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Abstract: In the first two sections of the paper, stream flow is investigated on a probability 

theoretical basis. We will show that under some realistic conditions its probability 

distribution is of gamma type. In the model of the third section the optimal capacity of a 

storage reservoir is determined. In the model of the fourth section optimal water release 

policy is sought, given that water demands should be met by a prescribed large probability. 

Finally, in the last fifth section, in addition to the before mentioned reliability type 

constraint an upper bound is imposed on the number of days when demands may not be met 

and the cost of the intake facility is to be minimized1. 
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1 Secondary Stochastic Processes Derived by a 

Poisson Process 

The use of Poisson type stochastic processes is frequent in hydrology. Presently, 

we assume that the sequence of rainfall events follows a Poisson process. That is, 

if  I  denotes the (random) number of rainfalls in a time interval I, then 

a) for all nII ,,1   interval systems, where any two intervals have no common 

inner points, the random variables    nII  ,,1   are independent, 

b)  I  has Poisson distribution with parameter   0I . 

                                                           
1  The problem of finding storage reservoir capacity was formulated by István Zsuffa many 

years ago. The detailed elaboration of the problem is more recent and is due to the first 

two authors who offered the Hungarian version of this paper appeared in Alkalmazott 

Matematikai Lapok 27 (2010) 175-188 to the memory of their friend and co-worker, 

István Zsuffa. The first author many years ago planned to publish the paper in English, 

too. After András Prékopa passed away last year, this task remained to the second author, 

who offers this paper to the memorial volume of Acta Polytechnica Hungarica. 

mailto:szantai@math.bme.hu
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A secondary process derived by a Poisson process means that to the random 

events of the Poisson process, in our case to the time points of rainfalls, a random 

secondary phenomenon is ordered, which is now a random flood wave. Let denote 

the random field of the secondary events Y. On this random field more probability 

measures are defined. For discussing secondary processes an appropriate tool is 

the so called product space method, see [3]. This consists of regarding the 

secondary process in the set of the element pairs (t, y), with other words in the 

product space  YT  , where T is a subset of the time axis and t is one of its 

elements. A special run of the secondary process, that is its realization means a 

random point system in the space YT  . Indeed, if  ,,,,, 2101 tttt is the 

Poisson-type point process and  ,,,,, 2101 yyyy  is the series of the appropriate 

secondary phenomena then the realization of the secondary process can be 

characterized by the 

        ,,,,,,,,, 22110011 ytytytyt   

random point system in the space YT  . 

The main theorem of the product space theory on secondary processes [3] claims 

the following.  

If the selection from the space Y of the secondary phenomena belonging to 

different points of the Poisson process is serially independent and identically 

distributed with the same probability measure  , then the random point system in 

the space YT   is also of Poisson type with parameter measure   .  

It may occur that the secondary phenomena belonging to the points of the Poisson 

process are serially independent but their probability distribution depends on t. 

This means that the recession of a flood wave depends on the time when the flood 

wave was initiated. In this case, one has to use measures t  instead of the single 

measure  . Then the parameter measure belonging to a set D of the random 

Poisson type point system in the product space, is determined by the following 

integral  

   
C

tt tD d ,        (1) 

where C is the projection of D on the set T and tD  is the intersection of the set D 

with that subset of YT   on which t is constant i.e.   DytyDt  , . 

The number of random points belonging to the set D of the product space  YT   

can be denoted as  D . So integral (1) equals to   DE  . 

For simplicity we suppose in the following that t  is independent of t. 

A different treatment of the theory of secondary processes can be found in [10]. 
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2 Streamflow Probability Model Based on the Theory 

of Secondary Processes 

Let the flow response to rainfall depth   be characterized by function  ,tf , 

where   is a random variable. One possible empirical version of this function is 

  0,e, 1   tttf t ,         (2) 

where  and  are positive parameters depending on watershed characteristics. 

Let the relationship between rainfall and runoff at time point it  be described by 

the function  

  iii ttttf  ,,  ,        (3) 

where the random variables i  are serially independent. Streamflow t  is 

described by the superposition of the functions (3), i.e. the function: 

  t

tt

ii

i

ttf  


, . 

