary cell, the number of α-blocks is given by β/α,

whereas in the special cell, there are γ/α. In total for the k + 1 cells, there are

(β/α)k + (γ/α) possible α-blocks. Thus, there are
(
(β/α)k+(γ/α)

n

)
possibilities for

the n groups of compartments. Then select in αn ways the particular compart-

ment within each group that will contain an element. Finally, after choosing the

compartments, we arrange the elements in an arbitrary way, which gives n!.

Theorem 5 ([15]). For n, k non-negative and α, β, γ positive integers such that

α|β and α|γ, we have

S(n, k;α, β, γ) =
n!αn

k!βk

k∑
j=0

(−1)k−j
(
k

j

)(
(β/α)j + (γ/α)

n

)
. (12)

Proof. Suppose that there are k + 1 labeled cells, where k of the cells have β com-

partments (ordinary cells) and one has γ compartments (special cell), such that α

divides both β and γ. We distribute the elements of [n] into these cells as described

in the preceding lemma. Suppose that in a distribution of the elements of [n] into

the k + 1 cells that k − j stipulated ordinary cells (and possibly some others) do

not receive any elements for some 0 ≤ j ≤ k.

By the prior lemma, there are
(
(β/α)j+(γ/α)

n

)
n!αn such distributions possible.

Thus, by the inclusion/exclusion principle, we have that

n!αn
k∑
j=0

(−1)k−j
(
k

j

)(
(β/α)j + (γ/α)

n

)
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gives the total number of distributions in which no ordinary cell is left empty.

On the other hand, there are k!βkS(n, k;α, β, γ) such distributions, where the βk

factor accounts for the fact that the first element in an ordinary cell need not go in

a fixed compartment here and k! accounts for the ordinary cells now being labeled.

Equating results then gives

k!βkS(n, k;α, β, γ) = n!αn
k∑
j=0

(−1)k−j
(
k

j

)(
(β/α)j + (γ/α)

n

)
,

which implies (12).

Remark 2. The proofs for the identities in this section where there are the stated

restrictions on α, β and γ imply the results for all α, β and γ, real or complex, since

both sides of each identity are seen to be polynomials in these variables. A similar

remark applies to the identities in the next section.

4. Combinatorial Interpretation of Generalized Bell Polynomials

In accordance with their generalized Stirling numbers, Hsu and Shiue [20] introduced

the generalized Bell polynomials as

Sn(x;α, β, γ) =

n∑
k=0

S(n, k;α, β, γ)xk, n ≥ 0. (13)

Members of the sequence Sn(1;α, β, γ) are referred to as generalized Bell numbers.

One recovers many well-known number sequences as special cases of Sn(1;α, β, γ),

such as n! = Sn(1;−1, 0, 0), the Bell numbers Bn = Sn(1; 0, 1, 0), the r-Bell numbers

[30] Bn,r = Sn(1; 0, 1, r), the Dowling numbers [4] Dn = Sn(1; 0,m, 1), etc. (see, e.g.,

[20]).

There is the following egf formula for Sn(x;α, β, γ) which readily follows from

(3) and (13):

∞∑
n=0

Sn(x;α, β, γ)
tn

n!
= (1 + αt)

γ
α exp

[
x(1+αt)

β
α−x

β

]
. (14)

It is clear that in order to interpret Sn(x;α, β, γ), we only need to augment

our model by allowing for the ordinary cells to come in x given colors, where x is

a positive integer. Alternatively, one may define the weight w(ρ) of an (α, β, γ)-

partition ρ by w(ρ) = xi, where i is the number of the ordinary cells of ρ and x is

an indeterminate.

In this direction, we provide here combinatorial proofs of some identities involving

Sn(x;α, β, γ).
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Theorem 6. For n non-negative and α, β, γ, x positive integers with α|β and α|γ,
the following identity holds:

Sn+1(x;α, β, γ) = γSn(x;α, β, γ − α) +

n∑
j=0

x

(
n

j

)
(β − α|α)jSn−j(x;α, β, γ). (15)

Proof. This can be shown by computing the egf of both sides of (15) using (14).

Alternatively, one can give a combinatorial explanation using the current model

based on the position of the smallest element, denoted by 1, within a partition of

size n+ 1. There are two cases to consider.

Case 1: The 1 belongs to the special cell. Then the number of possible partitions

is γSn(x;α, β, γ−α) since α compartments in the special cell would then be closed

to the other elements.

Case 2: The 1 belongs to an ordinary cell, say B. We choose a color for B in x

ways. Let j + 1 be the cardinality of B. Then there are
(
n
j

)
choices concerning the

j other elements of B, which can be arranged in (β − α|α)j ways within B. The

remaining n− j elements in the partition can be arranged in Sn−j(x;α, β, γ) ways.

Considering all possible j then accounts for the sum on the right-hand side of (15)

and completes the proof.

Let Sn(x) = Sn(x;α, β, γ) and d
dxSn(x) = S′n(x). The next recursion relates

Sn+1(x) to the preceding term and its derivative.

Theorem 7 ([23]). For n non-negative and α, β, γ, x positive integers with α|β
and α|γ, we have

Sn+1(x) = (γ − nα+ x)Sn(x) + βxS′n(x). (16)

Proof. The statement follows from the basic recurrence for S(n, k;α, β, γ) found in

Theorem 1 and the definition of generalized Bell numbers given in (13).

