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Abstract
Saline lakes, among the most seriously endangered ecosystems, are threatened due 
to climate change and human activities. One valuable feature of these environments 
is that they constitute areas of high biodiversity. Ecologists are, therefore, under 
great pressure to improve their understanding of the effects of natural and anthro-
pogenic disturbances on the biodiversity of saline lakes. In this study, a total of 257 
samples from 32 soda pans in Central Europe between 2006 and 2015 were exam-
ined. The effects of environmental variables and of geographical and limnoecological 
factors on functional diversity were analyzed. Furthermore, the explanatory power 
of the trait-based approach was assessed, and the applicability of the indices for bio-
monitoring purposes was determined. It was found that low habitat heterogeneity 
and harsh environments lead to the selection of a small number of suitable traits, and 
consequently, to a naturally low level of functional diversity. Anthropogenic activities 
enhance diversity at functional level due to the shift toward freshwater character-
istics. On the regional scale, the effects of the region and status (natural, degraded, 
reconstructed) on diatom functional diversity were significant and more pronounced 
than that of the environmental and other limnoecological factors. The degree of vari-
ance found in functional diversity ascribed to environmental variables is five times 
greater in the case of the application of a trait-based approach, than when a taxo-
nomic one is employed in the literature. Each of the tested functional diversity indi-
ces was sensitive to the most important environmental variables. Furthermore, these 
were type-specific and proved to be more complex indicators than taxonomic met-
rics. It is possible to suggest four functional diversity indices (FGR, FRic, FDis, and 
FDiv) which emphasize their independence from substrate and seasonal variations 
for ecological status assessment and conservation planning.
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1  | INTRODUC TION

In recent decades, biodiversity research has focused mostly on 
species richness and diversity metrics based on taxa as taxonomic 
units (e.g., Robinson, Rushforth, & Minshall, 1994; Tews et al., 2004). 
These diversity metrics have been applied as common indicators of 
environmental impacts (He, Jiang, Tang, & Cai, 2015), in which the 
species correctly identified under the microscope have served as 
a basis for the analyses (Korponai et al., 2019). Nowadays, a new 
generation method, DNA metabarcoding, has established the condi-
tions for the identification of operational taxonomic units (OTU) in 
many hundreds of samples simultaneously (Taberlet, Bonin, Zinger, 
& Coissac, 2018). This method seems likely to broaden our knowl-
edge of biodiversity and with phylogenetic estimation of OTU eco-
logical profiles it will move closer to functional biomonitoring (Keck, 
Vasselon, Rimet, Bouchez, & Kahlert, 2018).

Recently, trait-based approaches using functional trait units have 
drawn attention to the ecological and biological importance of the 
species (Schneider et al., 2017). In this sense, improved or more ac-
curate predictions of ecosystem functions may be expected than 
were available using the taxonomic approach (Thompson, Davies, & 
Gonzalez, 2015). It was for this reason that the usefulness of this 
approach has been rapidly recognized and applied by ecologists. This 
recognition initiated an intensive search to discover the nature of 
the relationship between traits and habitat properties (Schneider et 
al., 2017) via the identification of the drivers of the diversity pat-
terns. However, functional diversity metrics (He et al., 2015) have 
rarely been used recently, even though they promise to improve our 
knowledge of community and ecosystem responses to environmen-
tal changes at different scales (Péru & Dolédec, 2010). Furthermore, 
functional diversity can be a good indicator of ecosystem stability 
(Schneider et al., 2017) and can be strongly correlated with DNA-
based phylogenetic diversity (Li et al., 2019) through ecological traits 
as phylogenetic signals (Keck, Rimet, Franc, & Bouchez, 2016; Keck 
et al., 2018; Winter, Devictor, & Schweiger, 2013). Consequently, 
functional diversity can play an effective role in conservation 
management using phylogenetic tools (Webb, Ackerly, McPeek, & 
Donoghue, 2002).

Functional approaches require simpler data than do traditional 
taxonomic approaches, and at first glance, this may appear to reduce 
ecological information. Nonetheless, this approach is capable of in-
creasing the variance which can be explained in a community by the 
environmental variables (Abonyi et al., 2018). This is because of their 
sensitivity and consistent response to distinct ecological drivers 
(Tolonen, Leinonen, Marttila, Erkinaro, & Heino, 2017). Moreover, 
complementary functional diversity indices are available, which are 
capable of indicating different aspects of ecosystem functioning and 
environmental changes (e.g., Mouchet, Villéger, Mason, & Mouillot, 
2010; Schmera, Erős, & Podani, 2009).

