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Abstract
Groundwater pollution susceptibility mapping using parsimonious approaches with limited data is of utmost importance for

water resource and health planning, especially in data-scarce regions. Current research assesses groundwater nitrate susceptibility
by considering the various combination of explanatory variables. In this study, the novel machine learning models of weighted
subspace random forest (WSRF) and generalized additive model using LOESS (GAMLOESS) are applied, and the results are compared
with well-known machine learning models of K-nearest neighbors (KKNN) and random forest (RF). The optimum combination of
inputs for groundwater nitrate susceptibility mapping is identified using the k-fold cross-validation methodology. Results indicated
that the combination of variables of precipitation, groundwater level, and lithology had the best performance among the 16
combinations. Modeling performance using the optimum combination demonstrated that the new ensemble approach, the WSRF
model, had superior performance according to the evaluation metrics of accuracy (0.87), kappa (0.73), precision (0.92), false alarm
ratio (0.08), and critical success index (0.75). The susceptibility assessment results of this paper can be a useful tool in developing
strategies for the prevention and protection of groundwater pollution.

Introduction
Groundwater resource quality plays an essential role

in many regions around the world, especially in arid
and semi-arid areas such as Iran, where the population
has grown significantly. Groundwater is a significant
resource for drinking water (Jalili et al. 2018), which
provides about 63% of drinking water consumed in
Iran (Iranian Ministry of Energy [IMOF] 2014). Iran,
as one of the largest countries in the Middle East, is
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among the world’s major groundwater consumers (Dalin
et al. 2017). Yet, most of the regions in Iran frequently
are challenged with low groundwater quality (Dalin
et al. 2017; Pazand et al. 2018; Rawat et al. 2019), chronic
groundwater decline (Hashemi 2015; Bagheri et al. 2020),
desertification (Jalili et al. 2018) and drying out of Qanats
(Abbasnejad et al. 2016).

About 50% of the world’s population is hugely
dependent on groundwater resources for the provision
of drinking water and other consumptions (Oki and
Kanae 2006). Clean drinking water resources such as
groundwater, are essential for human health (Hosein-
zadeh et al. 2015) as more than 80% of human
diseases are directly related to contaminated water
(Agca 2014). Among groundwater pollutants, nitrate pol-
lution is the most nonpoint source, and widespread chem-
ical contamination in groundwater resources (Spalding
and Exner 1993). Groundwater nitrate pollution has sig-
nificantly increased over the past decade (Alighardashi
and Mehrani 2017). It has been identified as a severe
environmental problem in many countries (Rutkoviene
et al. 2009; Wick et al. 2012; Zhang et al. 2013; Chica-
Olmo et al. 2014; Esmaeili et al. 2014; Espejo-Herrera
et al. 2015; Han et al. 2015; Matiatos 2016; Ouedraogo
et al. 2016). Nitrate pollution is a significant suffering
problem in groundwater management in most of the
world’s agricultural areas.
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Figure 1. Location of Lenjanat aquifer in Esfahan province, Iran.

The study of groundwater contamination with nitrate
in arid and semi-arid regions faces spatial complexity
(Nejatijahromi et al. 2019). According to the increasing
demands for groundwater resources, strategies such as
regular monitoring and identifying the source and behav-
ior of pollutants are essential to retain water quality and
supply healthy and safe drinking water for consumers
(Alighardashi and Mehrani 2017). Nitrate in groundwa-
ter can be initiated by a natural or anthropogenic source.
So, currently, contamination of groundwater with nitrate
is beyond the scope of some studies.

Machine learning modeling is a useful tool and
effective method for complex systems and has recently
been applied to predict hazards in environmental sci-
ence (Choubin et al. 2018; Singh et al. 2018). This
method has been especially applied to assess nitrate
concentration in aquifers of southwestern United States
(Anning et al. 2012), southern Spain (Rodriguez-Galiano
et al. 2018), Lowa private wells in the United States
(Wheeler et al. 2015), and Andimeshk-Dezful region in
Iran (Rahmati et al. 2019). In addition, it has retracted
some researchers’ attention to assessing groundwater vul-
nerability quality (Karandish et al. 2017; Ostad-Ali-Askari
et al. 2017; Barzegar et al. 2018) by use of different
machine learning models, including boosted regression
trees (BRT) (Ransom et al., 2017), random forests (RF)
(Nolan et al. 2018; Rodriguez-Galiano et al. 2018),
artificial neural networks (ANN) (Ostad-Ali-Askari
et al. 2017), multivariate discriminant analysis (MDA)

(Sajedi-Hosseini et al. 2018), and classification and
regression trees (CART) (Rodriguez-Galiano et al. 2018).