We also provide a combinatorial explanation as follows. First, note that xS′n(x)

gives the number of marked (α, β, γ)-partitions, wherein the ordinary cells are each

assigned one of x possible colors and one of these cells is marked.

Within an (α, β, γ)-partition counted by Sn+1(x), the (n + 1)-st element can

either occur in the special cell, in an ordinary cell with at least one other element,

or in a new ordinary cell by itself. In the first case, we need to choose one of γ

compartments, and in the second, one of β compartments, while in the third case

no compartment needs to be chosen since the (n+ 1)-st element would be the first

element in an ordinary cell (though we need to choose a color for the new cell).

This gives

γSn(x) + βxS′n(x) + xSn(x).
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However, since each element “closes” α available compartments, we have counted in

the previous sum nαSn(x) cases that are not allowed, and hence must be subtracted.

Theorem 8 ([13]). For n non-negative and α, β, γ, x positive integers with α|β
and α|γ, the following identity holds:

Sn+1(x) + nαSn(x) = γSn(x) +

n∑
m=0

xm!

(
n

m

)(
β/α

m

)
αmSn−m(x). (17)

Proof. We extend the set of (α, β, γ)-partitions as follows. Let Un denote the set

of (α, β, γ)-partitions enumerated by Sn(x) and let Vn be the same as Un except

that, in addition, the element 1 may lie in the same α-block (possibly in the same

compartment) as a member of [2, n]. Note however that elements i and j must lie

in different α-blocks within a member of Vn for all i > j > 1. Further, the element

1 within a member of Vn always goes in the favorite compartment when placed in

an ordinary cell as before.

Here, in forming members of Un, we insert the elements of [n] such that whenever

an element is inserted into a cell in any one of the compartments labeled qα +

1, . . . , (q + 1)α for some q ≥ 0, then all compartments with these labels (which we

refer to again as an α-block) are closed. This formulation for members of Un is seen

to be equivalent to the one described in terms of colored partitions in subsection

2.3. Note however that the element 1 within a member of Vn does not close any

compartments within the cell to which it is added.

Then the right-hand side of (17) enumerates the members of Vn+1 by considering

the position of the element 1 as follows. If 1 goes in the special cell, then there

are γSn(x) possibilities since 1 can go in any compartment with no restrictions.

Otherwise, 1 belongs to an ordinary cell together with m members of [2, n+ 1] for

some 0 ≤ m ≤ n. Then there are
(
n
m

)
ways to choose these members and m!

(
β/α
m

)
αm

ways in which to arrange them within an ordinary cell such that no two lie in the

same α-block. Then add the element 1 to the favorite compartment of the cell,

regardless of whether or not an element already lies in the favorite α-block. The

remaining members of [n+ 1] are arranged in Sn−m(x) ways, with the extra factor

of x accounting for the cell containing 1. Considering all possible m then implies

that the right side of (17) gives |Vn+1|, as claimed.

To complete the proof, we then must show |Vn+1 − Un+1| = nαSn(x) since

|Un+1| = Sn+1(x). Let λ ∈ Un, represented using elements of [2, n + 1] instead

of [n]. We then select any i ∈ [2, n + 1] and place the element 1 in one of the

compartments lying within the α-block of λ that contains i. Let λ∗ denote the

resulting distribution of [n+ 1]. Clearly, there are nαSn(x) distinct λ∗ each arising

uniquely as λ ranges over all members of Un. Let U∗n denote the set of all such

distributions λ∗.
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We now define a bijection f between U∗n and Vn+1 − Un+1 as follows, which will

complete the proof. Let ρ ∈ U∗n. If 1 lies within the special cell of ρ, then let f(ρ) =

ρ. Otherwise, 1 belongs to some ordinary cell B of ρ and we let ` = min(B − {1}).
We consider cases based on the relative positions of 1 and `. If 1 lies in the same

compartment as `, then let f(ρ) = ρ. If 1 lies in the same α-block as `, but in a

different compartment, then let f(ρ) be obtained from ρ by switching the elements

1 and ` within their compartments (leaving all other elements undisturbed).

The remaining case is for 1 to lie in an α-block of B containing some element

t > `. In this case, let R and S denote the α-blocks of B containing ` and {1, t},
respectively. Suppose further that ` occupies compartment r of R, with 1 and t lying

in compartments s1 and s2 of S. Note that s1 = s2 is possible, with r corresponding

to the favorite compartment of B since ` is minimal in B − {1}.
To obtain f(ρ) in this case, we switch the elements 1 and ` and move the element

t so that it occupies compartment r+ s2− s1 in R, where the compartments in the

favorite α-block are assumed to be labeled 1, 2, . . . , α and the addition/subtraction

is done modulo α on the set [α]. Note that within f(ρ), the element 1 now lies in

the favorite α-block in B together with the element t.

To reverse f in the case when 1 lies in an ordinary cell C of π ∈ Vn+1 − Un+1,

consider cases on whether or not 1 lies in the same α-block as the minimum element

of C−{1}. One may then verify that f is reversible in all cases and hence a bijection

between U∗n and Vn+1 − Un+1, as desired.

To conclude this section, we consider the generalization of Spivey’s Bell formula

in terms of Sn(x) (for Spivey’s original formula, see [35]). Prior proofs of this

formula have been given using various methods; see, e.g., [23, 27, 34, 38]. This

identity is also mentioned in [12, 22, 26, 29].