In aquatic ecosystems, trait-based methods have received in-
tense attention in recent years (Endrédi, Jordán, & Abonyi, 2018; 
Wu et al., 2017) since they can be used independently of ecoregions 
(Dolédec & Statzner, 2008) and provide deeper insights into the 

functional and structural characteristics of communities (Verberk, 
Noordwijk, & Hildrew, 2013) through different environmental filters. 
Trait-based approaches can provide an easier, faster, and more gen-
eral understanding (Flynn, Mirotchnick, Jain, Palmer, & Naeem, 2011) 
of community organization than traditional taxonomical methods.

The application of functional traits and diversity indices as indi-
cators of stressors of aquatic organisms is scarce (Ding et al., 2017). 
Only a few studies connecting structural patterns to the primary 
production are to be found (Niyogi, Lewis, & McKnight, 2002; Rowe, 
Sánchez-España, Hallberg, & Johnson, 2007), and especially in the 
case of phytoplankton (Abonyi et al., 2018; Török et al., 2016) and 
benthic algal communities (B.-Béres et al., 2019; Cibils, Principe, 
Márquez, Gari, & Albariño, 2015). However, diatoms are one of the 
most understudied groups of biota from this point of view (Alahuta 
et al., 2018), despite the possibility that diatom trait diversity (e.g., 
thickness of the valves, size, morphology or life strategies, and link-
ing ability) may have a crucial role in environmental processes such 
as the ocean carbon pump (Tréguer et al., 2018).

Saline lakes are among the most vulnerable types of aquatic 
ecosystems due to the environmental threat generated by diverse 
human impacts (e.g., drainage and immoderate pumping of ground 
water) and climate change (Williams, 2002). The maintenance of 
the natural hydrological cycles and natural characteristics of these 
endorheic shallow lakes is key ecological and conservation tasks 
(Stenger-Kovács et al., 2014). In contrast to typical saline waters, 
which are often permanent and characterized mainly by chloride 
ions, astatic soda pans are mostly dominated by bicarbonate (Boros 
& Kolpakova, 2018) and are to be found across Africa, Europe, Asia, 
Australia, and America. The various aquatic communities (such as 
benthic and planktic algae, zooplankton and macroinvertebrates) 
of these ecosystems are exposed to extreme physical and chem-
ical stress (strongly alkaline pans with high conductivity, nutrient 
concentration, turbidity, and diurnal temperature variation) (Boros, 
2013; Stenger-Kovács et al., 2014), all of which may play a decisive 
role in selection of a given species (Horváth et al., 2014) able to 
survive under such circumstances (Pálffy et al., 2014). This strong 
environmental filter causes a low degree of α-diversity in alkaline 
lakes, not only in the case of benthic communities (Stenger-Kovács, 
Hajnal, Lengyel, Buczkó, & Padisák, 2016), but also in planktic com-
munities (Nkambo et al., 2015; Vidaković et al., 2019; Vignatti, 
Paggi, Cabrera, & Echaniz, 2012). However, the degree of β-di-
versity found in these communities, primarily determined by the 
environmental variables, is high due to species turnover (Szabó, 
Lengyel, Padisák, Vass, & Stenger-Kovács, 2018); this is true even 
in sodic anthropogenic, bomb crater ponds (Vad et al., 2017). The 
conservation of saline lakes is essential if the loss of biodiversity 
and the disappearance of these unique habitats are to be limited 
(Williams, 2002).

The main aim of this study was to assess the effects of en-
vironmental variables (conductivity, pH, dissolved oxygen, tem-
perature, nutrients [P and N forms], HCO3

-, CO3
2-, SO4

2-, Cl-) 
and compare these with the individual effect of the geographi-
cal (regions) and limnoecological factors (watercolor, substrate, 
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status, hydrological phase, and season) on benthic diatom diver-
sity patterns in soda pans. In order to achieve this, a functional, 
trait-based approach has been adopted. In this way, the applica-
bility of functional diversity as an element of ecological status 
assessment and conservation planning is evaluated, along with 
the degree to which factors such as adequate sampling time and 
substrate selection can modify the final results of a status as-
sessment. Two hypotheses were adopted: (a) functional diversity 
will be an effective indicator of the most characteristic environ-
mental variables, and consequently, of the ecological/conserva-
tional status of soda pans, and (b) the individual effects of spatial 
as well as limnoecological factors on diatom functional diversity 
will be less pronounced than that of extreme environmental 
constraints.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and background variables