We determine the probability distribution of the random variable t  for the case 

of function (2). 

From our main theorem it follows that the number of runoff events between limits 

(a,b) follows Poisson distribution with a parameter given by the integral 

      





t

xt xbxtaP de
1

 
.     (4) 

In the case of a=y, b=y+dy and supposing that   xx dd   , where 0  

constant, we get for this: 

    





t

xt xyyxtyP dde
1

 
 

 


 

0

1 dde vyyvyP v    

 


 



0

e dde1
d

d 1

vy
y

vy v


  




 



0

e1 dydee
1

vv vyv v   
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where   is exponentially distributed with expected value /1 . It is not essential 

to suppose the exponential distribution; we may use any other probability 

distribution, too. 

The probability distribution function of streamflow at time point t can be 

determined in the following way. Let denote  I  the number of individual runoff 

events in interval I. Then according to the earlier results  I  is Poisson 

distributed with parameter (4) in the case of  baI , . Accordingly, the 

characteristic function of the probability distribution we are looking for is: 

      





 













0
0

1e1

0

dydee1ed1e

ee
vvyE vvyviuyiuy 

    (5) 

In the case of 1  we get as result: 

 




0

y-

dy
e

1e

e
y

iuy






 

which is the characteristic function of a gamma distribution. Namely, if 1 , 

then the equation (5) can be continued as 

   








  










00
0

1e1 dye
1

1edydee1e

ee

yiuyvvyviuy

y
vv 




    (6) 

The form (6) of the characteristic function of gamma distribution can be found on 

page 92 of book [2]. 

Considerations applied in this section can be transferred to different, possibly 

more complicated  ,tf  functions that include rainfall-runoff relationships too. 

The result not necessarily can be expressed by a formula; however, it always can 

be calculated numerically. As a result we can always provide the probability 

distribution of t . 

3 A Stochastic Programming Model for Determining 

the Optimal Capacity of Irrigation Reservoirs 

Let us regard consecutive time sections (periods) and introduce the following 

notations:  

k  water demand in period k: kkk h   , where kh  is constant 

meaning the total amount of demand, k  is the amount of 

rainfall in period k 
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k  streamflow in period k 

m storage capacity, the decision variable 

M reasonable upper bound for the capacity m 

 mc  cost of the reservoir as a function of its capacity 

 kk m  ,min  amount of water released in period k 

kc  benefit per water unit in period k 

K number of periods 

N number of years 

0p  inflation rate supposed to be constant up to year N 

Let us suppose that the damage in period k is proportional to the amount of water 

shortage.  

The model to be discussed can be formulated for the case of nonlinearly 

increasing penalty, too. 

The random amount of damage generated in period k is described by the random 

variable 

  
 



 




otherwise.,0

if, kkkkk

kkkk

c
c


  

Regarding the number of K consecutive periods, the expected value of the total 

amount of generated damages will be  


K

k

kE
1

 . If we want to minimize the 

expected value of the total amount of generated damages summarized over the 

current and the next consecutive N years, then regarding the expected present 

value of the damages, we have to solve the following optimization problem: 

   
 

Mm
p

Emc
i

N

i

K

k

k 

















 

 

0supposing,
1

1
min

0 1

  (7)  

Problem (7) is a single variable optimization problem, and the minimum of the 

objective function is sought on the interval  M,0 . We show that the sum in the 

objective function is a convex function of m. It is enough to show the convexity 

for one term of the sum. Let kG  and kF  denote the probability distribution 

function of the random variables k  resp. k , and kf  the probability density 

function according to kF . Then by definition of the random variable k  we get: 
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    


 kkk

k

EE
c


1

 

         





m

kk

m

kk zzfmEzzfzE dd

0

                  (8) 

          mFxxGzzfxxG k

m

k

m

k

z

k 













  



1d1dd1

0

 

          mFxxGzyzfzyG k

m

k

m

kk  


1d1dd1

0 0

 

Here we used the fact that if a random variable   has probability density function 

 xf , probability distribution function  xF  and its expected value exists, then it 

is easy to check by partial integration that for any real number z we have 

         


 

zz

xxFxxfzxzE d1d  

One can check the convexity of the function    kk Ec /1  by differentiating twice 

the formula (8). As Nkck ,,1,0  , it follows that  kE   and the sum of these 

is also convex. As 0p  it is clear that the expected damage summed for N years 

and transformed to present value is also a convex function of the variable m. If the 

function  mc  is also convex then the whole objective function is convex. 

