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We construct a new bijection between the set of n × k 0–1
matrices with no three 1’s forming a Γ configuration and 
the set of (n, k)-Callan sequences, a simple structure counted 
by poly-Bernoulli numbers. We give two applications of this 
result: We derive the generating function of Γ-free matrices, 
and we give a new bijective proof for an elegant result of 
Aval et al. that states that the number of complete non-
ambiguous forests with n leaves is equal to the number of 
pairs of permutations of {1, . . . , n} with no common rise.
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1. Introduction

We call a 0–1 matrix Γ-free if it does not contain 1’s in positions such that they form 
a Γ configuration; i.e. two 1’s in the same row and a third 1 below the left of these in the 
same column. Γ = 1 1

1 ∗ . For instance, matrix A is not Γ-free because the bold 1’s form 
a Γ configuration, while matrix B is a Γ-free matrix.

A =
(0 1 1 0

1 1 0 0
0 1 0 1

)
, B =

(0 1 0 0
0 1 1 0
1 0 1 1

)
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Table 1
The poly-Bernoulli numbers B(−k)

n .
n, k 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 2 4 8 16 32
2 1 4 14 46 146 454
3 1 8 46 230 1066 4718
4 1 16 146 1066 6906 41506
5 1 32 454 4718 41506 329462

Clearly, we can say that a matrix is Γ-free if and only if it does not contain any of the 
submatrices from the following set:{(

1 1
1 0

)
,

(
1 1
1 1

)}
.

Pattern avoidance is an important notion in combinatorics. Matrices were also investi-
gated from different point of view in this context; both extremal [9] and enumerative 
[11], [12] results are known.

Γ-free 0–1 matrices of size n × k contain at most n + k − 1 1’s [9]. The set of 
n × k 0–1 Γ-free matrices is one of the matrix classes that are enumerated by the poly-
Bernoulli numbers, B(−k)

n [4]. Besides matrix classes that are characterized by excluded 
submatrices there are several other combinatorial objects that are enumerated by the 
poly-Bernoulli numbers. For instance, permutations with a given exceedance set, permu-
tations with a constraint on the distance of their values and images, Callan permutations, 
acyclic orientations of complete bipartite graphs, non-ambiguous forests, etc. For further 
details, including recurrence relations and the original definition of poly-Bernoulli num-
bers via generating function, see [4], [5] and [6]. There is also a nice combinatorial formula 
of the poly-Bernoulli numbers of negative k indices: For k > 0,

B(−k)
n =

min(n,k)∑
m=0

m!
{
n + 1
m + 1

}
m!

{
k + 1
m + 1

}
, (1)

where 
{
n
m

}
denotes a Stirling number of the second kind. Table 1 shows the values 

of B(−k)
n for small k and n.

From (1), we give an obvious combinatorial interpretation of the numbers B(−k)
n , which 

will be regarded as their combinatorial definition in this paper. (This interpretation is 
essentially the same as the one that counts Callan permutations.) On an (n, k)-Callan se-
quence we mean a sequence (S1, T1), . . . , (Sm, Tm) for some m ∈ N0 such that S1, . . . , Sm

are pairwise disjoint nonempty subsets of {1, . . . , n}, and T1, . . . , Tm are pairwise disjoint 
nonempty subsets of {1, . . . , k}. We note that the empty sequence is also a Callan se-
quence with m = 0.

Lemma 1. For k > 0, B(−k)
n counts the number of (n, k)-Callan sequences.
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Proof. For a fixed length m, there are m!
{
n+1
m+1

}
ways to give the sequence S1, . . . , Sm. 

This is because if we partition {1, . . . , n + 1} into m + 1 (nonempty) classes, and order 
the m classes not containing the element n +1 arbitrarily, then we obtain every possible 
S1, . . . , Sm sequences uniquely in this way. (n +1 can be thought as a “dummy” element, 
which is introduced to identify the class containing the elements of {1, . . . , n} \ ∪m

i=1Si

and to allow this set to be empty.) Analogously, there are m!
{

k+1
m+1

}
ways to give the 

sequence T1, . . . , Tm. The sequences (Si)mi=1 and (Ti)mi=1 are independent from each 
other and, trivially, m can be at most min(n, k), so the statement follows from for-
mula (1). �

Now we can state our first main theorem.

Theorem 2. There exists a bijection between the set of Γ-free n × k 0-1 matrices and the 
set of (n, k)-Callan sequences. Thus the number of Γ-free n × k 0-1 matrices is B

(−k)
n .

As mentioned earlier, the Γ-free 0–1 matrices have already been enumerated in [4]. 
In that paper, Bényi and Hajnal take an obvious combinatorial interpretation of poly-
Bernoulli numbers (which is basically the same as ours, Lemma 1) and give a bijective 
proof for the second statement of Theorem 2. Their proof involved a lot of technical 
details and it was still desirable to find a simple bijective explanation for this result; 
a direct simple bijection that exhibits the connection between Γ-free matrices and Callan 
sequences. In Section 2 we define such a bijection, which is essentially different from the 
one in [4]. It reveals the inner structure of Γ-free matrices from a new point of view. 
As an application, we derive the generating function of Γ-free matrices in Section 3. 
Furthermore, we use our bijection in Section 4 to prove bijectively that the set of com-
plete non-ambiguous forests and the set of permutation pairs with no common rise are 
equinumerous.

Γ-free matrices are very closely related to non-ambiguous trees and forests that were 
introduced in [2]. A non-ambiguous tree of size n is a set A of n points: v = (x(v), y(v)) ∈
N

+ × N
+ satisfying the following conditions:

1. (1, 1) ∈ A is the root of the tree;
2. for a given non-root point p ∈ A, there exists one point q ∈ A such that y(q) < y(p)

and x(q) = x(p) or one point s such that x(s) < x(p) and y(s) = y(p) but not 
both;

3. there is no empty line between two given points: if there exists a point p ∈ A such 
that x(p) = x (resp. y(p) = y), then for every x′ < x (resp. y′ < y) there exists a 
point q ∈ A such that x(q) = x′ (resp. y(q) = y′).