A total of 257 diatom and water samples were collected from 32 
soda pans (Table 1) over a ten-year period (2006–2015) in the 
Carpathian Basin (Central Europe) (Figure 1). Soda pans were cate-
gorized by region, status, and watercolor, and the samples by season, 
hydrological phase, and substrate type. Samples were collected from 
two main regions of the Carpathian Basin (Central Europe): Fertő-
Hanság and the Danube-Tisza Interfluve. In contrast to the pans of 
the Danube-Tisza region, which may be characterized as having a 
natural or degraded status (Table 1), the pans of the Fertő-Hanság 
region consist of both natural and reconstructed lakes undergoing 

TA B L E  1   The status, watercolor, number of the hydrological phases and samples of the studied soda pans from two regions of Central 
Europe (D, degraded; DT, Danube-Tisza Interfluve; FH, Fertő-Hanság region; N, natural; na, no data; RA, reconstructed pans)

Region Status Color Phases Number of the samples Name of the pond Total number of the samples

DT D na na 1 Hattyús-szék 112

D na na 1 Kisréti-tó

D na na 1 Kondor-tó

D na na 1 pirtói Nagy-tó

D na na 1 Szarvas-tó

D turbid 4 1 Szappan-szék

D turbid 4 1 Szívós-szék

N color 2 13 Bába-szék

N color 2 21 Sósér

N na na 1 Ősze-szék

N turbid 4 12 Böddi-szék

N turbid 4 13 Bogárzó

N turbid 4 1 Büdös-szék

N turbid 4 1 pusztaszeri Büdös-szék

N turbid 4 1 Csárda-szék

N turbid 4 1 Fehér-szék

N turbid 4 1 Fülöp-szék

N turbid 4 1 kardoskúti Fehértó

N turbid 4 21 Kelemen-szék

N turbid 4 18 Zab-szék

FH N turbid na 3 Herrnsee 145

N turbid na 3 Kirchsee

N turbid na 3 Neubruch

N turbid na 3 Untersee

N turbid na 3 Zicklacke

N turbid na 2 Albersee

RA color na 3 Cikes

RA transitional na 34 Borsodi-dülő

RA transitional na 5 Pap-rét

RA turbid na 54 Legény-tó

RA turbid na 32 Nyéki-szállás
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active conservation activities (Table 1; Stenger-Kovács et al., 2016). 
Degraded pans (n = 6) were excluded from the analyses of the status 
effect because of their underrepresentation.

The sites were classified into three pan turbidity types, this 
being a prominent feature of sodic lakes, following Boros (2013): 
(a) colored, (b) turbid, and (c) transitional watercolor (Table 1). A pan 
is colored if humic materials and is turbid if suspended particles 
contribute a minimum of 55% to light extinction. The watercolor 
is transitional if the dissolved humic matter and the suspended 
particles contribute roughly equally to the light extinction (Boros, 
2013).

On the basis of the optical categorization of the pans, various 
cyclic patterns were determined: filling and concentrated phases 
for the colored types and filling, diluted, drying and concentrated 
for the turbid types (Lengyel, Pálmai, Padisák, & Stenger-Kovács, 
2019). The sampling times and their frequency depended on the 
water supply of these intermittent lakes (Stenger-Kovács et al., 
2016, 2014). The sampling date was matched to the four seasons 
of the temperate climate. (Detailed maps of and information con-
cerning these lakes may be found in the studies by Stenger-Kovács 
et al. (2014, 2018), Stenger-Kovács et al. (2016) and Lengyel et al. 
(2016)).

The choice of substrate (mud/macrophyte) and sampling sites 
followed the recommendations of King, Clarke, Bennion, Kelly, and 
Yallop (2006). Samples were taken at a water depth of 5–10 cm close 
to the shorelines of the pans. Diatoms were collected from the mac-
rophytes using toothbrush and were collected from mud by pipet-
ting ~10 cm3 of the superficial layer of the pan sediments (Cochero, 
Romaní, & Gómez, 2013).