Theorem 9 ([38]). For n, m non-negative and α, β, γ, x positive integers with

α|β and α|γ, the following identity holds:

Sn+m(x) =

n∑
k=0

m∑
j=0

(
n

k

)
S(m, j;α, β, γ)(jβ −mα|α)n−kSk(x)xj . (18)

Proof. In order to show (18) using the present model, we slightly reformulate our

interpretation for S(n, k;α, β, γ) as follows. Consider placing n labeled balls in k

unlabeled ordinary boxes and a special box such that each ordinary box contains
β
α labeled cells and the special box γ

α cells. All cells in all boxes contain α labeled

compartments. Balls are distributed so that every ordinary box receives at least one

ball, where the first ball in a box always goes in the first compartment of the first

cell. Further, each cell in all boxes can receive at most one ball (to be distributed

in one of the compartments contained therein). Note that the special box need not

receive any balls in its cells, with no restriction as to the placement of the first ball.
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We now proceed with the proof of (18). Assume further β, γ ≥ mα. We count

(α, β, γ)-partitions of n+m labeled balls into ordinary boxes and a special box as

described above, where in addition the ordinary boxes receive one of x colors. We

first partition the balls labeled with elements of [m] into exactly j ≥ 1 ordinary

boxes and the special box, which can effected in xjS(m, j;α, β, γ) ways.

Suppose now that exactly m′ balls in this partition were placed in the special

box for some 0 ≤ m′ ≤ m − j. Now consider arranging the j currently occupied

ordinary boxes from left-to-right in ascending order of the smallest labeled balls

contained therein. In a left-to-right scan of these boxes, we mark the first m′ cells

that are encountered which do not contain a ball, where the cells within each box

are arranged linearly one after another in ascending order. Next, select n− k balls

from those with labels in [m + 1,m + n]. We insert these balls into the j already

occupied ordinary boxes such that in addition to the cells already containing a ball,

no ball can be placed in one of the m′ marked cells. Then β ≥ mα implies that this

can be implemented in (jβ −mα|α)n−k ways as now there are (m−m′) +m′ = m

forbidden cells at the onset.

We then form an (α, β, γ)-partition with the k remaining balls such that balls

selected for the special box either go in one of the γ
α−m

′ cells not already containing

a ball with a label in [m] or in one of the m′ marked cells within the first j ordinary

boxes. Note that all other balls are to go into new ordinary boxes and thus there

are Sk(x) possibilities for the placement of the remaining k balls. Considering all

possible j ≥ 1 and k then yields all partitions of the n + m balls in which at least

one ordinary box contains a ball from [m].

Otherwise, all of these balls lie in the special box and there are S(m, 0;α, β, γ)

possibilities for their placement. There are then Sn(x;α, β, γ −mα) ways in which

to arrange the balls with labels from [m+ 1,m+ n]. Thus one gets the terms from

the right side of (18) for which j = 0 since there is the identity

Sn(x;α, β, γ −mα) =

n∑
k=0

(
n

k

)
(−mα|α)n−kSk(x), (19)

which can be shown by use of generating functions. For completeness, we provide

below a combinatorial proof of (19) using the present model.

This finishes the proof of (18) in the case when β, γ ≥ mα. Since both sides of

(18) are polynomials in α, β, γ, the proof is complete.

To prove (19) when α, β, γ are integral, we write the (−mα|α)n−k factor as

(−α)n−kmn−k.

Lemma 2. For n, m non-negative and α, β, γ, x positive integers with α|γ, α|β
and γ ≥ mα, the following identity holds:

Sn(x;α, β, γ −mα) =

n∑
k=0

(−α)n−k
(
n

k

)
mn−kSk(x). (20)
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Proof. Given 0 ≤ k ≤ n, let An,k denote the set of ordered triples λ = (a,b, c)

defined as follows. Let a be any subset of [n] of size n−k, b be a distribution of the

elements of a into m urns labeled 1, . . . ,m where the order of the elements within

an urn matters and c be an (α, β, γ)-partition of the remaining k elements of [n] not

belonging to a (as enumerated by Sk(x;α, β, γ) per the first interpretation above).

Further, assume that elements of a each receive one of α colors, with the sign of λ

defined as (−1)n−k. Let A = ∪nk=0An,k. Then the right side of (20) is seen to give

the sum of the signs of all members of A.

Assume further that the compartments in the special cell within c are labeled

1, . . . , γ, with an α-block comprising a set of consecutive compartments (j − 1)α+

1, . . . , jα for some j ≥ 1. Also, we denote the colors assigned to members of a by

elements of [α].

We now define an involution on A as follows. Suppose i0 is the smallest i ∈ [m]

such that one of the following occurs (possibly both) within λ ∈ A:

(I) urn i receives one or more elements from [n] in the distribution b, or

(II) the α-block in the special cell comprising compartments [(i − 1)α + 1, iα]

receives some element of [n] in the partition c.

Define S to be the set of elements of [n] belonging either to (i) urn i0 in b or

(ii) the α-block [(i0 − 1)α + 1, i0α] in c. Note that the latter option applies to at

most one element of S, with S always nonempty (by the definition of i0). Define

the initial element of S to be the one for which (ii) applies if it exists, or to the

leftmost element within box i0 otherwise.

We then switch options concerning the initial element s ∈ S. That is, if s belongs

to the p-th compartment of the α-block [(i0 − 1)α+ 1, i0α] in c, then we move s so

that it comes at the beginning of the list of elements in urn i0 in b and assign s the

color p ∈ [α], and vice versa if s occurs in b.

