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Abstract

Lonesum matrices are matrices that are uniquely reconstructible from
their row and column sum vectors. These matrices are enumerated by the
poly-Bernoulli numbers; a sequence related to the multiple zeta values with a
rich literature in number theory. Lonesum matrices are in bijection with many
other combinatorial objects: several permutation classes, matrix classes, acyc-
lic orientations in complete bipartite graphs etc. Motivated of these facts,
we study in this paper lonesum matrices with restriction on the number of
columns and rows of the same type.
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1. Introduction

Lonesum matrices are 01 matrices that are uniquely reconstructible from their
row and column sum vectors. They play in discrete tomography an important role.
Discrete tomography is dealing with the retrieval of information about objects from
the data about its projections. One of the first problems that was discussed was
the problem of reconstruction of a 01 matrix from its column and row vectors [12].

Recently, an interesting application arose in systems biology. One of the fun-
damental question in systems biology is how a small number of signaling inputs
specifies a large number of cell fates through the coordinated expression of thousand
of genes. In [11] the authors used sequential logic to explain biological networks.
The authors reduced the problem of determining the number of accessible configu-
rations by introducing the connectivity matrix representation of a network to the
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problem of finding the number of matrices satisfying certain patterns. It turned
out that the connectivity matrix of the ratchet model is a lonesum matrix.

One of the crucial property of lonesum matrices is that they avoid the permu-
tation matrices of size 2 × 2. (A matrix avoids a 2 × 2 matrix B if it does not
contain it as a submatrix, i.e. there are no row and column indices i, i′, j, j′ such

that
(

ai,j ai,j′

ai′,j ai′,j′

)
= B.)

Ryser [12] showed that this is an alternative characterization of lonesum matri-
ces.

Theorem 1.1 ([12]). A 01 matrix is lonesum if and only if it does not contain any
of the two submatrices:

(
1 0
0 1

)
,

(
0 1
1 0

)
.

One direction of this theorem is obvious: in the case of existence of one of the
submatrices above we can switch it to the other one without changing the row and
column sum vectors.

Lonesum matrices have interesting combinatorial properties and they are in
bijection with many other combinatorial objects. See [2, 3] for an actual list of
the related objects. As every matrix, lonesum matrix is a sequence of the column
vectors. However, since in a lonesum matrix the two permutation matrices are
forbidden, there are some constraints on the columns that can exist together in
the same matrix. The avoidance of the two forbidden submatrices restricts the
structure of these matrices. A lonesum matrix is uniquely determined by a pair[of
ordered partitions of the sets of column and row indices. Since this bijection is
very important for us, we will describe it in details later.

Brewbaker used these two interpretations to derive combinatorially two formu-
las for the number of lonesum matrices [5].

min(n,k)∑

m=0

m!

{
n+ 1

m+ 1

}
m!

{
k + 1

m+ 1

}
= (−1)n

n∑

m=0

(−1)mm!

{
n

m

}
(m+ 1)k.

These numbers are the poly-Bernoulli numbers (with negative k indices). Poly-
Bernoulli numbers were introduced analytically in the 1990’s by Kaneko [9]. Since
then there were an amount of generalizations and analogous of these numbers
investigated.

The wealth of combinatorial properties, connections, and applications moti-
vates us to investigate lonesum matrices in more details. For instance, considering
lonesum matrices without any all-zero column revealed the connection to the well-
studied research topic of permutation tableaux [3]. In this paper we study lonesum
matrices with restrictions on the number of columns and rows of the same type.
We derive the double exponential function, an exact formula, a recursion and some
properties of these matrices. We want to keep the paper self-contained, under-
standable also for readers who are not familiar in the topic. For this reason, we
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recall all the necessary informations, relevant identities with proofs, and describe
the bijections on that the derivation of the formulas rely.