2.2 | Laboratory analyses

Diatom samples were preserved in ethanol and were kept at pH 
~7–8 by cc. HCl, thereby avoiding the dissolution of the silica walls. 
A hot hydrogen peroxide treatment was applied to oxidize the 
protoplasms (CEN, 2003). Diatom silica valves were embedded in 
Pleurax® resin. Permanent slides were analyzed under a light mi-
croscope (Zeiss Axiovert A1, plan-apochromat objective with dif-
ferential interference contrast) and a scanning electron microscope 
(Hitachi S-2600N). A minimum of 400 valves were identified at the 
highest possible taxonomic resolution (Stenger-Kovács & Lengyel, 
2015).

Conductivity, pH, dissolved oxygen, and temperature were mea-
sured in the field using an HQD40d Hach Lange multimeter. Other 
water chemical variables were analyzed in the laboratory with the 
use of UV/VIS spectrophotometry (SO4

2−, NO2
−, NH4

+, and TP: total 
phosphorous) and closed reflux titrimetric (HCO3

- and CO3
2−) meth-

ods (APHA, 1998; Wetzel & Likens, 2000). Cl− and NO3
− content 

were determined using an HQ40d Hach Lange multimeter equipped 
with ISECI181 and ISENO3181 ion-specific probes. Dissolved inor-
ganic nitrogen (DIN) was calculated as the sum of NO3

−-N, NO2
−-N, 

and NH4
+-N.

2.3 | Statistical analyses

For all sampled material, 35 traits in four trait categories were used 
in the calculation of the functional diversity indices: (a) diatom eco-
logical guilds (Passy, 2007a; Rimet & Bouchez, 2012); (b) cell size; 
(c) length/width ratio (e.g., Tapolczai, Bouchez, Stenger-Kovács, 
Padisák, & Rimet, 22017); and (d) ecomorphological groups; B.-
Béres, 2016) (Appendix 1). These traits had been tested previously 
and adopted as applicable indicators of ecosystem functioning in 
soda pans (Stenger-Kovács et al., 2018; Appendix 1).

RDA analyses using the forward and backward selection method 
were used to identify those geographical and limnoecological fac-
tors (Appendix 1) and environmental variables which have a signifi-
cant effect on functional diversity. A further aim here was to study 
the explained variance of functional diversity metrics by the se-
lected environmental variables as an illustration of the explanatory 
strength of the trait-based approach. RDA was applied with the use 
of a variance matrix and tested using ANOVA, running 999 permu-
tations. The individual effect of the various factors (with region as 
the geographical factor, and color, substrate, status, hydrological 
phase, and season as the limnoecological factors) on overall diatom 
distance-based functional diversity against the environmental vari-
ables was examined in separate variation partition analyses.

Different components of functional diversity were compared 
with the main driving factors selected via the variation partition-
ing method using Kruskal–Wallis test with Holm correction, and 
these were as follows: FRic, functional richness; FDiv, functional 
divergence; FDis, functional dispersion; RaoQ, Rao's quadratic 
entropy; FGR, a posteriori functional group richness; and FEve, 
functional evenness. One Kruskal–Wallis test per predictor was 
applied, because of the different number of the available data in 
the case of the main factors. In the statistical analyses, a square 
root transformation was used for the diatom relative abundance 
data, while functional diversity indices and the water chemical 
variables were standardized.

Multivariate linear models (Fox & Weisberg, 2018) were con-
structed, and their significance levels tested to determine the sen-
sitivity and applicability of the indices. Full models were reduced 
employing the backward method based on the AIC (Akaike's informa-
tion criterion) values to select the master variables determining the 
different functional diversity indices. The similarity of the strengths 
of the reduced and larger models was checked using the F test.

Functional diversity metrics were calculated in the “FD” R pack-
age (Laliberté & Legendre, 2010) using the “dbFD” function. Variance 
partition was performed using the “varpart” function of the “vegan” 
package (Oksanen et al., 2018).

3  | RESULTS

Using the six functional diversity metrics, variation partitioning 
showed that environmental variables, region, watercolor, and eco-
logical status had considerable and significant explanatory power 
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with regard to the variations in functional diversity (Figure 2a,b,d). 
The effects of region and the status were greater than those of 
the environmental variables (Figure 2a; 0.10; Figure 2d; 0.07). The 
effect of season alone was less pronounced and very close to the 
limit of the significance level (Figure 2f; 0.02, p = .044). There was 
hardly any contribution from the effects of the substrate and hydro-
logical phases taken in isolation to the degree of functional diversity 
(Figure 2c,e).