Accurate groundwater pollution mapping using parsi-
monious approaches with a minimum required data is of
utmost importance for water resource and health planning,
especially in data-scarce regions (Lee and Moon 2007;
Kashani et al. 2017; Malekian et al. 2019). Machine learn-
ing modeling has some advantages, such as low cost
and rapid modeling compared to traditional approaches
(Nolan et al. 2018). Therefore, this study applied novel
machine learning models such as weighted subspace ran-
dom forest (WSRF) and generalized additive model using
LOESS (GAMLOESS) for groundwater nitrate suscep-
tibility mapping. The results were compared with well-
known machine learning models of K-nearest neighbors
(KKNN), and random forest (RF). Also, during the mod-
eling process, different input combinations were tested
for improving the results. Unlike previous studies (e.g.,
Sajedi-Hosseini et al. 2018; Rahmati et al. 2019), the main
objective was to compare different combinations instead
of using all combinations as input. Therefore, besides the
comparative analysis of the models, this study determined
the best combination across the multitime resampling
method in spatial modeling and susceptibility assessment
of nitrate. However, the main objectives of this study
were: (1) to identify the best combination for ground-
water nitrate susceptibility mapping (GNSM), (2) to com-
pare the performance of the different machine learning
models in GNSM, and (3) to produce the susceptibility
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maps based on the best predictive variables and potential
models.

Material and Methods

Study Area
The Lenjanat aquifer, with an area of 1180 km2

is located in Esfahan province, in the center of Iran
(Figure 1). Geographically this aquifer is situated between
longitudes 51◦04′E to 51◦41′E and Latitudes 32◦04′N
to 32◦31′N. It is located in an arid region of Esfahan
province with annual precipitation of about 250 mm. The
elevation in the Lenjanat plain changes from about 1631
to 2337 m above sea level. Zayandehrood River, with a
length of 26 km, is the main river of this plain. The
mean monthly temperature varies from 4 ◦C to 27 ◦C,
respectively, in January and August months. Geologically,
deposits of the plain are mostly relevant to the Permian
to Quaternary periods. Jurassic shale and Cretaceous
limestones are the main bedrock of the aquifer (Sajedi-
Hosseini et al. 2018). Due to the climate of the region,
the main source of drinking and irrigation water is
groundwater. Therefore, monitoring, investigating, and
modeling the groundwater quality in this region is of
utmost importance for water resource management and
environmental planning.

Dataset
The dependent variable (predictand) in this study

was the location of the polluted and nonpolluted wells.
It is worth noting that to reach a balanced number of
contaminated and noncontaminated wells, some wells
have been excluded. So, the nitrate concentration data
from 102 wells (Figure 1) were coded on a binary
scale of 0 and 1, which respectively indicates the
nonpolluted and polluted wells based on a threshold
equal to 50 mg/L for Nitrate values according to the
guideline of the World Health Organization (2011) for
drinking-water quality. Details of Nitrate data have
been presented in our previous work (Sajedi-Hosseini
et al. 2018). Predictor variables are including elevation,
precipitation (PCP), groundwater level (GWL), distance
from industrial (DFI) areas, soil type, land use, and
lithology (Figure 2).

Modeling of Groundwater Nitrate Susceptibility
After preparing the input and output variables, the

groundwater nitrate pollution was modeled using four
classifier machine learning models. Various combinations
of input variables were considered and a trial and error
method was used to find the best combination in each
model. 70% of data was used for the calibration of the
models using the 10-fold cross validation (CV) procedure,
and the rest of the data (30%) was excluded from the
modeling process to validation of the models. In this
study the groundwater nitrate susceptibility was modeled
using four machine learning models including KKNN, RF,
WSRF, and GAMLOESS.

Figure 2. Groundwater nitrate pollution influencing factors:
(a) elevation, (b) precipitation (PCP), (c) groundwater level
(GWL), (d) distance from industrial (DFI) area, (e) soil type,
(f) land use, and (g) lithology.

For evaluating the models, different commonly used
metrics are used in this study which is including accuracy,
kappa, precision, false alarm ratio (FAR), and critical
success index (CSI) (Equations 1 to 5):

Accuracy = H + CN

H + FA+ M + CN

(1)

Kappa = Accuracy − Pe

1 − Pe

(2)

Pe = (H + FA)(H + M) + (M + CN)(FA+ CN)

(H + FA+ M + CN)2
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Table 1
Accuracy of the Models in Groundwater Nitrate Modeling Using a Different Combination of Inputs by the