2. Enumeration of restricted lonesum matrices

We will need some terminology. Let c(M) (resp. r(M)) denote the number of
columns (resp. the number of rows) of the matrix M . We call the type of the
column (resp. row) the column (resp. row) itself, i.e., two columns have different
types, if they differ at least at one position. Let C(M) (resp. R(M)) denote the set
of the columns (resp. rows) of different types in a lonesum matrix M . We call the
sum of the entries (equivalently the number of 1 entries) in a column (resp. row) the
weight of the column (resp. row). It can be shown that columns of different types in
a lonesum matrix have different weights. Moreover, for any two columns ci and cj
with w(ci) < w(cj) cj has also 1 entries at the positions of 1’s in ci. This property
follows from the characterization of lonesum matrices with forbidden submatrices.
Should ci namely have a 1 at a position where cj has a 0, one of the matrix of the
forbidden set would appear. The same argument works for the rows. It is easy –
but important – to see that the number of columns of different type with weight at
least one is equal to the number of rows of different types with weight at least one.
It is meaningful to order the columns in C(M) (resp. R(M)) according to their
weights. We call the sequence of the different column vectors (resp. row vectors) of
a lonesum matrix that are ordered by their weight (c1, c2, . . . cm) (resp. (r1, . . . , rm))
the column sequence (resp. row sequence) of the matrix. In this order ci+1 can be
obtained from ci by switching some 0s to 1s.

Let L≤d denote the set of lonesum matrices without all-zero columns and rows
that have at most d columns (resp. rows) of the same type. L≤d(n, k) denotes the
set of lonseum matrices with the properties given above of size n × k. Our main
theorem concerns with the enumeration of the set L≤d(n, k). Since partitions, in
particular restricted partitions, play a crucial role in the next section we recall some
facts about partitions and its counting sequence.

2.1. Restricted partitions

The number of partitions of an n element set into m non-empty blocks is given
by the Stirling numbers of the second kind

{
n
m

}
. Restriction on the size of the

blocks of the partition leads to the restricted Stirling numbers of the second kind.
Partitions with this restrictions arose recently in several problems [1, 7, 10]. Let{
n
m

}
≤d denote the number of partitions of an n element set into m non-empty

blocks such that there is no block that consists of more than d elements. We recall
some properties according to [10].

Let Pm1,...,md
(n) denote the number of partitions of n with mi blocks of size i.
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Then we have
{
n

m

}

≤d
=

∑
∑

mi=m;∑
imi=n

Pm1,...,md
(n).

A formula for Pm1,...,md
(n) can be derived using combinatorial argumentations the

following way: we associate to each permutation of n a partition Pm1,...,ml
(n). The

first m1 element are in the blocks of size d, the next 2m2 elements will form the
blocks of size 2, and so on. For i, we cut the imi elements into blocks the most
natural way, the first i element form one block, the next i elements another block
and so on. This way we associated the same partition to certain permutations. For
instance, let n = 12, m1 = 2, m2 = 3, m3 = 0, m4 = 1. Then to both permutations
π = 85 2 10 3 7 6 12 1 4 9 11 and σ = 58 10 2 12 6 3 7 4 9 11 1 the partition

P2,3,0,1(12) = {5}{8}{2, 10}{3, 7}{6, 12}{1, 4, 9, 11}

will be associated. The class of permutations with the same associated partition
contains

(1!)m1m1!(2!)
m2m2! · · · (d!)mdmd!

permutations, since permuting the elements inside a block and permuting the blocks
of the same size does not influence/change the associated partition. Hence, we have

{
n

m

}

≤d
=

∑
∑

mi=m;∑
imi=n

n!

(1!)m1m1!(2!)m2m2! · · · (d!)mdmd!
.

It is clear that if d > n−m then
{
n
m

}
≤d =

{
n
m

}
and if m < dnd e then

{
n
m

}
≤d = 0.

The exponential generating function can be derived using the symbolic method
[8]. In the appendix we recall some ideas, definitions, translation rules of the
symbolic method that we use in this paper. A partition is a set of sets, so taking
the restriction on the number and size of the blocks also into consideration the
construction is the following:

SETm(SET>0,≤d(Z)),

where Z is the atomic class, SETm denotes the class of m-sets, and SET>0,≤d
denotes the class of sets with sets of size greater than 0 but at most d. The sym-
bolic method allows us to turn this construction immediately into the generating
function:

∞∑

n=0

{
n

m

}

≤d

zn

n!
=

(z + z2

2! + · · ·+ zd

d! )
m

m!
.

Using the notation introduced in [10]:

Ed(z) =

d∑

i=0

(zi)

i!
,

46 B. Bényi



the generating function can be written in the form:

∞∑

n=0

{
n

m

}

≤d

zn

n!
=

(Ed(z)− 1)m

m!
.