Since i0 is invariant, this operation yields a sign-changing involution on A which

is not defined for those λ where i0 fails to exist, i.e., for λ ∈ An,n such that no

element of [n] belongs to the first m α-blocks in c. Each such λ then has positive

sign and they number Sn(x;α, β, γ −mα), which completes the proof.

5. Relations to Other Models

As mentioned earlier, since Stirling numbers occur in many different contexts, it is

not surprising that there are several natural generalizations arising in different lines

of research. We believe it to be worth demonstrating the connections between some

of these generalizations.
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5.1. Equivalence with Extended Lah Distributions

In this subsection, we relate our model to one that was considered initially by

Mansour et al. [28] in conjunction with the notion of normal ordering.

We recall here the discrete structure defined in Shattuck [34] and termed an

extended Lah distribution.

Given 0 ≤ k ≤ n, let Ln,k denote the set of partitions of [n] into k contents-

ordered blocks, i.e., lists. We say that the blocks are in canonical order when

they are arranged from left to right in ascending order of their respective smallest

elements.

We refer to the elements of the set Ln,k as Lah distributions. Let Ln = ∪nk=0Ln,k.

In order to define extended Lah distributions, we distinguish some elements as

follows. Let us call an element i ∈ [n] within ρ ∈ Ln outstanding if i = 1 or i ≥ 2

and i is not the smallest element in its block and all smaller elements are to the

left of i in the canonical order. An extended Lah distribution is a Lah distribution

wherein we may mark some subset (possibly empty) of the outstanding elements

such that 1 can be marked only when it is the leading element of its block. We

denote the set of extended Lah distributions by L∗n.

Let L∗n,k denote the set of extended Lah distributions in which there are k

nonempty blocks not containing a marked 1. We will refer to a block starting

with a marked 1 as a false block, while all other blocks are true. Thus, members of

L∗n,k contain exactly k true blocks.

In order to incorporate the parameters into the model we need also some statis-

tics. We say that i ∈ [n] is a record low of the Lah distribution ρ if there are no

smaller elements to the left of i in its block. Note that the first and the minimum

elements of a block are always record lows. Let nrec(ρ) denote the number of ele-

ments that do not correspond to record lows of ρ, i.e., there is at least one smaller

element to the left of these elements in their respective blocks.

Suppose now that α, β and γ are fixed positive integers such that β, γ ≥ nα with

α|β and α|γ. LetMn,k denote the set obtained from members of L∗n,k by assigning

one of α colors to each unmarked element of [n] not corresponding to a record low

of some block, one of β colors to each record low that is itself not a block minimum

and one of γ colors to each marked element.

Assume that the sets of α, β and γ colors used are denoted by elements in [α],

[β] and [γ], where in the latter two sets the elements are arranged clockwise around

a circle in the natural order. We may assume further that the elements within a

given block draw their color assignments from a particular copy of the set [β] (so

there are k color sets of size β in all each of which we denote by [β] by a slight abuse

of notation). Moreover, we apply the same terminology to Mn,k concerning true

and false blocks as we did to L∗n,k. We assume that the true blocks of ρ ∈Mn,k are

arranged from left to right in increasing order of their respective minimum elements
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and following the single false block of ρ (if it exists).

Define the sign of ρ ∈Mn,k by (−1)nrec(ρ).

By comparison with the recurrence, it is seen that S(n, k;α, β, γ) gives the sum

of the signs of all members of Mn,k, i.e.,

S(n, k;α, β, γ) =
∑

ρ∈Mn,k

(−1)nrec(ρ).

See [34] for a proof of the recurrence in the case of weighted extended Lah distri-

butions.

We now define a sign-changing involution on Mn,k whose set of survivors will

all have positive sign and be in one-to-one correspondence with the set of unfair

distributions. To do so, we need to introduce some further definitions as follows.

Consider forming members ρ ∈ Mn,k in n steps, where in the i-th step, some

decision is made regarding the placement of i relative to the members of [i− 1]. In

particular, for each i ∈ [n], we have four possible options:

(a) insert i as an unmarked element directly following some member of [i − 1]

within a block,

(b) add i at the very beginning of one of the currently occupied true blocks,

(c) insert i as a marked element or

(d) start a new (true) block with i as its smallest element.

Note that for i = 1 only options (c) and (d) apply. Also, if (c) holds, then i

is to occur at the very end of the last currently occupied block (true or false) if

i ≥ 2, and at the beginning of the first block if i = 1 (which would be a false block).

Recall that the element i is assigned one of α, β or γ possible colors respectively in

options (a), (b) and (c), and no color in (d). Thus, it may be assumed the element

i in case (d) is assigned the first color 1 out of the β possible colors.

For each of the cases (a)–(d) above, we consider a vector, which will be referred

to as the i-vector and denoted by vi, encoding certain information concerning the

placement of the element i for each i ∈ [n]. Further, we refer to vectors vi corre-

sponding to cases (a), (b), (c) and (d) as primary, secondary, tertiary and quater-

nary vectors, respectively (and at times apply the same terminology to the element

i itself).

We now define the vectors vi based on the cases (a)–(d) and according to whether

i = 1 or i ≥ 2 as follows.

If i = 1, then either (c) or (d) applies.