However, if  mc  is not convex, then the convexity of the objective function 

cannot be proved, but in some special cases it may be convex as it can be seen 

also in our example. The optimization can be done relatively simply. The 

distribution of streamflow can be selected to be gamma and the distribution of 

water demands can be supposed to be normal or gamma, too. 

The model (7) can be extended by prescribing reliability type constraints for the 

random water demand to be met with a high probability. 

We will illustrate the model (7) with an example provided in [5] including the 

stochastic programming model applied to a serially linked water reservoir system. 

Now we regard only the first reservoir out of the two serially linked reservoirs for 

three consecutive periods (June, July and August). We suppose that the random 

variables 321 ,,  , describing the random water demands, are independent of 

each other and the random streamflow is gamma distributed with the following 

parameters: 
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Table 1 

Parameters of the gamma distributed random water demands 

 expected value (
3m ) standard deviation(

3m )     

1  215 760 327 120 0.000 002 016 0.435 038 479 

2  433 608 243 600 0.000 007 307 3.168 400 000 

3  484 416 214 368 0.000 010 541 5.106 426 041 

Similarly we suppose that the random variables 321 ,,  , describing random 

streamflow values are independent of each other and of the random water 

demands and have gamma distribution with the following parameters: 

Table 2 

Parameters of the gamma distributed random streamflow values 

 expected value (
3m ) standard deviation(

3m )     

1  464822 186984 0.000013295 6.179658245 

2  320576 266040 0.000004529 1.452005071 

3  266040 234040 0.000004857 1.292152284 

The cost in HUF of a reservoir with capacity m let be the following piecewise 

linear function 

 
 









500000mif,50000015050000000

500000if,100

m

mm
mc  

and let us suppose that we cannot build up any reservoir with capacity greater than 
300000025 m . 

The benefit of water/
3m  in the consecutive periods let be HUF2001 c , 

HUF3002 c , HUF2503 c . Let 10N  and the constant inflation rate 

05.0p . Then the single variable optimization problem (7) can be solved by 

some standard Matlab routines (gamma, gammainc, quad, dblquad, fminbnd). 

The optimal solution of the above described test problem is 3391580 mm   and 

the optimum value according to this solution equals to HUF000146523 . Fig. 1 

shows the objective function values of the optimization problem (7) for its whole 

domain.  
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Figure 1 

Diagram of the objective function values of optimization problem (7) 

4 Optimization of Reservoir Release Policy 

Let us regard consecutive periods and introduce the following notations:  

0  amount of water in the reservoir at beginning the first period 

k  amount of streamflow in period k 

)( kk ba  smallest (largest) allowed amount of water in the reservoir in 

period k 

kz  amount of release in period k, the decision variable 

N number of periods 

 Nzzf ,,1   present value of the benefit of released water Nzz ,,1   in  

consecutive periods 

m reservoir capacity 

 mc  cost of the reservoir as a function of its capacity 

K upper bound - the cost of  building the reservoir with capacity m 

p reliability level prescribed, close to one 
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The optimization problem is formulated as 

      thatsupposing,,max 1 mczzf N   

pNkbzaP k

k

j

j

k

j

jk 












 


,,1,
11

0                                                 (9) 

Nkmzk ,,1,0  . 

If m is given then we don’t regard it as a variable, otherwise the problem remains 

unchanged. If we want to build into the model the random water demands k , it 

may be done without any further as in Section 3 was discussed. The numerical 

solution of problem (9) is possible if we put some special assumptions on the 

random variables N ,,1  , see the papers [7], [8], [9]. The model (9) can be 

successfully applied to scaling the capacity value m. 