Examining the various components of functional diversity on the 
basis of the factors with significant explanatory value, the response 
of the indices was different in different regions: On the basis of the 
Kruskal–Wallis test, in the Danube-Tisza Interfluve, the index val-
ues were significantly lower than those in the Fertő-Hanság region. 
Only one index, functional evenness, was not sensitive to variation 
by region (Figure 3).

In the case of the watercolor, the responses of the indices were 
more varied (Figure 4). The values of RaoQ and FDis differed signifi-
cantly depending on watercolor. RaoQ and FDis had the lowest values 
in colored soda pans, while in the transitional pans, they had the high-
est. FDiv was significantly lower both in the colored and turbid pans. 
FRic was lower in colored waters and showed no significant variation 
in value between the transitional and turbid ones. In the values of FEve 
and FGR, no significant differences were observed (Figure 4).

Five indices (FDiv, FDis, RaoQ, FGR, and FDis) differed signifi-
cantly between natural and reconstructed areas, with lower diver-
sity values indicating the natural status of the soda pans (Figure 5). 
The FEve values were similar in soda pans with different statuses 
(Figure 5).

The individual indices were not sensitive to the seasons, except 
for FEve, which was significantly different in summer and winter 
(Figure 6).

Significant effects of the environmental variables on the 
functional diversity indices were found in the course of the RDA 
analysis (Figure 7). On the first axis, 89% of the total constrained 
variance of the functional diversity indices was explained by the 
environmental variables. DIN, temperature, pH, conductivity, and 
DO were the main constraints that determined functional diver-
sity to a great extent. After the reduction of the full models con-
taining ten environmental variables, FRic was determined by eight, 
FDiv, RaoQ, and FGR by seven, and FDis was determined by six 
variables (Table 2). In the reduced models, the effect of conduc-
tivity, pH, HCO3

−, Cl−, DIN, and SO4
2− was significant in the case 

of FRic; conductivity, pH, DO, and HCO3
− in FDiv; conductivity, 

pH, Cl−, and DIN in FDis; and conductivity, pH, and DIN in RaoQ. 
Conductivity, pH, TP, Cl, and SO4

2− had a significant relationship 
with FGR.

F I G U R E  1   Location of the Carpathian Basin in Europe
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4  | DISCUSSION

Soda pans are characterized by low functional diatom diversity 
similar to low species diversity (diatom α-diversity) (Stenger-
Kovács et al., 2016;) and low phylogenetic diversity of zooplank-
ton communities (Horváth et al., 2014). The main reasons for the 
low functional diversity are (a) a low degree of habitat hetero-
geneity (Stark, Lehman, Crawford, Enquist, & Blonder, 2017) as 
a strong filter (Anacker & Harrison, 2012) and (b) the harsh en-
vironment (Heino, 2005). In other words, these extreme ecosys-
tems impose highly stressful conditions on the biota, making this 
a selection force for species, and consequently a strong driver 
of the selection of suitable traits (Abonyi et al., 2018; Teittinen, 
Weckström, & Soininen, 2018). Only functionally similar species 
can survive, causing low functional diversity not only in these 
saline and extreme ecosystems, but also in intermittent streams, 
where droughts (extreme events) also have negative effects on the 
functional diatom diversity (B.-Béres et al., 2019). As in terrestrial 
plant communities, low functional diversity is also characteristic 
in mountains with specific environmental conditions (Schneider et 
al., 2017).

Of the factors examined, region, status, and watercolor type 
were found to have a considerable effect on the functional diversity 
of soda pans. The effect of region and status was also highlighted 
with regard to species composition (Stenger-Kovács et al., 2014) and 

species-based diversity metrics (species richness, Shannon diversity, 
and taxonomic distinctness; Stenger-Kovács et al., 2016). However, 
from amongs these factors, region as a spatial effect had the highest 
degree of success in explaining variance observed in changes in dia-
tom functional diversity, lending further support to the notion that 
spatial processes have a strong effect on community structure and 
function (Heino et al., 2015). Consequently, functional trait propor-
tions change spatially not only in the case of other aquatic organisms 
(e.g., macroinvertebrates, Schmera, Erős, & Heino, 2013), but also 
in the case of diatoms. This spatial effect on diatom functional di-
versity as examined from the perspective of several traits exceeded 
that of the environmental variables on a regional scale. This stands 
in contrast to what was found on global scale on the basis of the 
composition of diatom ecological guilds alone (Soininen, Jamoneau, 
Rosebery, & Passy, 2016) as functional traits. The response of the 
applied functional diversity indices (with the exception of FEve) was 
unanimous for the regions: Their values were significantly lower in 
the Danube-Tisza Interfluve.