For calculations of values a recurrence relation could be helpful. A partition of n
elements can be obtained from a partition of n− 1 elements by adding a new, the
nth element to the partition. It can form a single new block or we can add it to
a block of size at least 1. In the first case we can do this in

{
n−1
m−1

}
≤d ways. We

obtain different kind of recurrence relations as we keep track of different properties
of the block into that the nth element was added. When we just say that we put
it into one of the remaining blocks, we have to reduce the m

{
n−1
m

}
≤d ways with

the number of cases when we destroy the restriction on the size of the blocks. So,
what is the number of these "bad" cases? Choose a d element block (to put the
nth element into this block) in

(
n−1
d

)
ways and take an arbitrary partition of the

remaining n− d− 1 elements into m− 1 blocks of size at most d. Hence,
{
n

m

}

≤d
=

{
n− 1

m− 1

}

≤d
+m

{
n− 1

m

}

≤d
−
(
n− 1

d

){
n− d− 1

m− 1

}

≤d
.

We can consider exactly the blocksize of the block into that we the nth element
add. Choose the block of size i (i = 0, 1, . . . d− 1), a set of size i out of the n− 1
elements, and the remaining n− d− i elements will form a restricted partition.

{
n

m

}

≤d
=
d−1∑

i=0

(
n− 1

i

){
n− 1− i
m− 1

}

≤d
.

The interested reader can find more identities involving restricted Stirling numbers
of the second kind in [6, 10].

2.2. The proof of the main theorem
Now we are ready to enumerate restricted lonesum matrices and prove the main
theorem.

Theorem 2.1. The number of lonesum matrices without all-zero columns and rows
that have at most d columns (resp. rows) of the same type is given by the following
formula:

|L≤d(n, k)| =
min(n,k)∑

m=0

m!

{
n

m

}

≤d
m!

{
k

m

}

≤d
.

Proof. Let M ∈ L≤l(n, k). Let m denote the length of the column (resp. row)
sequence, i.e. the number of different columns in the matrix M . Rearrange the
columns and the rows of M according their weights in decreasing order obtaining
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M∗. From the property of the column sequence and row sequence it follows that
M∗ has a staircase shape. To a horizontal step in this staircase shape belong some
indices, the indices of the columns which have their last 1 entry at the height
of this horizontal step. These columns have obviously not only the same weight,
but are of the same type. Similarly, to each vertical step belong some indices,
the indices of the rows which have their rightmost 1 entry at the position of the
particular vertical step. In other words, to the columnsequence (c1, c2, . . . cm) we
can associate an ordered partition of n into m blocks that we obtain the following
way: the ith block consists of the indices of the positions in that ci−1 and ci differs,
the positions where ci−1 has 0s and ci has 1s. The first block contains the positions
of 1 entries of the column c1. Analogously, to the row sequence we associate an
ordered partition of k into m non-empty blocks. Hence,M∗ is uniquely determined
by two ordered set partitions of the index sets {1, . . . , n} and {1, . . . , k} both into
m non-empty blocks. Since we have the restriction on the columns and rows, the
blocks of the partitions consist of at most d elements.

Example 2.2. Consider the matrix M :

M =




0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 1 0 1
1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1
1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1




9 1

5

1 6 7 2

4 8 3

6

8

2 3 5 4

7

1

0
Figure 1: The rearranged matrix M∗ and the associated set parti-

tions

The two ordered partitions that are associated to the matrixM are 9|176|48|235
and 15|2|368|47.
Corollary 2.3. Let Lr≤d(n, k), (resp. Lc≤d(n, k)) denote the set of lonseum ma-
trices of size n×k without all-zero columns and rows such that the number of rows
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(resp. the columns) of the same type is at most d, while there is no restriction on
the number of columns (resp. rows) of the same type. Then we have

|Lr≤d(n, k)| =
min (n,k)∑

m=0

m!

{
n

m

}

≤d
m!

{
k

m

}
,

|Lc≤d(n, k)| =
min (n,k)∑

m=0

m!

{
n

m

}
m!

{
k

m

}

≤d
.

Let L≤d(x, y) be the double exponential generating function of the lonesum
matrices that contain at most d columns and rows of the same type and every row
and column contains at least one 1 entry.

L≤d(x, y) =
∑

M∈L≤d

xr(M)

r(M)!

yc(M)

c(M)!
.