This structure can be viewed as a rooted binary tree graph on vertex set Awith root (1, 1)
in which the parent of a non-root vertex p is the nearest q or s from condition 2. The name 
“non-ambiguous” comes from the property that the parent of p can be uniquely recovered 
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Fig. 1. A Γ-free 0–1 matrix and the corresponding non-ambiguous forest. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

from the vertex set A, since either q or s does not exist. In order to be consistent with the 
notion of Γ-free matrices, we slightly modified the original definition of non-ambiguous 
trees (we translated A), and we follow an unusual convention in this paper:

Convention 3. Throughout this paper, the rows of a matrix are always indexed from 
bottom to top and the columns are indexed from right to left.

The characteristic matrix of a finite set A ⊆ N
+ × N

+ is a 0–1 matrix χA with 
maxv∈A x(v) rows and maxv∈A y(v) columns, such that, following Convention 3, there is 
a 1 in position (i, j) of χA, if and only if (i, j) ∈ A. Clearly, the characteristic matrix of a 
non-ambiguous tree is Γ-free by condition 2, so non-ambiguous trees can be thought as 
special Γ-free 0–1 matrices. It turns out that there is a graph theoretic terminology for 
Γ-free 0–1 matrices in literature. A non-ambiguous forest is a finite set A ⊆ N

+×N
+ such 

that χA is a Γ-free matrix without all-0 rows and columns. This is actually the original 
definition given in [2], but alternatively we could say that A is a non-ambiguous forest, if it 
satisfies condition 3 in the definition of non-ambiguous trees and the modified condition 2 
that allows the possibility that neither such a q nor such an s exists. Analogously to trees, 
a non-ambiguous forest has an underlying (rooted) binary forest structure, see Fig. 1. 
We note that non-ambiguous trees are exactly those non-ambiguous forests that have 
one component. We say that a non-ambiguous tree or forest is complete if its vertices 
have either 0 or 2 children.

In [3] Aval et al. presented a bijection between non-ambiguous trees and the corre-
sponding subclass of Callan permutations using associated ordered trees as intermediate 
combinatorial objects. As an easy corollary of the proof of Theorem 2, we deduce the 
number of non-ambiguous forests with characteristic matrix of size n × k in Section 2. 
A special class of non-ambiguous trees has interesting connection to the J-Bessel func-
tion. Let bn denote the number of complete non-ambiguous trees with n internal vertices 
(in OEIS [13] as sequence A002190). Then [2]:

∑
bn

xn+1

(n + 1)!2 = − ln J0(2
√
x),
n�0
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where J0 is the Bessel function. Aisbett [1] and Jin [10] show strong connections of 
complete non-ambiguous trees with a poset of vector partitions.

Let α = (a1, . . . , an) and β = (b1, . . . , bn) be permutations of {1, . . . , n}. We say the 
pair (α, β) has common rise at position i (where 1 � i � n −1), if ai < ai+1 and bi < bi+1
hold at the same time. In [2] Aval et al. made a nice observation. As a corollary, they 
noted that the number of complete non-ambiguous forests with n leaves has the same 
generating function as the number of pairs of permutations of {1, . . . , n} with no common 
rise [7], denoting these quantities by τ(n) and ω(n), respectively,

∑
n�0

τ(n) x
n

n!2 =

⎛⎝∑
n�0

(−1)nxn

n!2

⎞⎠−1

=
∑
n�0

ω(n) x
n

n!2 ;

and asked for a bijective explanation of the equality τ(n) = ω(n). Jin described a bijection 
with the intermediate combinatorial objects of certain heaps [10]. We present a more 
direct bijection in Section 4, based on a labeled forest structure. This is our second main 
result.

Theorem 4. There exists a bijection between the set of complete non-ambiguous forests 
with n leaves and the set of pairs of permutations of {1, . . . , n} with no common rise. 
Thus these sets are equinumerous.

In fact, we prove this theorem in a stronger form; we construct a bijection from the 
set of complete non-ambiguous forests with a fixed set of leaves to the corresponding 
subset of pairs of permutations with no common rise; see Theorem 11 in Section 4.

2. The number of Γ-free 0–1 matrices

In this section we present a proof of Theorem 2. But we need to cite a folklore result 
first.

By rooted forest we mean a vertex-disjoint union of (unordered) rooted trees. Two 
rooted forests with the same vertex set are considered the same, if and only if they have 
the same set of roots and they have the same edge set. In our proofs, the edges will 
usually be directed from parent to child (so the components become arborescences). Fix 
a totally ordered set (V, <). We say that a rooted forest F on vertex set V is increasing, 
if whenever the vertex u is the parent of vertex v in F , then u < v. (See Fig. 2 for an 
example.) We note that in our figures we always list the children of a given parent in 
decreasing order from left to right (their order “does not count”), the tree components 
are listed in the decreasing order of their roots, and we follow this order in our algorithms, 
too.

Notation 5. If v is a vertex of a rooted forest F , then F [v] denotes the rooted subtree of 
F spanned by v and its descendants (children, grandchildren etc.). The root of F [v] is v.
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Fig. 2. An increasing forest on vertex set {1, . . . , 13}.

The following lemma is well known [14]:

Lemma 6. Let V be a finite, totally ordered set. There exists a bijection π from the set 
of increasing forests on vertex set V to the set of permutations of V .

Proof. We can obviously assume, that V = {1, . . . , n} for some n, equipped with the 
natural order. Let F be an increasing forest on V . We will need the pre-order transversal
of a rooted tree T , denoted by α(T ). It is a permutation of the vertices of T which can 
be defined recursively as follows: Let r be the root of T . If T has only one vertex, r, 
then α(T ) := r; otherwise let v1, . . . , vm be the children of r in decreasing order, and set 
α(T ) := rα(T [v1]) . . . α(T [vm]). (The “product” means concatenation here.) Now, if the 
(rooted tree) components of F are T1, . . . , Tk, listed in the decreasing order of their roots, 
then π(F ) is defined to be the permutation α(T1)α(T2) . . . α(Tk). For example, π maps 
the increasing forest in Fig. 2 to the permutation (3, 9, 13, 12, 10, 7, 4, 11, 6, 1, 5, 2, 8), for 
n = 13. It is straightforward to check that π is a bijection, as the lemma states. For 
further details (with a slightly different terminology), see Section 1.5 in [14]. �
Corollary 7. [14] The number of increasing forests on vertex set {1, . . . , n} is n!.

Now we are ready to prove our first main theorem.

Proof of Theorem 2. Let M denote the set of Γ-free n ×k 0-1 matrices, and let S denote 
the set of (n, k)-Callan sequences. Now we define a function φ : M → S, which will be 
proved to be bijective. An example is shown in Fig. 3; the details will be explained in 
Figs. 4–7.