The variance in functional diversity metrics explained by environ-
mental variables was five times higher when a trait-based approach 
was applied (95.4%), as against species-based community analyses 
(18.1%, Stenger-Kovács et al., 2014). The strong relationship of func-
tional diversity to environmental variables had previously been high-
lighted by other studies which drew attention to their important role 
in shaping functional structure (Li et al., 2019; Teittinen et al., 2018). 

F I G U R E  2   Results of variation 
partitioning analyses for overall diatom 
functional diversity based on the 
environmental variables and (a) spatial 
factors, (b) watercolor, (c) substrate, (d) 
status, (e) hydrological phases, and (f) 
season. Adjusted R2 values, significance 
levels (p), and unexplained variances 
(residuals) are shown in the figure
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This means that in soda pans environment selects, consequently, 
deterministic processes are characteristic (Szabó et al., 2018), and 
environmental filtering causes a functional convergence pattern; 
species with similar ecological strategies and adaptations (suited 
traits) coexist (Cornwell & Ackerly, 2009; Petchey, Evans, Fishburn, 
& Gaston, 2007; Weiher & Keddy, 1995) as is also the case among 
periphytic algae in a floodplain conservation area (Bichoff, Osório, 
Ruwer, Dunck, & Rodrigues, 2018).

The status of soda pans is dependent upon the maintenance of 
their natural hydrological cycle (Stenger-Kovács et al., 2016). Drying 
out is a natural and required feature of the pans (Gavrilović et al., 
2018), and this, in turn, can radically reduce functional diversity (B.-
Béres et al., 2019). Under pristine ecological status, not only small 
species numbers and species-based diversity (Stenger-Kovács et al., 
2016), but also restricted trait variations can be found in the present 
study: Motile, small, elongated diatom species are characteristic (e.g., 

F I G U R E  3   Results of the Kruskal–Wallis test of the six applied functional diversity indices for the different regions (DT- Danube-Tisza 
Interfluve, FH- Fertő-Hanság region)
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Nitzschia austriaca Hustedt, Nitzschia aurariae Cholnoky, Craticula 
elkab (O. Muller ex O. Muller) Lange-Bertalot, Kusber & Cocquyt), 
indicating the harsh (high conductivity and turbidity, temporary 
drying out) environment (Stenger-Kovács et al., 2018). The motility 
allows the species to change their position to find the “best place” 
under these unfavorable conditions. The small cell size and this elon-
gated shape further facilitate their movement among the inorganic 
sediment particles and their ability to hide in the mud. Small size 

has also been highlighted in planktic communities (Alfonso, Zunino, 
& Piccolo, 2017; Somogyi et al., 2014) as well as the motile feature 
(Földi et al., 2018) in other saline lake ecosystems, where species 
reduce their cell and pore size due to the osmotic stress (Leterme 
et al., 2010).

Functional diversity metrics displayed significantly lower values in 
natural soda pans, indicating their pristine features. The diversity val-
ues of the degraded pans did not differ either from the natural ones 

F I G U R E  4   Results of the Kruskal–Wallis test of the six applied functional diversity indices for different watercolor types (groups with the 
same letters are not distinct, whereas groups with different letters differ significantly)
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or from those of reconstructed pans, which had significantly higher 
functional diversity than natural lakes. Disturbed hydrological cycles 
(e.g., by water abstraction or resupply) can modify limnological vari-
ables (e.g., lower conductivity and pH) (Lengyel et al., 2016), poten-
tially leading to less extreme features characteristic of fresh water, 
and therefore resulting in higher diversity. This result calls attention to 
anthropogenic activities (Alfonso et al., 2017), including even those un-
dertaken for conservation purposes, which have considerable impacts 

on biodiversity both on the taxonomic (Heino, 2005; Stenger-Kovács 
et al., 2016) and at the functional levels.