• If (c), then let the 1-vector v1 be defined as the (α+1)-tuple (0, p, p+1, . . . , p+

α− 1), where p ∈ [γ] denotes the number of the color assigned to the element

1 and the addition is done modulo γ on the set [γ].
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• If (d), then let v1 = (1, 1, 2, . . . , α).

Assume now that i ≥ 2 and that the j-vectors have been defined for all j ∈ [i−1].

We define vi as follows.

• If (a) applies when inserting the element i, then let vi be given by the ordered

pair (a, b), where a ∈ [i− 1] is the element directly preceding the position in

which i is placed and b ∈ [α] is the color assigned to i.

• If (b) applies when inserting i, then let vi be the (α + 1)-tuple given by

(`, b1, . . . , bα), where i is inserted into the `-th true block from the left in the

canonical order for some ` ∈ [k]. Further, b1 ∈ [β] is the color assigned to i and

b2, . . . , bα are the first α − 1 colors encountered, upon proceeding clockwise

starting from b1, that have not appeared as one of the final α components of

a secondary or quaternary vj for some j ∈ [i− 1] whose first component is `.

• If (c) applies, then let vi = (0, c1, . . . , cα), where c1 ∈ [γ] is the color assigned

to i and c2, . . . , cα are the first α−1 colors encountered when moving clockwise

from c1 that have not appeared in a tertiary vector vj for some j ∈ [i− 1].

• If (d) applies, then let vi = (`, 1, 2, . . . , α), where i is the smallest element of

the `-th true block.

The involution we present now is based on a special value i0, which we define as

follows. Let i0 be the smallest i ∈ [2, n] such that

(i) i is primary,

(ii) i is secondary and the first and second components of vi appear respectively

as the first and r-th components of vj for some j ∈ [i−1], where j is secondary

or quaternary and 2 ≤ r ≤ α+ 1,

(iii) i is tertiary and the first and second components of vi appear respectively as

the first and r-th components of vj for some j ∈ [i − 1], where j is tertiary

and 2 ≤ r ≤ α+ 1.

Note that the j in parts (ii) and (iii) is uniquely determined by the minimality of

i0.

We define an involution between the subset ofMn,k where i0 is primary, i.e., (i)

applies, and the subset where i0 is not primary, i.e., (ii) or (iii) applies. (Recall that

primary means that the element is unmarked and directly follows a smaller element

in its block at the time of insertion.)

If (ii) or (iii) applies and j and r are as described above, then let i0 be primary

with ordered pair (j, r − 1). (Note that j is the element that is preceding i0 and

r − 1 is the assigned color.)
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Conversely, suppose i0 is primary with vi0 = (a, b). Then a is not primary and

we consider cases based on whether a is tertiary or not.

If a is tertiary (i.e., a is marked), then replace vi0 with the tertiary vector whose

second component is the (b + 1)-st component s of va. Note that this uniquely

determines the remaining components of vi0 , i.e., simply choose the first α − 1

members of [γ] encountered when starting from s and going clockwise which have

not occurred in a previous tertiary vector vj for j ∈ [i0 − 1].

If a is secondary or quaternary, then let i0 be secondary with the first and second

components of vi0 equal to the first and (b + 1)-st components of va, respectively,

where again the remaining α− 1 components of vi0 are uniquely determined.

Further, in each of the cases (i)–(iii) above, we keep vj the same for all j ∈ [i0−1]

and adjust vd for d ∈ [i0 + 1, n] accordingly when d is not primary by only changing

the final α − 1 components of vd as needed (note that the possible colors that are

left for these components once the status of i0 has been changed will be different

for either tertiary elements d > i0 or secondary elements d > i0 lying in the same

block as a).

The operation defined above is sign-changing in all cases since the number of

elements that are neither record lows nor marked always changes by one. Further,

one may verify that combining all of the operations above yields an involution φ on

Mn,k since i0 is invariant.

It is possible to describe directly in terms of the partitions ρ themselves the

transformation brought on by the operations defined in terms of the vectors vi. For

example, the case above when vi0 = (a, b) and a is tertiary has the effect of moving

the element i0 so that instead of directly following a, it now occurs at the very end

of the last block of the subpartition of ρ obtained by considering only the elements

of [i0], with its color changed from b to t, where t is the (b+ 1)-st component of va.

The elements of [i0+1, n] are then inserted sequentially into this new subpartition of

[i0] using the information contained in (the first two components of) their respective

vectors.

Note that the set S of survivors of the involution φ consists of those distributions

ρ ∈ Mn,k that contain no primary elements and in which the sets obtained by

considering the second through the (α+ 1)-st components of all the tertiary vi are

mutually disjoint, as are the comparable sets obtained by considering all secondary

or quaternary vi with the same first component ` for each ` ∈ [k]. Members of S all

have positive sign and are seen to be synonymous with the set of unfair distributions

described in Section 2.

5.2. Generalized r-Lah Numbers Revisited

Recently, Belbachir et al. [2] presented a combinatorial interpretation for the gen-

eralized r-Lah numbers in terms of a weighted partition structure. Let Ωr(n, k) be
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the set of partitions of the elements of [n + r] into k + r contents-ordered blocks

(i.e., lists) such that the elements of [r] belong to distinct blocks and weights are

assigned to each element as follows:

(a) the first element to be inserted into a block (i.e., the smallest) has weight 1,

(b) an element (other than the smallest) inserted at the beginning of a block is

assigned the weight β,

(c) the remaining elements in a block have weight α,

where it is assumed that elements are inserted one-by-one starting with the smallest.