Let M be an arbitrary matrix from M. The rows of M can be identified with the 
numbers 1, . . . , n, and the columns can be identified with the numbers 1, . . . , k, and we 
index rows and columns as described in Convention 3.

We say that an element 1 in M is a top-1, if it is the highest 1 in its column, i.e. if 
there is no 1 above it in its column. There are three types of rows in M : There are the 
all-0 rows; there are the rows that contain at least one top-1, we call them top rows; and 
there are the rows that contain at least one 1 but none of their 1’s is top-1, we call them 
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Fig. 3. A Γ-free matrix and the corresponding Callan sequence (n = 11, k = 12).

Fig. 4. The auxiliary graph GM . (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

special rows. In order to reduce the amount of required formalism, we define φ(M) with 
the help of auxiliary structures.

The auxiliary graph GM . Let G = GM be the following directed graph: The vertices 
of G are the (positions of) 1’s of M . For each non-top 1 vertex u, we add a directed edge 
starting from u and ending at the next (lowest) 1 above u in its column; and there are 
no other edges in G. If the edge e starts from row s and ends in row t, we say that the 
length of e is t − s. Since M is Γ-free, the edges starting from an arbitrary fixed row 
have pairwise distinct lengths. For each special row s, the longest edge starting from s
is called special. We note that this is a valid definition and we underline that no special 
edge starts from a top row. The non-special edges of G are called regular . See Fig. 4 for 
an illustration, where the top-1’s and the special edges are colored red.
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Fig. 5. The auxiliary graph HM and the assigned pairs (R, C). (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

The auxiliary graph HM . The next step is to “project the special edges horizontally”: 
Let H = HM be the directed graph whose vertices are the non-all-0 rows (row indices) 
of M , and for each special edge e of G, there is an edge e′ in H such that if e starts 
from row s and ends in row t, then e′ starts from vertex s and ends at vertex t; and 
there are no other edges in H. H has a very simple structure. Since all edges are directed 
“upwards”, there is no directed cycle in H. All vertices corresponding to a special row 
have outdegree 1, and all vertices corresponding to a top row have outdegree 0. In each 
row of M , only the rightmost 1 can be the end vertex of an edge in G, otherwise a Γ
would be formed; and for this unique possible end vertex v, there is at most one edge 
in G which ends at v, the edge that starts from highest 1 below v in its column (if 
such a 1 exists). This implies that every vertex of H has indegree at most 1. These 
altogether mean that H consists of vertex-disjoint directed paths. The end vertices of 
the path components correspond to a top row, while the other vertices of H correspond 
to special rows. Consequently, the number of components of H is equal to the number 
of top rows in M , this number is denoted by m. Fig. 5 illustrates how H is obtained 
from G: H is the graph on the right; its red vertices correspond to top rows, and the 
black vertices correspond to special rows. (The labels of H will be discussed in the 
next paragraph, and the graph “projected GM” was added to the figure for further 
purposes.)

The collection of pairs (R,C). We assign a pair (R, C) to each component P of H
where R is the set of vertices (row indices) of P , and C is the set of column indices of 
top-1’s in the top row corresponding to the endpoint of P . (On Fig. 5, the pairs (R, C)
are written on the end vertices of the corresponding path components.) After doing this 
for all components, we get a collection of pairs (R1, C1), . . . , (Rm, Cm); we are left to 
define how to permute them to obtain a sequence. The obtained sequence will be an 
(n, k)-Callan sequence, because it has the required properties: The Ri’s are obviously 
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Fig. 6. The construction of the increasing forest FM .

pairwise disjoint nonempty subsets of {1, . . . , n} by construction; the Ci’s are nonempty 
subsets of {1, . . . , k} because every top row contains at least one top-1, and the Ci’s are 
pairwise disjoint because every column of M contains at most one top-1 (all-0 columns 
have no top-1’s, the other columns have exactly one top-1’s).

The auxiliary graph FM . Now we “project the regular edges of G horizontally”. To this 
end, we define a new directed graph F = FM as follows: The vertices of F are the pairs 
(R1, C1), . . . , (Rm, Cm); and for each regular edge e of G, there is an edge ẽ in F , such 
that if e starts from row s and ends in row t, then ẽ is from (Ri, Ci) to (Rj , Cj) where i
and j are the unique indices for which s is contained in Ri and t is contained in Rj ; and 
there are no other edges in F . It turns out that F is a rooted forest. We have seen above 
that the Γ-free property implies that for each row r of M , there is at most one edge in G
that ends in r. This means that if e is a regular edge in G that starts from row s and ends 
in row t, then t is the smallest row index (lowest row) in the set Rj containing t, because 
there is no special edge ending in t. We also note that if s is contained in the set Ri, then 
minRi � s < t = minRj . So we can conclude that for each set Rj, there is at most one 
regular edge in G that ends in a row of Rj (this row can only be the lowest row, and there 
is at most one edge that ends in that row), implying that every vertex (Ri, Ci) in F has 
indegree at most 1. The previous discussion also showed that if ẽ is an edge from (Ri, Ci)
to (Rj , Cj) in F , then minRi < minRj . From these we can see that F is indeed a rooted 
forest (the edges are directed from parent to child), and moreover, F is an increasing 
forest on the set {(R1, C1), . . . , (Rm, Cm)} equipped with the following total order ≺:

(Ri, Ci) ≺ (Rj , Cj)
def⇐⇒ minRi < minRj .

(This order is total, because the Ri’s are pairwise disjoint, so their smallest elements are 
pairwise distinct.) The construction of F is visualized in Fig. 6 (cf. Fig. 5).



204 B. Bényi, G.V. Nagy / Advances in Applied Mathematics 96 (2018) 195–215
Fig. 7. Obtaining the (n, k)-Callan sequence from FM .

The definition of φ. The bijection π of Lemma 6 converts the increasing forest F into a 
permutation π(F ) of the vertices (R1, C1), . . . , (Rm, Cm). Finally, we set φ(M) := π(F ); 
see also Fig. 7. We have already checked earlier that any permutation of the pairs 
(R1, C1), . . . , (Rm, Cm) is an (n, k)-Callan sequence, so φ(M) ∈ S, i.e. the definition of φ
is valid.

Some properties of φ. Before proving the bijectivity of φ, we summarize some prop-
erties of the construction:

(i) The rows in ∪m
i=1Ri are exactly those rows of M that contain at least one 1, the 

columns in ∪m
i=1Ci are exactly those columns of M that contain at least one 1.