As forest shading of streams reduces functional diversity 
(Taniwaki et al., 2019), the light climate of soda pans on the basis of 
their color type (Lengyel et al., 2019) had a considerable effect on 
the trait composition and functional diversity, as also experienced 
in the diatom community composition of artificial bomb crater 
ponds (Földi et al., 2018). While the turbidity of lakes reduces light 

F I G U R E  5   Results of the Kruskal–Wallis test of the six applied functional diversity indices for soda pans with different ecological status 
(D: degraded, N: natural, RA: reconstructed pans; groups with the same letters are not distinct, whereas groups with different letters differ 
significantly)
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intensity, high levels of humic materials can modify the spectral 
composition of the incoming light (Kirk, 1994; V.-Balogh, Németh, 
& Vörös, 2009). In contrast to other aquatic ecosystems where the 
light intensity is high and different growth forms can coexist (Passy 
& Larson, 2011), here only those species with adequate traits can 
survive, and this results in a low degree of functional diversity. 
One possible adaptation strategy, besides the chromatic adapta-
tion of algae, might be size as a key trait, since the surface area of 
small cells is relatively large in proportion to their volume/size, an 

advantage in the competition for light (Somogyi & Vörös, 2004). 
Elongated forms can serve as light traps (Stenger-Kovács et al., 
2018) under the low light intensity of soda pans. FDis and RaoQ 
were the most sensitive indices of watercolor type, since these dif-
fered most in the three color types. The low value of the indices in 
the turbid and colored pans indicated the higher stress caused by 
high levels of inorganic particles or humic materials, as compared 
with the transitional ones, in which the amount of these materials 
was relatively smaller.

F I G U R E  6   Results of the Kruskal–Wallis test of the six applied functional diversity indices for soda pans in different seasons (groups with 
the same letters are not distinct, whereas groups with different letters differ significantly)
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In these ecosystems, seasons had a less pronounced effect, and 
the related hydrological cycle, as well as the substrate type, had no 
significant effect on functional diversity, in contrast to the case of 
freshwater, where high water periods support the appearance of 
a number of periphytic algal species with different traits, thus re-
sulting in a high degree of functional diversity (Dunck, Algarte, 
Cianciaruso, & Rodrigues, 2016; Dunck, Rodrigues, & Bicudo, 2015). 
At the taxonomic level, seasonal effects (Lengyel et al., 2016) can 
also be detected in the benthic diatom, as well as in the planktic com-
munities of saline lakes (Alfonso et al., 2017). However, microhabitat 
preference (such as substrate type) is negligible at taxonomic levels 
as a consequence of the extreme environmental conditions (Cejudo-
Figueiras, Álvarez-Blanco, Bécares, & Blanco, 2011; Lengyel et al., 
2016). This result further emphasizes the primarily role of local fac-
tors (Bichoff et al., 2018) and of the strong environmental filters on 
the structure and function of the communities, (Ding et al., 2017; 
Soininen, 2012) even in saline ecosystems (Horváth et al., 2014).

Of the environmental variables, DIN, temperature, pH, conduc-
tivity, and DO were the main determinants of the functional diver-
sity metrics as revealed by the RDA analyses. This stands in contrast 
to the taxonomic diatom assemblages that were chiefly determined 
by conductivity, bicarbonate, and sulfate concentration (Stenger-
Kovács et al., 2014) in natural ponds, while, salinity, pH, and turbid-
ity dominated in artificial saline ones (Földi et al., 2018). All specific 
functional diversity indices were sensitive to the most important en-
vironmental variables of soda pans—conductivity and pH—as has also 
been found in subarctic ponds (Teittinen et al., 2018). Furthermore, 
most (FRic, FDis, and FGR) were type-specific, that is, the response 
of the indices was also based on the dominant, basic anions (chloride 
and sulfate) in the pans. Comparing these to the species-based di-
versity metrics (species richness, Shannon diversity, and taxonomic 

F I G U R E  7   Redundancy analyses (RDA) of the six applied 
functional diversity indices and the environmental variables (bicarb, 
HCO3

−; carb, CO3
2−; cond, conductivity; DIN, dissolved inorganic 

nitrogen; DO, dissolved oxygen; temp, temperature; TP, total 
phosphorus
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distinctiveness) (Stenger-Kovács et al., 2016), the functional diver-
sity indices were more complex indicators since they integrated the 
effects of more environmental variables (from three to five, instead 
of two or three), and this plays a crucial role in the indication of envi-
ronmental changes. On the basis of the strong correlation between 
these key variables, they are very effective and informative metrics 
(for macroinvertebrates, see He et al., 2015). Of the functional diver-
sity metrics studied, FGR, FRic, FDis, and FDiv proved to be the most 
useful for assessing the ecological status and conservation value of 
soda pans. FEve was not related to changes in the environment, as 
has been shown in the case of diatoms in tropical headwater streams 
(Taniwaki et al., 2019), and over the long term by phytoplankton 
communities in a large river (Abonyi et al., 2018).