The weight w(d) of a distribution d ∈ Ωr(n, k) is defined as the product of the

weights of its elements and the total weight of Ωr(n, k) is given as the sum of the

weights of all the distributions. Let Gr(n, k;α, β) denote this total weight. In

[2], it was shown that Gr(n, k;α, β) coincides with the generalized r-Lah number

considered in [33].

We now demonstrate the connection between this model and the current one by

establishing the equality

Gr(n, k;α, β) = S(n, k;−α, β, (α+ β)r). (21)

To do so, we define an explicit bijection between the classes of distributions enu-

merated by both sides of (21) when α and β are positive integers.

Bijective Proof of (21).

Let Sr(n, k) denote the set of distributions of [n] into k (unlabeled) ordinary

cells each with β compartments and r (labeled) special cells each with α+ β com-

partments, such that all elements open α new compartments when placed into any

compartment P while allowing P to receive additional elements. Each ordinary

cell must receive at least one element, with the first element going in a stipu-

lated favorite compartment, whereas no such requirements apply to the special

cells. Then we have |Sr(n, k)| = S(n, k;−α, β, (α+ β)r), since members of Sr(n, k)

are seen to be synonymous with the class of unfair distributions enumerated by

S(n, k;−α, β, (α+ β)r).

Note that in the model described above for Gr(n, k;α, β), instead of indetermi-

nate weights β and α, we may assume that the elements in (b) and (c) above are

assigned colors out of disjoint sets of colors of size β and α, respectively. These

sets of colors will be denoted by [β] and [α]. We note that an element i in (c) must

directly follow some member of [i− 1] when placed, whereas elements from (a) and

(b) correspond to left-right minima in the list of elements for the block (with the

element from (a) corresponding to the block minimum). Further, a block containing

an element of [r] within a member of Ωr(n, k) will be referred to as special, with



INTEGERS: 22 (2022) 20

all other blocks (i.e., those comprised exclusively of elements in I = [r + 1, r + n])

being non-special.

We now describe a bijection between Ωr(n, k) and Sr(n, k). Let λ ∈ Ωr(n, k).

The general idea will be to convert the non-special blocks of λ to ordinary cells in

some ρ = ρλ ∈ Sr(n, k) and to convert the special blocks of λ to the special cells of

ρ. We first consider performing the former. Let B denote an arbitrary non-special

block of λ. Let m = minB and a1 > · · · > as denote the left-right minima in the

list of elements of B. Note that s ≥ 1, with as = m.

We then form using B an ordinary cell, which will be denoted by B′. First,

let m be the initial element going into B′, which must be placed in the favorite

compartment. Then place elements a1, . . . , as−1 into the β original compartments

of B′ such that if aj for 1 ≤ j ≤ s− 1 is assigned the color βj ∈ [β], then aj goes in

compartment βj of B′. (By an original compartment in B′, we mean one that was

present prior to any elements of B being added.)

Now let b1 < · · · < bt denote the elements of B, if any, not corresponding to

left-right minima; recall that each bi is assigned one of α colors. We now insert the

elements bi into B′, one at a time, starting with b1. In order to do so, for each

i ∈ [t], let b∗i denote the first element in [bi− 1] that is encountered when one starts

from the element bi in the list of elements of B and proceeds to the left. We now

place b1 into B′ so that it lies in the p-th compartment opened up by the element b∗1,

where p ∈ [α] is the color assigned to b1. We repeat this for the remaining elements

b2, . . . , bt. We then subtract r from each of the added elements a1, . . . , as, b1, . . . , bt,

all of which belong to I. This completes the construction of B′. The preceding steps

are then repeated for all non-special blocks B of λ, which yields the k ordinary cells

of ρ.

We now convert the special blocks of λ to special cells of ρ. Let C be a special

block of λ and suppose C contains c ∈ [r]. Define the elements ai and bj just as

we did above for B. Note in this case that as = c. Let D denote the subset of

C consisting of those bi such that b∗i = c. Observe that members of D are those

that would have been placed directly to the right of c when the block C was formed

initially by adding elements of I one-by-one.

We construct the special cell C ′ as follows using C. First, we add to the original

compartments of C ′ the elements a1, . . . , as−1 just as we did with B′ above. Next,

we add the elements of D to C ′ such that if d ∈ D was assigned the p-th color,

where p ∈ [α], then d is inserted into the (β + p)-th original compartment of C ′.

Finally, we add the remaining elements e among b1, . . . , bt not belonging to D,

starting with the smallest such e and working upward. To do so, we insert e into

the p-th compartment opened by the element e∗, where p ∈ [α] is the color assigned

to e. Finally, we subtract r from all elements inserted into C ′, which completes the

construction of C ′.

We repeat the procedure for each special block C to obtain the r special cells of
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ρ. Putting together the various ordinary and special cells that have arisen above

completes the construction of ρ ∈ Sr(n, k). Note that if C = {c} for some c ∈ [r],

then the resulting special cell C ′ in ρ contains no elements of [n].

Set f(λ) = ρ. Then one may verify that the mapping f is reversible and hence

yields the desired bijection.

5.3. Equivalence with the Pit Game Model

Recently, Maltenfort [25] investigated (combinatorial and several algebraic) models

for the Hsu-Shiue generalized Stirling numbers in the case when α is a negative

integer. We describe now how this relates to our model.