(ii) In the row maxRi (from bottom), the top-1’s are exactly in the columns of Ci, for 
i = 1, . . . , m. There are no top-1’s in other rows of M .

(iii) The edges of GM are bijectively associated to the non-top 1’s of M (an edge 
corresponds to the non-top 1 from which it starts).

(iv) If there is an edge e from row s to row t in GM , then the start and end vertex of 
e are in the column of the rightmost 1 of the row t.

(v) The number of edges in HM is equal to the number of special edges in GM . (The 
“projection” e 
→ e′ in the definition of HM is a bijection between the two edge 
sets.)

(vi) The number of edges in FM is equal to the number of regular edges in GM . (The 
“projection” e 
→ ẽ in the definition of FM is a bijection between the two edge sets.)

(vii) If (Rj , Cj) is a child of (Ri, Ci) in FM , i.e. if there is an edge ẽ from (Ri, Ci) to 
(Rj , Cj) in FM , then the regular edge e of GM that corresponds to ẽ ends in row 
minRj and starts in the highest row of Ri that is lower than minRj . (Such a row 
exists, because minRi < minRj by the increasing property of FM .)

The injectivity of the projection in (vi) was implicitly proved when we saw that every 
vertex in FM has indegree at most 1. The last statement of (vii) follows from the facts 
that e cannot start from a higher row of Ri, because it is directed “upwards”, and e
cannot start from a lower row of Ri, because otherwise the regular edge e would be 
longer than the special edge starting from the same row.
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Let a = ((R∗
1, C

∗
1 ), . . . , (R∗

l , C
∗
l )) be an arbitrary (n, k)-Callan sequence. We have to 

show that there is exactly one Γ-free n × k 0–1 matrix M∗ for which φ(M∗) = a.
The injectivity of φ. So we reconstruct M∗ from a. The last step in constructing the 

image of a matrix was the application of the bijection π from Lemma 6. This step is invert-
ible, so we can view a as π−1(a), an increasing forest on the set {(R∗

1, C
∗
1 ), . . . , (R∗

l , C
∗
l )}

with the total order ≺ defined above. Set F ∗ := π−1(a), and let H∗ be the directed graph 
that is the vertex-disjoint union of directed paths Pi whose vertices are the elements of 
R∗

i in increasing order along the path (i = 1, . . . , l). The point is that the top-1’s of M∗

are uniquely determined by property (ii); and we can uniquely determine the projection 
of the edges assigned to the non-top 1’s, using property (v) for special edges and using 
properties (vi)–(vii) for regular edges. On a projected edge we mean a pair (s, t) of rows, 
which can be thought as “it starts from row s and ends in row t” (s < t). Further, we can 
figure out the original column of the projected edge (s, t) once the row t is completely 
filled, by property (iv). A row r is completely filled if we know the positions of non-top 
1’s in that row (the top-1’s are already determined); and for that, we have to project 
back the projected edges starting from r. For this reason, we may need first to fill the 
last rows of the children of (R∗

i , C
∗
i ) in F ∗, where R∗

i � r. These lead to the following 
algorithm for constructing M∗:

• Start with an empty n × k matrix, then fill the rows of {1, . . . , n} \ ∪l
i=1R

∗
i with 0’s.

• Order the vertices of F ∗ in such a way that every non-root vertex precedes its parent 
(this can be done by post-order transversal, for example).

• Process the vertices of F ∗ in this order, and for vertex (R∗
i , C

∗
i ), fill the rows of R∗

i

as follows (i ∈ {1, . . . , l}):
(a) In row maxR∗

i , place 1’s into the columns of C∗
i .

(b) For each child (R∗
j , C

∗
j ) of (R∗

i , C
∗
i ): Let c denote the column of the rightmost 1

in row minR∗
j (that row is already filled), let r denote the highest row of R∗

i

that is lower than minR∗
j (cf. property (vii), and we note that such an r exists 

by the increasing property of F ∗), and place a 1 into position (r, c).
(c) Fill the empty positions in row maxR∗

i with 0’s.
(d) Let rh be the hth highest row (index) in R∗

i . For h = 2, 3, . . . , |R∗
i |, in row rh

place a 1 below the rightmost 1 of row rh−1, and then fill the empty positions 
of rh with 0’s.

After the previous discussion, it should be clear that the obtained matrix M∗ is the 
unique candidate to be the inverse of a. (We note that the outcome M∗ of the algorithm 
does not depend on the actual order chosen in second step. We place at least one 1 to 
each row of ∪l

i=1R
∗
i , so the “rightmost 1” always makes sense in the algorithm.)

The surjectivity of φ. So we are left to show that M∗ is Γ-free and that φ(M∗) = a. 
In our task, the following observation will be helpful:
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(viii) Let (R∗
i , C

∗
i ) be an arbitrary vertex of F ∗, and let J ⊆ {1, . . . , l} denote the set 

of indices j for which (R∗
j , C

∗
j ) is a vertex of F ∗[(R∗

i , C
∗
i )] (cf. Notation 5). In M∗

every 1 of a row of R∗
i is contained in a column of ∪j∈JC

∗
j . The rightmost 1 of 

row minR∗
i is in the rightmost column of ∪j∈JC

∗
j .

This can be proved by a routine induction on the height of (R∗
i , C

∗
i ) in F ∗.

It is crucial to see that in step (b) when we place a 1 into position (r, c) we project 
back the edge (R∗

i , C
∗
i ) → (R∗

j , C
∗
j ) of F ∗ to a regular edge, while in step (d) we project 

back the edges of H∗ to special edges. In order to see that this is what really happens in 
the algorithm, we have to check that there are no other 1’s between the positions (r, c)
and (minR∗

j , c) (the newly written 1 and the “rightmost 1”) in the final M∗, otherwise 
the edge starting from (r, c) would not end at (minR∗

j , c), resulting φ(M∗) �= a. The 
analogous check for step (d) is also necessary. So we take a closer look at the way the 1’s 
are placed in steps (a)–(d). When step (a) is applied, the newly written 1’s are the first 
1’s appearing in their column. This is because, by property (viii), only those rows can 
contain 1 in a column of C∗

i that belong to an ancestor of (R∗
i , C

∗
i ), but the ancestors of 

(R∗
i , C

∗
i ) have not been considered yet. Then, applying property (viii) to the children of 

(R∗
i , C

∗
i ), we can see that the newly written 1’s in step (b) has pairwise distinct columns, 

and different from the columns of C∗
i , too. This also means that we place |R∗

i | − 1 new
1’s in step (d). For steps (b) and (d), the key observation is the following:

(∗) The “rightmost 1” in the description of steps (b) and (d) is the lowest 1 in its column 
at the moment of placing the new 1 below it, for all possible indices i, j.