Theorem 2.4. We have

L≤d(x, y) =
1

Ed(x) + Ed(y)− Ed(x)Ed(y)
.

Proof. Ordered pairs of restricted partitions can be viewed as a sequence of pairs
of sets of size at least 1 and at most d of an [n] and a [k] element set. Therefore,
our construction is:

SEQ (SET>0,≤d(X )× SET>0,≤d(Y)) ,

where X and Y are atomic classes. The symbolic method [8] tells us that this
construction translates into the generating function:

L≤d(x, y) =
1

1− (Ed(x)− 1)(Ed(y)− 1)
.

After simplification we obtain the theorem.

The correspondence that was described in the proof of the main theorem (The-
orem 2) implies that the matrices of the set L≤d can be characterized an alternative
way.

Theorem 2.5. Let M be a 01 matrix. M belongs to the set L≤d(n, k) if and only
if the following three properties hold:

i. every column and row consists at least one 1 entry, i.e. the matrix does not
contain any all zero columns and all zero rows,

ii. two consecutive columns in the column sequence differ only at most by d
entries, i.e. w(ci+1) − w(ci) ≤ d for all i = 1, . . . ,m − 1, where m is the
length of the column sequence,
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iii. two consecutive rows in the row sequence differ only at most by d entries, i.e.
w(ri+1)−w(ri) ≤ d for all i = 1, . . . ,m− 1, where m is the length of the row
sequence.

Proof. The theorem follows from the bijection given in the proof of Theorem 2.

Remark 2.6. Poly-Bernoulli numbers of negative k indices enumerate the lonesum
matrices of size n × k. In [10] the authors defined the incomplete poly-Bernoulli
numbers analogously to the poly-Bernoulli numbers using restricted Stirling num-
bers of the second kind. This analytical definition does not lead to positive integers
and does not count the lonesum matrices with the restriction given above.

However, because of the strong connection to poly-Bernoulli numbers we intro-
duce for the number of the set L≤d(n, k) the notation pB(n, k)≤d.

The following two properties of pB(n, k)≤d is immediate.

i. The numbers pB(n, k)≤d are in the parameters n and k symmetric:

pB(n, k)≤d = pB(k, n)≤d

ii. L≤d(n, k) is not empty if and only if dnd e ≤ k ≤ nd, i.e.

pB(n, k)≤d = 0, if k <
⌈n
d

⌉
or k > nd

Proof. (i.) It is obvious from the combinatorial definition.
(ii.) The common length of the column sequence and row sequence, m has to

satisfy:

max

(⌈n
d

⌉
,

⌈
k

d

⌉)
≤ m ≤ min(n, k).

Next we derive a recursive relation, though this recursion is too complicated for
practical use. It shows only the simple recursive structure of these matrices.

Theorem 2.7. The following recursive relation holds for the number of restricted
lonesum matrices, pB(n, k)≤d, for n ≥ 1 and k ≥ 1:

pB(n, k)≤d =
∑

ni,kj∈{1,...d}
i,j∈{1,2}

(
n

n1, n2

)(
k

k1, k2

)
pB(n− (n1 + n2), k − (k1 + k2))≤d,

where
(

n
n1,n2

)
denotes the multinomial coefficient.

Proof. Let M be a matrix in L≤d(n, k) with column sequence (c1, . . . cm) and row
sequence (r1, . . . rm). cm is an all-1 row, that differs from cm−1 by at most d
positions. Similarly, for rows. Delete from the matrix M the all-1 columns and
rows obtaining M̂ . Clearly, the column and row sequence of M̂ is obtained from
the column and row sequence ofM by deleting cm, rm, r1, and c1. Let n1 = w(r1),
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k1 = w(c1), n2 = w(rm)−w(rm−1), k2 = w(cm)−w(cm−1). The M̂ is an arbitrary
matrix of the set L≤d(n− n1 − n2, k− k1 − k2). The positions of 1 in r1,c1 can be
choosen in

(
n
n1

)
resp.

(
k
k1

)
ways, and the positions of 1 entries in cm, rm that are

not in cm−1 resp. rm−1 can be choosen in
(
n−n1

n2

)
resp.

(
k−k1
k2

)
ways.