We mention that in the case when α is a negative integer in the unfair distribution

model, each ball inserted opens or creates −α+ 1 new compartments (while closing

the compartment in which the ball was placed).

The pit game model is based on the basic recursion for S(n, k;α, β, γ).

In a pit game, distinguishable coins are placed one at a time in a predetermined

order such that each coin is placed either into an area known as “the pit” or into

one of several labeled urns. The number of urns available changes according to two

quantities, the number of coins already placed and the number of those coins that

were placed into the pit. For positive integers α, β and γ, an (α, β, γ)-pit game is

one in which after i coins have been placed, of which j coins have gone into the

pit, there are γ + iα + jβ urns. In other words, at the beginning there are γ urns

and when a coin is placed into an urn, the number of urns increases by α and when

a coin is placed into the pit, the number of urns increases by α + β. Maltenfort

showed that S(n, k;−α, β, γ) is the number of pit games involving n coins with k

coins in the pit.

We explain briefly the equivalence to the unfair distribution model. Let δ be an

unfair distribution of n balls into k nonempty ordinary cells with β compartments

and a special cell with γ compartments, such that each ball inserted creates α + 1

new compartments. What pit game δ∗ corresponds to δ? In δ, there is a ball in

the favorite compartment of each of the k ordinary cells. These balls correspond

to the coins that went into the pit, while the balls that are in any of the other

compartments correspond to the coins in the urns.

5.4. Connection to Multiparameter Stirling Numbers

Given a vector

α = {α0, α1, . . . , αn−1},
where αi is real or complex, the generalized factorial is defined as

(x;α)n =

n−1∏
i=0

(x− αi).
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Using this generalization of the factorial, El-Desouky [16] introduced multiparame-

ter Stirling numbers via

xn =

n∑
k=0

s(n, k;α)(x;α)k (22)

and derived the egf formula

∞∑
n=0

s(n, k;α)
tn

n!
=

k∑
j=0

(1 + t)αj

k∏
i=0,i6=j

(αj − αi)
. (23)

Multiparameter Stirling numbers arise in several settings and go by various names

in the literature. Cakic et al. [6] further studied these numbers and showed that a

special case is closely connected to the Hsu-Shiue generalized Stirling numbers.

Let α∗ denote the special case of α where αi = iβ+γ
α for all i. Then the egf in

this special case is given by [6]

∞∑
n=0

s(n, k;α∗)
tn

n!
=
αk

k!

(1 + t)
γ
α

βk

[
(1 + t)

β
α − 1

]k
. (24)

It also holds [6] that

S(n, k;α, β, γ) = αn−ks(n, k;α∗), (25)

which follows from comparing (3) and (24).

We mention here two identities that follow from the preceding results. The

combinatorial proofs are straightforward and therefore omitted.

Corollary 1. If n ≥ 0 and k ≥ 1, then

s(n+ 1, k;α∗) = s(n, k − 1;α∗) +
(
kβ+γ
α − n

)
s(n, k;α∗). (26)

Corollary 2. If n, k ≥ 0, then

s(n, k;α∗) =
n!αk

k!βk

k∑
j=0

(−1)k−j
(
k

j

)(
(β/α)j + (γ/α)

n

)
. (27)

6. An Extension

In this section, we consider a modification of our model, namely, assuming in each

ordinary cell that there is an arbitrary number of favorite compartments. (Note

that often this more closely resembles a real world situation.) More precisely, given
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a positive integer h, let α′1, . . . , α
′
h denote the set of favorite compartments in a cell.

This means that the first element in a particular cell must go in compartment α′1,

the second element in α′2, and so on, until the h-th element. Then there are no

prescribed compartments into which the (h+ 1)-st or subsequent elements must be

placed.

Let S(n,k) = S(n, k;α, β, γ, h) denote the number of (α, β, γ)-partitions satisfy-

ing the above conditions. Note that S(n,k) reduces to S(n, k;α, β, γ) when h = 1.

The S(n,k) array has the following egf formula for a fixed k ≥ 0:

∞∑
n=0

S(n,k)
tn

n!
= (1 + αt)

γ
α

1

k!

(
(1 + αt)

β
α − 1 +

∑h−1
i=1 ((β|α)h − (β|α)i)

ti

i!

(β|α)h

)k
,

(28)

which reduces to (3) when h = 1. To realize (28), note that there is only one way

to arrange i elements in an ordinary cell if 1 ≤ i ≤ h− 1 and (β|α)i
(β|α)h ways if i ≥ h.

It does not appear to be the case that S(n,k) satisfies a two-term recurrence

which extends (7) for general h since one lacks knowledge as to the number of

elements of [n] lying in an ordinary cell where n+ 1 is to be inserted. However, we

do have the following recurrence which generalizes (9).

Theorem 10. For n, k, α, β, γ, h positive integers such that α|β and α|γ, the

following identity holds:

kS(n,k) =

n−h∑
j=k−1

(
n

j

)
(β|α)n−j
(β|α)h

S(j,k− 1) +

n−1∑
j=n−h+1

(
n

j

)
S(j,k− 1). (29)

Proof. For an algebraic proof of (29), one can compute the egf of both sides using

(28) for a fixed k and verify that one indeed gets an equality. For a combinatorial

proof, consider the number n − j of elements of [n] in the marked ordinary cell

within an (α, β, γ)-partition λ enumerated by S(n,k). If 1 ≤ n − j ≤ h − 1 (i.e.,

n−h+1 ≤ j ≤ n−1), then each element must go in a prescribed compartment and

thus there are
(
n
n−j
)
S(j,k− 1) possibilities. If h ≤ n−j ≤ n−k+1, then the smallest

h elements must go in prescribed compartments, which leaves (β − hα|α)n−j−h =
(β|α)n−j
(β|α)h possibilities for the placement of the remaining elements in the marked cell.