A further variant of model (9) is when the decision-maker may give an upper 

bound K on the cost of building the reservoir with capacity m, c(m). In this case it 

is not necessary to subtract the value  mc  from the objective function and the 

problem of the modified model can be formulated as 

      thatsupposing,,,max 1 mczzf N   

pNkbzaP k

k

j

j

k

j

jk 












 


,,1,
11

0                 (10) 

  NkmzKmc k ,,1,0,   

It's worth mentioning that if the probability distribution of the random variables 

N ,,1   is continuous and their density function is logarithmically concave, then 

the Nzzm ,,, 1   feasible domain of problems (9) and (10) is convex (see for 

example Prékopa [6]). So if  Nzzf ,,1   and  mc  are convex functions, then the 

problems (9) and (10) are convex. 

Let us regard a reservoir for four consecutive months, say April, May, June and 

July, as an example of Problem (10). Let streamflow data follow joint normal 

probability distribution with the following parameters: 

Table 3 

Parameters of joint normal distribution of the random streamflow values 

 expected value 

(
3610 m ) 

standard deviation 

(
3610 m ) 

correlation coefficients 

1  79.74 83.51 1.000 0.284 -0.017 0.047 

2  29.78 63.11 0.284 1.000 0.333 0.198 
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3  -4.52 73.98 -0.017 0.333 1.000 0.579 

4  -43.44 73.96 0.047 0.198 0.579 1.000 

Create the aggregated random variables 

11    

212    

3213    

43214   . 

These random variables as linear transforms of 4321 ,,,   have also normal 

distribution with the transformed expected values, standard deviations and 

correlation coefficients: 

Table 4 

Parameters of joint normal distribution of the random stream flow values 

 expected value 

(
3610 m ) 

standard deviation 

(
3610 m ) 

correlation coefficients 

1      79.740     83.510  1.000  0.859 0.670 0.542 

2    109.520 118.112  0.859 1.000  0.873 0.736 

3    105.000 149.408 0.670 0.873  1.000 0.935 

4     61.560 191.201  0.542 0.736  0.935 1.000 

Let us suppose that in the optimization problem (10) 

  43214321 50807040,,, zzzzzzzzf  , i.e. the total benefit of released water 

is a linear function. Let the cost of the reservoir of capacity m  also be linear 

function:   mmc 50 . For the smallest water level of the reservoir let be 

prescribed 100ka  in all periods 4,3,2,1k ; for the largest water level of the 

reservoir let be prescribed 1000kb  in all periods 4,3,2,1k ; and let us suppose 

that at the beginning of the first period the season starts with full reservoir. If we 

solve the arising optimization problem with different bounds on the building cost 

then the decision-maker can select the economically reasonable capacity. 

Introducing new variables for simplifying the terms inside the probability 
expressing the reliability-type constraint, we solved the following optimization 

problem for different building up cost bounds K: 

   thatsupposing50807040max 4321 zzzz   

1000100 11  zl  
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1000100 212  zzl  

1000100 3213  zzzl  

1000100 43214  zzzzl  

10001000 11  zu  

10001000 212  zzu  

10001000 3213  zzzu  

10001000 43214  zzzzu  

00.90100

444

333

222

111































ul

ul

ul

ul

P









 

.,,,,50 4321 mzmzmzmzKm   

Notice that the probabilistic constraint has been multiplied by 100. As a result, the 

problem can be solved numerically in a more stable way. Then the only difficulty 

is the calculation of the probability values and its partial derivatives. For this we 

can write the probability value in the following form: 

   43214321

444

333

222

111

,,,,,, uuulFuuuuF

ul

ul

ul

ul

P 





































 

     43214321 ,,,,,, uluuFuuluF   

     43214321 ,,,,,, uullFluuuF   

     43214321 ,,,,,, luulFululF   

     43214321 ,,,,,, luluFulluF   

     43214321 ,,,,,, ulllFlluuF   

     43214321 ,,,,,, ululFlullF   

     43214321 ,,,,,, llllFllluF   

where  4321 ,,, xxxxF   denotes the joint normal probability distribution function 

of the random variables 4321 ,,,   with parameters given in Table 4. This means 
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that for the calculation of one probability value we have to calculate 1624   four 

dimensional normal probability distribution function values. 