Before proving this, we note that (∗) and the observation made on step (a) imply that the 
algorithm fills the 1’s of each column from top to bottom. Now we prove (∗) by induction 
on the progress of the algorithm. Suppose, by contradiction, that (∗) does not hold for 
step (b) for some i, j; and let u denote the “rightmost 1” in question, and let v denote the 
“newly written 1”. In other words, suppose that there is a 1 below u, denoted by w, when 
we want to write v. We can assume that there are no other 1’s between u and w. As seen 
before, the substeps of step (b) involve pairwise distinct columns c for the children of 
this given (R∗

i , C
∗
i ), and c /∈ C∗

i , so v is the first 1 in the column of u that is written into 
a row of R∗

i . Since u is in row minR∗
j , w is not in R∗

j (and not in R∗
i , neither); let R∗

k be 
the set containing w (j �= k �= i). By the induction hypothesis and an easy analysis of the 
algorithm, we know that w was placed below u in a former step (b), which means that 
(R∗

j , C
∗
j ) has two parents in F ∗, (R∗

i , C
∗
i ) and (R∗

k, C
∗
k), contradiction. After processing 

the steps (a)–(c), all the 1’s written in a row of R∗
i are the lowest ones in their column, 

as just seen. From this, it is very easy to conclude that (∗) holds for step (d) as well.
We prove now that M∗ is Γ-free, i.e. M∗ ∈ M. Suppose, by contradiction, that M∗

contains three 1’s in a Γ-configuration, and let u, v and w denote the upper-left, lower-
left and the upper-right one, respectively: u w

v . We can assume that v is chosen so that 
there are no 1’s between u and v in M∗. We saw in the previous paragraph that the 
algorithm fills the 1’s of each column from top to bottom in the way described in (∗), 
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which means that v was placed below u in a step (b) or (d). But this is a contradiction, 
because u is not the rightmost 1 of its row (and the whole row of u has been already 
filled, when v is placed).

Now we sketch why φ(M∗) = a. As we underlined earlier, for steps (b) and (d), there 
are no other 1’s between the “rightmost 1” and the “newly written 1” in the final M∗. 
This is ensured by (∗) at the moment after writing the new 1, and it will not change 
later neither, because the algorithm fills the 1’s from top to bottom per column. From 
this it is easy to see that in step (b) we indeed project back the edges of F ∗ to regular 
edges, more precisely, we ensure that the regular edges (of GM∗) starting from a row 
of R∗

i become, in FM∗ , the edges of F ∗ starting from (R∗
i , C

∗
i ). (We leave the reader 

to check that the newly placed 1’s in step (b) are start vertices of regular edges in the 
final M∗.) Similarly, in step (d) we indeed project back the edges of H∗ to special edges. 
(We leave the reader to check that the newly placed 1’s in step (d) are start vertices of 
special edges in the final M∗.) Finally, we note that since the 1’s are filled from top to 
bottom per column, hence the 1’s placed in step (a) will be top-1’s in the final M∗, too 
– which is also required for M∗ being the inverse of a. Some minor details were skipped, 
but it is easy to see now that HM∗ = H∗, the pairs assigned to M∗ are {(R∗

i , C
∗
i )}li=1, 

and FM∗ = F ∗, which lead to φ(M∗) = a, as stated. �
Recall from Section 1 that non-ambiguous forests correspond to those Γ-free 0–1

matrices that have no all-0 rows and columns. So in order to count non-ambiguous 
forests, one needs to enumerate these Γ-free matrices. This was done in [5], and it is also 
an easy corollary of our previous construction.

Corollary 8. The number of non-ambiguous forests with characteristic matrix of size n ×k

is
min(n,k)∑

m=0
(m!)2

{
n

m

}{
k

m

}
.

Proof. By the definition of non-ambiguous forests, we have to count the Γ-free n × k

0–1 matrices without all-0 rows and columns. Let N denote the set of these matri-
ces. In the proof of Theorem 2, φ establishes a bijective correspondence between Γ-free 
n × k 0–1 matrices and (n, k)-Callan sequences. Property (i) of φ shows that the 
restriction of φ to N is a bijection between N and the set of those (n, k)-Callan se-
quences (R1, C1), . . . , (Rm, Cm) for which {R1, . . . , Rm} is a partition of {1, . . . , n} and 
{C1, . . . , Cm} is a partition of {1, . . . , k}. These sequences are clearly counted by the 
sum in the statement. �
3. The generating function of Γ-free matrices

We can use the bijection to derive easily the generating function of Γ-free matrices. 
We introduce some notations. Let G denote the set of Γ-free matrices. For m ∈ G let 
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r(m) denote the number of rows, c(m) the number of columns, re(m) the number of 
empty rows, ce(m) the number of empty columns, and rt(m) denote the number of top 
rows, rows that contain top 1’s. Let M(x, y, a, b, t) be the generating function of Γ-free 
matrices defined as follows:

M(x, y, a, b, t) =
∑
m∈G

trt(m)are(m)bce(m) x
r(m)

r(m)!
yc(m)

c(m)! .

We have the next theorem.

Corollary 9. The generating function of Γ-free matrices is

M(x, y, a, b, t) = eaxeby

1 − t(ex − 1)(ey − 1) .

Proof. We have seen that there is a bijection between Γ-free matrices of size n × k and 
(n, k)-Callan sequences. Moreover, we have seen that ∪m

i=1Ri (resp. ∪m
i=1Ci) corresponds 

to the set of non-empty rows (resp. columns), and each top row corresponds to a pair 
(Ri, Ci). We can construct an (n, k)-Callan sequence as a sequence (permutation) of 
pairs of non-empty sets from {1, . . . , n} and {1, . . . , k} with two further sets: the set 
of remaining elements from {1, . . . , n} that may be empty; and the set of remaining 
elements from {1, . . . , k} that may also be empty. We follow the standard technique 
of symbolic method and use the usual notations of [8] for combinatorial constructions 
without explicitly defining these here. The construction for Callan sequences described 
above is symbolically formulated as follows:

(SEQ(γSET>0(X ) × SET>0(Y))) × (SET(αX )) × (SET(βY)),

where X is the atomic class from {1, . . . , n}, Y is the atomic class from {1, . . . , k}, α
marks the empty rows, β marks the empty columns, and γ marks the top rows. Based 
on the correspondence: X → x, Y → y, α → a, β → b, and γ → t the construction 
translates to the formula given in the theorem. �
4. Proof of Theorem 4

This section is devoted to the proof of Theorem 4. Our construction is based on the 
fact that pairs of permutations of {1, . . . , n} with no common rise can be encoded with 
certain labeled rooted forests. We present this as a lemma, but we think it is interesting 
in its own right.