Summing over all j then gives the right-hand side of (29).

Considering whether or not the element 1 lies in a special or in an ordinary cell,

and if the latter, the number of additional members of [n] lying in this cell, yields

the following alternate recurrence formula.

Theorem 11. For n, k, α, β, γ, h positive integers such that α|β and α|γ, the
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following identity holds:

S(n,k) = γS(n− 1, k;α, β, γ − α, h) +

n−h−1∑
m=k−1

(
n− 1

m

)
(β|α)n−m

(β|α)h
S(m,k− 1)

+

n−1∑
m=n−h

(
n− 1

m

)
S(m,k− 1). (30)

Let Sn(x) = Sn(x;α, β, γ, h) defined by Sn(x) =
∑n
k=0 S(n,k)xk denote the cor-

responding extension of the generalized Bell polynomials. By (28) and the definition

of Sn(x), we have the egf formula

∞∑
n=0

Sn(x)
tn

n!
= (1 + αt)

γ
α exp

(
x(1 + αt)

β
α − x+

∑h−1
i=1 x ((β|α)h − (β|α)i)

ti

i!

(β|α)h

)
.

(31)

Further, multiplying both sides of (30) by xk, and summing over 0 ≤ k ≤ n, yields

Sn(x) = γSn−1(x;α, β, γ − α, h) +

n−h−1∑
m=0

x

(
n− 1

m

)
(β|α)n−m

(β|α)h
Sm(x)

+

n−1∑
m=n−h

x

(
n− 1

m

)
Sm(x), (32)

which is equivalent to (15) when h = 1. Note that (32) may also be shown directly

by extending the proof given above for (15).
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7. Appendix

We provide here a fairly complete list of the special cases of the Hsu-Shiue Stirling

numbers including some cases that have arisen in the literature after the publica-

tion of [20]. We remark that when α = 0 or β = 0 in the identities below for

S(n, k;α, β, γ), it is understood to be the limiting value obtained as the respective

parameter approaches zero.

• Binomial coefficients (
n

k

)
= S(n, k; 0, 0, 1).

• Stirling numbers of the first kind [17, Chapter 6]

s(n, k) = S(n, k; 1, 0, 0).

• Stirling numbers of the second kind [17, Chapter 6]

S(n, k) = S(n, k; 0, 1, 0).
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• Lah numbers [24]

L(n, k) = S(n, k;−1, 1, 0).

• Carlitz’s degenerate Stirling numbers [7]

S1(n, k|θ) = S(n, k;−1,−θ, 0) and S(n, k|θ) = S(n, k; θ, 1, 0).

• Carlitz’s weighted Stirling numbers [8]

R1(n, k, λ) = S(n, k;−1, 0, λ) and R(n, k, λ) = S(n, k; 0, 1, λ).

• Howard’s weighted degenerate Stirling numbers [19]

S1(n, k, λ|θ) = S(n, k;−1,−θ, λ− θ) and S(n, k, λ|θ) = S(n, k; θ, 1, λ).

• Gould-Hopper’s non-central Lah numbers [18] S(n, k; 0, 1,−a+ b).

• Charalambides-Koutras’ non-central C numbers [9] S(n, k; 1
s , 1,−a+ b).

• Riordan’s non-central Stirling numbers [32] S(n, k; 1, 0, b− a).

• Tsylova’s Stirling numbers [37]

Aα,β(n, k) = S(n, k;α, β, 0).

• Todorov’s Stirling numbers [36]

an,k(x) = S(n, k; 1, x, 0).

• Ahuja-Enneking’s associated Lah numbers [1]

Br(n, k) = rnS(n, k;−1

r
, 1, 0).

• Broder’s r-Stirling numbers [5][
n

k

]
r

= S(n, k;−1, 0, r) and

{
n

k

}
r

= S(n, k; 0, 1, r).

• r-Lah numbers [31] ⌊n
k

⌋
r

= S(n, k;−1, 1, 2r).

• Whitney numbers [4]

wm(n, k) = S(n, k;−m, 0, 1) and Wm(n, k) = S(n, k; 0,m, 1).
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• r-Whitney numbers [10]

wm,r(n, k) = S(n, k;−m, 0, r) and Wm,r(n, k) = S(n, k; 0,m, r).

• r-Whitney-Lah numbers [10]

Lm,r(n, k) = S(n, k;−m,m, 2r).

• translated Whitney numbers of both kinds [3][
n

k

](α)
= S(n, k;−α, 0, 0) and

{
n

k

}(α)

= S(n, k; 0, α, 0).

• translated Whitney-Lah numbers [3]⌊n
k

⌋(α)
= S(n, k;−α, α, 0).

• translated r-Whitney numbers [3][
n

k

](α)
r

= S(n, k;−α, 0, r),
{
n

k

}(α)

r

= S(n, k; 0, α, r), and⌊n
k

⌋(α)
r

= S(n, k;−α, α, r).

• generalized r-Lah numbers [33]

Ga,b(n, k) = S(n, k;−a, b, (a+ b)r).