5  | CONCLUSIONS

As in all terrestrial ecosystems (Díaz & Cabido, 2001), functional 
diversity can be shown to be a proper tool to aid the understand-
ing of patterns and processes along the environmental and spatial 
gradients of aquatic ecosystems such as soda pans. This trait-based 
method was effective in indicating environmental changes and deg-
radation processes; the variance of the functional diversity metrics 
explained by the environmental variables was five times higher than 
the taxonomical one. Furthermore, functional diversity metrics were 
type-specific and independent of substrates and seasonal influ-
ences. This may well have major importance in ecological status as-
sessments and conservation planning. Diatom trait-based functional 
diversity indices proved to be both more complex and more appli-
cable indicators as compared with traditional taxonomical diversity 
metrics because they integrate the effects of a greater number of 
master variables of these unique environments. Consequently, the 
approach applied here makes conservation of this habitat type pos-
sible in a functional way and potentially globally.
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APPENDIX 1

Traits Function
Soda 
pans

Toward 
freshwater Typical species examples

Biovolume (S)
S1 (<100 µm3) Cell size influence on their distribution1

Physical disturbances (smaller species with greater 
resilience)2

Increasing salinity (reduction of cell size and pore size)3

Light availability (large species under higher light intensity)4

Easier movement among inorganic particles of small species5

X  Nitzschia austriaca (motile, 
MS1)

S2 (100–300 µm3)    
S3 (300–600 µm3)    
S4 (600–1500 µm3)  X Ctenophora pulchella
S5 (>1,500 µm3)    

Length/width ratio (L/W)
LW1 < 2 Elongated taxa with small L/W in polluted habitats with high 

shear stress6

High conductivity (LW2, LW3)5

Easier hiding or moving among mud particles of more elon-
gated taxa5

Elongated taxa are light traps in light-limited area5

   
LW2 (2–4) X  Anomoeoneis sphaerophora 

(motile, MLW2)
LW3 (4–6) X  Nitzschia salinarum (motile, 

MLW3)
LW4 (6–12)    
LW5 (12–20)    
LW6 ( >20)    

(Continues)
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Traits Function
Soda 
pans

Toward 
freshwater Typical species examples

Ecological guilds
High profile Lower conductivity5

High light intensity7
  Bacillaria paxilifera

Low profile Lower conductivity5

Frequent disturbance events10

Low nutrient content10

 X Amphora copulata

Motile Resource rich habitats4

High turbidity6

High salinity5,9

Siltation and land use8

Motility in fine sediment particles8

Water abstraction4

Drying phases9

X  Nitzschia bergii
Nitzschia supralitorea

Planktic Lower conductivity5  X Aulacoseira ambigua
Ecomorphological groups

MS1-MS5; HS1- 
HS5; LS1-LS5; 
PS1-PS5

Size -dependent guilds separation make it possible to detect 
more pronounced relationship between traits and environ-
mental variables11

   

Applied traits and their functions according to the relevant papers (1Heino & Soininen, 2006; 2Passy, 2007b; 3Leterme et al., 2010; 4Lange 
et al., 2011; 5Stenger-Kovács et al., 2018; 6Taploczai et al., 2017; 7Trábert et al., 2017; 8Smucker and Vis, 2010; 9Kókai et al., 2015; 10Novais et 
al., 2014; 11B.-Béres et al., 2016). Characteristic traits with example species in pristine soda pans and towards freshwaters features signed by X.

Transmission electron microscopic (TEM) photo about the characteristic motile, small, elongated diatom species from a natural soda 
pan (Zab-szék, Hungary).

Results of the RDA analyses of the functional diversity and geographical and limnoecological factors after backward and forward selection.

Factors Sample number AIC F p

Region 251 1941 25.44 .005

Status 251 1931.5 6.86 .005

Season 251 1928.5 2.96 .005

Colour 251 1925.8 3.28 .005

Substrate 251 1923.2 3.17 .005

Phase 83 642.6 2.84 .005

A P P E N D I X  1   (Continued)
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