The set of permutations of {1, . . . , n} is denoted by Sn; and for a permutation η =
(η1, . . . , ηn) ∈ Sn, we denote by Pη the set {(1, η1), . . . , (n, ηn)}.

Recall Convention 3 and Fig. 1 where the roots are colored red: The children of an 
“element 1” (vertex u) in a non-ambiguous forest are the lowest 1 above u (if such 
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a 1 exists) and the rightmost 1 on the left side of u (if such a 1 exists). We often mix 
the (characteristic) matrix terminology and the graph terminology for non-ambiguous 
forests as in the previous sentence, if it does not lead to confusion.

Let M = χA be the characteristic matrix of a non-ambiguous forest A. Analogously 
to the notion of top-1’s introduced in Section 2, we say that an element 1 in M is a 
leading-1, if it is the leftmost 1 in its row. Clearly, an element 1 in M has exactly one 
child in A if and only if the element is either a top-1 but not a leading-1 or it is a 
leading-1 but not a top-1. So A is complete if and only if there is no such element, i.e. 
the set of top-1’s coincides with the set of leading-1’s in M . Since M has no all-0 rows 
and columns, there is exactly one leading-1 in each row and there is exactly one top-1
in each column. So the top-1’s can coincide with the leading-1’s only if M is a square 
matrix. Moreover, if A is complete, then the leaves are exactly the top-1’s / leading-1’s, 
because a leaf is always a top-1, and now each top-1 is a leaf because it is also a leading-1. 
This means that in case of complete A, every row and every column contains exactly 
one leaf (the leading-1 or top-1), and that the number of rows / columns is equal to the 
number of leaves. We have just proved the following.

Lemma 10. The characteristic matrices of complete non-ambiguous forests with n leaves 
are exactly those Γ-free 0–1 matrices without all-0 rows and columns that have size n ×n

and in which every top-1 is a leading-1. In such a matrix M the leaves are exactly the 
top-1’s, and the set of positions of leaves/top-1’s is Pη for some η ∈ Sn.

A pair (α, β) ∈ Sn×Sn will always be identified with the sequence (a1, b1), . . . , (an, bn), 
where α = (a1, . . . , an) and β = (b1, . . . , bn). If we want to emphasize this, we write 
(α, β)T for denoting the sequence. In this setting, the pair (α, β) has common rise if 
there are two consecutive elements of (α, β)T for which (ai, bi) < (ai+1, bi+1), where 
‘<’ stands for “less in both coordinates”. For an arbitrary (α, β) ∈ Sn × Sn, the set of 
elements of (α, β)T is clearly equal to a set Pη for some η ∈ Sn.

Now fix an n. We group the complete non-ambiguous forests with n leaves by the set 
of their leaves (i.e. the set of positions (i, j) of the leaves) and group the members of 
Sn × Sn without common rise by the set of their elements – considering the members of 
Sn ×Sn as n-element sequences. From the discussion above, each of these groups can be 
described by a permutation of Sn. Hence, Theorem 4 clearly follows from the following 
theorem:

Theorem 11. Fix an arbitrary η ∈ Sn. Let C be the set of those complete non-ambiguous 
forests (with n leaves) whose set of leaves is Pη. Let P be the set of those pairs (α, β) ∈
Sn × Sn that have no common rise and for which the set of elements of (α, β)T is Pη, 
i.e. P is the set of permutations of Pη with no common rise (in the sense above). Then 
there exists a bijection between C and P, thus |C| = |P| (Fig. 8).

Proof. Let η = (η1, . . . , ηn). We think the elements of C as n × n 0–1 matrices, as 
characterized in Lemma 10. Recall the construction of the proof of Theorem 2.
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Fig. 8. The sets C and P for n = 3, η = (3, 1, 2).

As a first step, we apply the injective map M 
→ FM = π−1(φ(M)) to the matrices 
M ∈ C, where FM , π, and φ are defined in Section 2. This map establishes a bijective 
correspondence between the matrices of C and the increasing forests in the set C̃ :=
{FM : M ∈ C}. Now we are going to give a simple description of C̃.

By Lemma 10, we know that in every matrix of C, the set of top-1’s is Pη. Let D denote 
the set of Γ-free n × n 0–1 matrices in which the set of top-1’s is Pη. Clearly, D ⊇ C, 
but not every matrix of D corresponds to a complete non-ambiguous forest. Now we pick 
an arbitrary matrix M ∈ D, and examine the increasing forest FM . We know that each 
row of M is a top row: the row i has exactly one top-1, which is in column ηi, by the 
definition of D. This means that the vertex set of FM is Pη. (More precisely, the vertices 
of FM have the form ({i}, {ηi}), but we can leave the braces.) As there are no special 
edges in GM (see Section 2), every non-top 1 of M contributes to the edges of FM . In this 
special case, FM can be obtained from M as follows: View M as a non-ambiguous forest 
(with vertices and edges), project it horizontally, then label the vertex corresponding to 
the projected row i with (i, ηi), for i = 1, . . . , n, and orient the edges upwards. It should 
be clear from the proof of Theorem 2 that the map M 
→ FM is a bijection between 
D and the set of increasing forests on vertex set Pη. We denote the latter set by D̃. 
The total order ≺ on vertex set Pη is simply the order by first coordinate, i.e. now the 
condition “increasing” means that every child must have greater first coordinate than 
its parent has.