We prepared the AMPL model of the above defined nonlinear programming 

problem. To calculate values of the multivariate normal probability distribution 

functions the numerical integration code developed by A Genz ([1]) has been 

added to the AMPLE model. Then the problem was solved by the solver LOQO 

for different values of cost bound K. The results are summarized in Table 5. 

Table 5 

Total benefit values of the test problem for different values of K 

Here m is the optimal capacity of the reservoir and zk is the optimal amount of water release in period 

k. All of them are given in 106 m3. K and the total benefit values are given in millions of HUF.   

Number K total benefit m 
1z  2z  3z  4z  

1 10000 36634.493 200.001 200.001 180.665 199.848 0.000 

2 10500 39682.114 210.011 210.011 206.903 209.975 0.010 

3 11000 41250.695 220.003 220.003 212.155 219.996 0.001 

4 11500 42270.302 230.004 230.004 209.583 229.990 0.003 

5 12000 42948.048 240.010 240.010 202.120 239.990 0.003 

6 12500 43378.927 250.012 250.012 191.146 249.973 0.009 

7 13000 43615.155 259.999 259.999 177.390 259.973 0.003 

8 13500 43741.739 269.943 268.574 162.960 269.943 0.002 

9 14000 43792.337 279.971 268.973 151.969 279.971 0.001 

10 14500 43836.424 289.895 268.947 141.354 289.895 0.000 

11 15000 43861.877 299.046 268.963 132.222 299.046 0.002 

Figure 2 represents the possible benefit values according to different cost bounds 

K. This graph may be useful for decision-makers when deciding how much should 

be spent for providing a given reservoir capacity. The graph shows the benefit 

increase of water releases if the amount of money spent for building the reservoir 

is increased. The decision should take into account, of course, that the cost of 

reservoir occurs only once and the benefit of released water can be realized for 

many years. 
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Figure 2 

The benefit of irrigation water in function of the money spent for building a reservoir  

5 Probability Constrained Stochastic Programming 

Model for an Intake Facility 

The capacity of an intake facility, say a pumping station is considered to satisfy 

random water demands (e.g. irrigation) utilizing the available streamflow. Let us 

regard a given time period which can be a month, say August of the year. We will 

prescribe that the number of days with unsatisfied water demands should not 

exceed a given value with a high probability. The model will be described for a 

time interval of n days. We introduce the notations: 

n ,,1    daily available stream flows 

n ,,1    daily rainfalls 

n ,,1    daily water demands 

m  daily capacity of the intake facility, the decision variable 

M  upper bound for capacity m 

 mc   cost of the facility 

b  maximum number of days with unsatisfied water demands in a 

given time period 

p  reliability level prescribed, close to one 
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There is enough water on the k th day if and only if the following relation holds 

  kkk m  ,min .                  (11) 

Let nxx ,,1   be deterministic variables which take on values 0 and 1, only. The 

following relation doesn’t mean any constraint if 0kx , but if 1kx  it is 

equivalent to the constraint (11): 

  kkkk xm  ,min .                  (12) 

Beside (12) for all nk ,,1  prescribing the constraint  

bnxx n 1  

we require that at least bn   out of the constraints (11) be met, i.e. at least 

nxx ,,1   times the opposite of the constraint (11) be met. Then our model can be 

formulated as 

   thatsupposing,min mc  

   pbnkxmP kkkk  ,,1,,min   

bnxx n 1                   (13) 

Mmnkxk  0,,,1,1or0  . 

Like the earlier models, this model also has more variants. Among others, one can 

build into the objective function, a cost factor, that depends on the number of 

days, b. If the random variables Nkkkk ,,1,,,  have continuous joint 

probability distribution and their joint density function is logarithmically concave 

then the constraints of problem (13) except the constraints 1or0kx , define a 

convex feasible set. 
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