For the special case d = 1 only the square matrix n× n exists and the theorem
reduces to the fact that the number of lonesum matrices of size n× n where each
column and each row differs is (n!)2. It is maybe interesting that indeed such a
lonesum matrix encodes a pair of permutations of [n].

Example 2.8. The two permutations (written in one-line notation): π = 2471365
and σ = 3156724 is coded in the matrix P .




1 0 1 1 1 1 1
0 0 0 0 1 1 0
1 1 1 1 1 1 1
0 0 0 0 1 0 0
1 0 1 0 1 1 1
1 0 1 0 1 1 1
1 0 1 0 1 1 0
0 0 1 0 1 1 0
0 0 0 0 1 0 0




The special case d = 2may be of interest because it involves the Bessel numbers,
the coefficients of the Bessel functions. An explicit formula is

B(n, k) =
n!

2n−k(2k − n)!(n− k)! .

B(n, k) [13] counts the number of involutions of n with k pairs. Equivalently, the
k-matchings (matching with k edges) of the complete graph Kn. We give in Table 1
the values of pB(n, k)≤2 for small n and k, i.e., the number of lonesum matrices in
that a given type of columns (or rows) appears at most twice.

n/k 1 2 3 4 5 6
1 1 1
2 1 4 12 12
3 12 72 252 540 540
4 12 252 1908 9000 2916
5 540 9000 80100 483300
6 540 29160 483300 4932900

Table 1: pB(n, k)≤2

Remark 2.9. The recent author investigates with J. L. Ramírez lonesum matrices
further restrictions on the number of columns and rows of the same type in a paper
[4].
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3. Appendix

The symbolic method [8] is a powerful method in modern combinatorics for the
determination of generating functions. It develops a systematic translation mecha-
nism between combinatorial constructions and operations on generating functions.
This translation process is purely formal. A list of the translation rules of the
core constructions translates into generating functions or into equations relating
generating functions was given in [8]. These basic constructions enable us to take
into account structures that would be hard to deal with otherwise.

A combinatorial class is a set of objects with a notion of size attached so that the
number of objects of each size in A is finite. A counting sequence of a combinatorial
class is the sequence of integers (An)n≥0 where An is the number of objects in class
A that have size n. The exponential generating function of a class A is

A(z) =
∑

n≥0
An

zn

n!
=
∑

α∈A

z|α|

|α|! .

It is said that the variable z marks the size in the generating function. An =
n![zn]A(z), where [zn] denotes the coefficient of zn in the function A(z).

An object is labeled if each atom bears an integer label, in such a way that all
the labels occurring in an object are distinct. A labeled object may be relabeled
in a consistent way: the order relation among labels has to be preserved.

The neutral object ε has size 0 and has no label:

E = {ε} → E(z) = 1.

The atomic class Z is formed of a unique object of size one and label 1:

Z = {1} → Z(z) = z.

B ∪ C The union of two classes consists of objects that are objects of the class B
or of the class C. The translation rule is:

A = B ∪ C → A(z) = B(z) + C(z)

B × C The labeled product of B and C is obtained by forming pairs (β, γ) with
β ∈ B, γ ∈ C and performing all possible order-consistent relabelings. The
translation rule is:

A = B × C → A(z) = B(z)C(z)

SEQk(B) The kth power of B is defined as (B× · · · ×B) with k factors equal to B.
The translation rule is:

A = SEQ(B)→ A(z) = B(z)k
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SEQ(B) The sequence class of B is defined by

SEQ(B) := {ε} ∪ B ∪ B × B ∪ · · · =
⋃

k≥0
SEQk(B).

The translation rule is:

A = SEQ(B)→ A(z) =
∞∑

k=0

B(z) =
1

1−B(z)

SETk(B) The class of k-sets formed from B is a k-sequence modulo the equivalence
relation that two sequences are equivalent when the components of one are
the permutation of the components of the other. The translation rule is:

A = SETk(B)→ A(z) =
1

k!
B(z)k

SET(B) The class of sets formed from B is defined by

SET(B) = {ε} ∪ B ∪ SET2(B) ∪ · · · =
⋃

k≥0
SETk(B)

The translation rule is:

A = SET(B)→ A(z) =
∞∑

k=0

1

k!
B(z)k = eB(z)

A set partition is a set of sets: SET(SET≥1(Z)) and a surjection (ordered
partition) is a sequence of sets: SEQ(SET≥1(Z)).
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