We know that C̃ ⊆ D̃. An increasing forest F ∗ ∈ D̃ is in C̃ if and only if the corre-
sponding matrix M∗ ∈ D (for which FM∗ = F ∗) is in C. By Lemma 10, the matrix M∗

of D is in C if and only if every top-1 is a leading-1 in M∗, in other words, iff in every 
row of M∗ the non-top 1’s are on the right side of the top-1 in that row. The column 
index of a non-top 1 can be read off from F ∗. In the proof of Theorem 2, step (b) of the 
inverse construction describes how the non-top 1’s are placed to M∗ (step (d) does not 
place any 1’s for F ∗ ∈ D̃): For an arbitrary row r, the non-top 1’s are associated to the 
children of (r, ηr) in F ∗. Namely, for each child (s, ηs) of (r, ηr), a 1 is placed to row r

into the column of the rightmost 1 of row s, and that column is the minimum of the 
second coordinates of the vertices in the subtree F ∗[(s, ηs)], applying the last statement 
of property (viii) to the child (s, ηs). (Cf. Notation 5 and Convention 3.) We conclude 
that the increasing forest F ∗ ∈ D̃ is in C̃ if and only if for every vertex (a, b) of F ∗ and 
for every child (c, d) of (a, b), there exists a vertex of F ∗[(c, d)] with second coordinate 
less than b.
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Fig. 9. A complete non-ambiguous forest and the corresponding properly labeled forest.

We introduce a term for describing the forests of C̃. We say that F is a properly labeled 
forest on vertex set Pη (for some η ∈ Sn), if F is an (unordered) rooted forest on vertex 
set Pη, satisfying that whenever (a, b) is the parent of (c, d) in F , then a < c and there 
exists a vertex (x, y) ∈ F [(c, d)] such that b > y. (See Fig. 9 for an example.) We can 
summarize the above investigations as C̃ is the set of properly labeled forests on Pη. So 
it is enough to prove the following lemma. �
Lemma 12. For a given η ∈ Sn, let C̃ denote the properly labeled forests on vertex set Pη, 
and let P denote the set of permutations of Pη with no common rise. Then there exists 
a bijection between C̃ and P, thus |C̃| = |P|.

Proof. We begin with some conventions. For (a, b), (c, d) ∈ Pη, let

(a, b) <1 (c, d) def⇐⇒ a < c;

(a, b) <2 (c, d) def⇐⇒ b < d.

In this proof we will work with increasing forests on vertex set (Pη, <1). We follow the 
conventions introduced at the beginning of Section 2 (cf. Fig. 2): We always list the 
children of a given parent of a forest F in decreasing order from left to right with respect 
to the order <1, and the phrase “leftmost/first child” refers to this list (i.e. it means the 
child of a given parent with biggest first coordinate). The tree components of F are also 
listed in the decreasing order of their roots with respect to <1.

As a first step, we apply π−1 to the permutations of (Pη, <1), where π is the bijection 
introduced in the proof of Lemma 6. (So we consider only the first coordinates with the 
natural order when building the forest structure from a permutation, see also Fig. 10.) 
By the lemma, π−1 establishes a bijective correspondence between the permutations of 
(Pη, <1) and the increasing forests on (Pη, <1). It is known, or an easy analysis of π shows, 
that for any permutation (sequence) S = (s1, . . . , sn) of Pη and any i ∈ {1, . . . , n −1}, the 
inequality si <1 si+1 holds if and only if si+1 is the leftmost child of si in the increasing 
forest π−1(S). This implies that S has no common rise if and only if, for every vertex u



212 B. Bényi, G.V. Nagy / Advances in Applied Mathematics 96 (2018) 195–215
Fig. 10. Illustration of π−1|P and ψ (for n = 15).

of π−1(S), the leftmost child of u (if u is a non-leaf) has smaller second coordinate than 
u has. So P̃ := {π−1(S) : S ∈ P} is the set of those (unordered) rooted forests F on 
vertex set Pη which satisfy the following conditions:

(c1) whenever vertex v is a child of vertex u in F , then u <1 v, i.e. F is increasing with 
respect to <1;

(c2) and whenever vertex v is the leftmost child of vertex u in F , then v <2 u.

We say that a forest F is leftmost-valid, if it satisfies conditions (c1)–(c2). So P̃ is the 
set of leftmost-valid forests on Pη.

The definition of the main bijection. In order to complete the proof, we give a bijection 
ψ : P̃ → C̃. Both the notion of leftmost-valid forest and the notion of properly labeled 
forest can be extended for any vertex set V ⊆ Pη, without any modification. First we de-
fine a bijective conversion function f from the set of leftmost-valid trees (one-component 
forests) to the set of properly labeled trees, such that f(T ) has the same vertex set and 
root as T , for any leftmost-valid tree T . Then we can define ψ. For an arbitrary F ∈ P̃, 
if F has (the leftmost-valid tree) components C1, . . . , Cm, then ψ(F ) is defined to be 
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the vertex-disjoint union of the properly labeled trees f(C1), . . . , f(Cm). As f keeps the 
vertex set, ψ(F ) ∈ C̃.

Now we give the (recursive) definition of f . We note that for any leftmost-valid (resp. 
properly labeled) tree T on V , T [v] is clearly a leftmost-valid (resp. properly labeled) 
tree for any v ∈ V , cf. Notation 5. It is recommended to follow the conversion of C2 on 
Fig. 10. For a leftmost-valid tree T on vertex set V ⊆ Pη, we define f(T ) as follows.

• If T has one vertex, then f(T ) := T .
• Otherwise, let r be the root of T , and let v1, . . . , vk be the children of r in 

<1-decreasing order. Set Ti := f(T [vi]) for i = 1, . . . , k, and consider the sequence

T1, T2, . . . , Tk. (2)

Find the smallest index i ∈ {1, . . . , k}, if such an i exists, for which no vertex of Ti

has smaller second coordinate than r has. (We say that Ti is the leftmost bad tree.) 
We note that i �= 1, as it will be justified later. Then remove the elements T1, . . . , Ti

from (2), and add a new first element T ′
1, where T ′

1 is the rooted tree obtained from 
T1, . . . , Ti by joining the roots of T1, . . . , Ti−1 (as new children) to the root of Ti (as 
parent/root). In this way we obtain a new sequence

T ′
1, T

′
2, . . . , T

′
k−i+1; (3)

where T ′
j = Tj+i−1 for j � 2. We call this process merging. Then do the same 

for (3): find the leftmost bad tree, merge. Then repeat this for the new sequence, 
and so on, stop when no such index i (bad tree) was found. We note that the process 
terminates, because the length of the sequence strictly decreases in each merging 
step (i �= 1). We end up with a sequence T̃1, . . . , T̃l. Finally, f(T ) is defined to be the 
tree with root r that is obtained by joining the vertex r (as new root) to the roots 
of T̃1, . . . , T̃l.

Now we justify why i �= 1, i.e. why the first tree in the actual tree sequence always has 
a vertex which is smaller than r in the second coordinate. This is true for the initial 
sequence (2), because v1, the root of T1, has smaller second coordinate than r has, by 
the leftmost-validity of T and the fact that f keeps the roots. And this vertex v1 will 
keep staying in the first tree of the sequence after the mergings, too.

The fact that f(T ) has the same vertex set and root as T can be verified by an easy 
induction.

Now we show why f(T ) is properly labeled. By induction, every tree of the initial 
sequence (2) is properly labeled. It is straightforward to see that this property is kept after 
each merging. We only have to check the new parent–child connections between the root 
of the bad tree and its new children, the roots of the preceding trees. The monotonicity 
condition on the first coordinates is satisfied because the initial roots v1, . . . , vk are in 
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<1-decreasing order. The condition on the second coordinates is satisfied because if the 
root of the bad tree is vb, then r <2 vb (as vb is vertex of a bad tree), while in every 
preceding tree there exists a vertex u with u <2 r (as they are good trees), so a vertex 
u with u <2 vb, as needed. In the final stage we have the properly labeled good trees 
T̃1, . . . , T̃l, from which it is pretty obvious that f(T ) is properly labeled (after checking 
the root r).

The inverse of f . Now we sketch why ψ is a bijection. It is clear that it is enough 
to show that for any fixed vertex set V ⊆ Pη, the function f (or more precisely, its 
restriction) is a bijection between the set of leftmost-valid trees on V and the set of 
properly labeled trees on V . This can be done by induction on the size of V . Pick an 
arbitrary properly labeled tree T ∗ on vertex set V , where |V | � 2. Let r be the root 
of T ∗. The children of a given parent are listed in <1-decreasing order (the pre-order 
transversal follows this order in the next step).

◦ Find the first vertex v1 in the pre-order transversal of T ∗ (see the proof of Lemma 6) 
for which v1 <2 r. As T ∗ is properly labeled, such a v1 exists in T ∗[u], where u is 
the leftmost child of r.

◦ We define a list (sequence) L of subtrees. As an initial step, we define the first element 
of L to be T ∗[v1].

◦ Let w1, . . . , wm be those siblings of v1 in T ∗, listed in <1-decreasing order, for 
which T ∗[wi] has a vertex with smaller second coordinate than the second coor-
dinate of r. We refer to these siblings as good siblings. (The good siblings are on 
the right side of v1, because v1 was found by pre-order transversal.) Add the trees 
T ∗[w1], . . . , T ∗[wn] to the end of L in this order. Then let v2 be the parent of v1
in T ∗, and let T−

v2
denote the tree obtained from T ∗[v2] by deleting the subtrees 

T ∗[v1], T ∗[w1], . . . , T ∗[wn] from it. Add T−
v2

to the end of L. Repeat this step for v2
instead of v1, and then for the parent v3 of v2, and so on, until we reach to the point 
when vi = u. At that point, all siblings of vi = u are good, due to the fact that T ∗

is properly labeled. Add the subtrees T ∗[w] to L for the siblings w of u from left to 
right as above, which finishes this step.

◦ We end up with a list L of trees: L1, . . . , Lt. Finally, T̂ is defined to be the tree 
with root r that is obtained by joining the vertex r (as new root) to the roots 
of f−1(L1), . . . , f−1(Lt), where the unique inverse images f−1(Li) come from the 
induction hypothesis.

We claim that T̂ is the unique leftmost-valid tree on vertex set V for which f(T̂ ) = T ∗, 
proving the bijectivity of f . The details are left to the reader. �
Second author’s acknowledgments

This research was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-
00008.



B. Bényi, G.V. Nagy / Advances in Applied Mathematics 96 (2018) 195–215 215
References

[1] N. Aisbett, On the poset of vector partitions, arXiv:1505.01996v2.
[2] J.C. Aval, A. Boussicault, M. Bouval, M. Silimbani, Combinatorics of non-ambiguous trees, Adv. in 

Appl. Math. 56 (2014) 78–108.
[3] J.C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, P. Laborde-Zubieta, Non-ambiguous trees: 

new results and generalization, arXiv:1511.09455v1.
[4] B. Bényi, P. Hajnal, Combinatorics of poly-Bernoulli numbers, Studia Sci. Math. Hungar. 52 (4) 

(2015) 537–558.
[5] B. Bényi, P. Hajnal, Combinatorial properties of poly-Bernoulli relatives, Integers 17 (2017) A31.
[6] C.R. Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat 

analogues, Integers 8 (2008) A02.
[7] L. Carlitz, R. Scoville, T. Vaughan, Enumeration of pairs of permutations and sequences, Bull. 

Amer. Math. Soc. 80 (5) (1974) 881–884.
[8] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.
[9] Z. Füredi, P. Hajnal, Davenport Schinzel theory of matrices, Discrete Math. 103 (1992) 233–251.

[10] E.Y. Jin, Heaps and two exponential structures, European J. Combin. 54 (2016) 87–102.
[11] H.K. Ju, S. Seo, Enumeration of (0, 1)-matrices avoiding some 2 ×2 matrices, Discrete Math. 312 (16) 

(2012) 2473–2481.
[12] S. Kitaev, T. Mansour, A. Vella, Pattern avoidance in matrices, J. Integer Seq. 8 (2005) A05.2.2.
[13] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org.
[14] R. Stanley, Enumerative Combinatorics, vol. I, 2nd edition, Cambridge University Press, Cambridge, 

2012.

http://refhub.elsevier.com/S0196-8858(18)30001-0/bib41697362657474s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4176616C31s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4176616C31s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4176616C32s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4176616C32s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib424831s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib424831s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib424832s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4272657762616B6572s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4272657762616B6572s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4361726C69747A32s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4361726C69747A32s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib466C616A6F6C6574s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4648s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4A696Es1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4A7553656Fs1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4A7553656Fs1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib4B6974616576s1
http://oeis.org
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib5374616E456332s1
http://refhub.elsevier.com/S0196-8858(18)30001-0/bib5374616E456332s1

	Bijective enumerations of Γ-free 0-1 matrices
	1 Introduction
	2 The number of Γ-free 0-1 matrices
	3 The generating function of Γ-free matrices
	4 Proof of Theorem 4
	Second author's acknowledgments
	References