Testing Dataset

Combination Variable RF KKNN WSRF GAMLOESS

Comb1 PCP, GWL 0.80 0.70 0.77 0.57
Comb2 PCP, GWL, DFI 0.67 0.46 0.67 0.60
Comb3 PCP, GWL, lithology 0.80 0.75 0.87 0.76
Comb4 PCP, GWL, land use 0.63 0.53 0.73 0.60
Comb5 PCP, GWL, elevation 0.80 0.63 0.76 0.63
Comb6 PCP, GWL, soil type 0.80 0.67 0.80 0.53
Comb7 PCP, GWL, DFI, lithology 0.70 0.53 0.67 0.66
Comb8 PCP, GWL, DFI, land use 0.67 0.53 0.67 0.60
Comb9 PCP, GWL, DFI, elevation 0.70 0.63 0.63 0.53
Comb10 PCP, GWL, DFI, soil type 0.67 0.50 0.67 0.60
Comb11 PCP, GWL, DFI, lithology, land use 0.67 0.63 0.67 0.63
Comb12 PCP, GWL, DFI, lithology, elevation 0.70 0.70 0.63 0.53
Comb13 PCP, GWL, DFI, lithology, soil type 0.73 0.67 0.63 0.63
Comb14 PCP, GWL, DFI, lithology, land use, elevation 0.67 0.60 0.63 0.50
Comb15 PCP, GWL, DFI, lithology, land use, soil type 0.63 0.63 0.70 0.60
Comb16 (all inputs) PCP, GWL, DFI, lithology, land use, elevation, soil type 0.70 0.63 0.60 0.57

Precision = H

H + FA

(3)

FAR = FA

H + FA

(4)

CSI = H

H + M + FA

(5)

where H , FA, M , and CN are calculated by a contingency
table and respectively denote the number of hits, the
number of false alarms, the number of misses, and the
number of correct negatives.

Results and Discussion

Best Input Combination
Model calibration was conducted by different combi-

nations (16 combinations) using a 10-fold cross-validation
methodology. Validation results calculated by the held-out
data (30% of data) for each combination are presented in
Table 1. According to the accuracy values, the RF model
had 80% accuracy in Comb1 (PCP, GWL), Comb3 (PCP,
GWL, lithology), Comb5 (PCP, GWL, elevation), Comb6
(PCP, GWL, soil type). The KKNN model had 75%
accuracy with Comb3 (PCP, GWL, lithology). The max-
imum accuracy (accuracy = 0.87) was occurred by the
WSRF model for Comb3 (PCP, GWL, lithology). Also,
the GAMLOESS model had the highest accuracy (accu-
racy = 0.76) in Comb3 (PCP, GWL, lithology) (Table 1).

Therefore, it can be concluded that groundwater
modeling has better performance when variables of
PCP, GWL, and lithology (i.e., Comb3) are used as
input variables. Effects of the PCP on the nitrate
concentration in groundwater such as leaching from
the soil contents have been proved by scholars (e.g.,

Table 2
Validation Results of the Groundwater Nitrate

Pollution Modeling Using the Best Input
Combination (Comb3) by the Testing Dataset

Criterion KKNN RF WSRF GAMLOESS

Accuracy 0.75 0.80 0.87 0.76
Kappa 0.46 0.58 0.73 0.40
Precision 0.72 0.76 0.92 0.81
FAR 0.30 0.24 0.08 0.22
CSI 0.61 0.68 0.75 0.48

Schweigert et al. 2004; Rankinen et al. 2007). About
GWL, increasing the level of groundwater decreases
nitrate concentration (Kraft et al. 1999). Hu et al. (2005)
demonstrated that there is a significant correlation between
nitrate and groundwater level, which shallow groundwater
levels have a higher nitrate concentration. Also, the
nitrate removal is dependent on the lithology condition
and subsurface variations in soil texture (Haycock and
Burt 1993; Gold et al. 1998; Devito et al. 2000; Vidon
and Hill 2004).

Modeling Results
Evaluation metrics for the best input combination

(i.e., Comb3) by the testing dataset are presented in
Table 2. According to the accuracy, respectively, models
of WSRF, RF, GAMLOESS, and KKNN had better per-
formance. Kappa values indicated that the WSRF and RF
models had a good performance (0.55 < kappa < 0.85)
(Monserud and Leemans 1992), while the precision
metric showed that the WSRF and GAMLOESS models
had higher values than the RF and KKNN models.
According to the FAR, models of WSRF, GAMLOESS,
RF, and KKNN had a lower error, respectively. The
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Figure 3. Groundwater nitrate pollution susceptibility: (a)
KKNN, (b) RF, (c) WSRF, and (d) GAMLOESS.

CSI values respectively for the WSRF, RF, KKNN, and
GAMLOESS were higher (respectively equal to 0.75,
0.68, 0.61, and 0.48) (Table 2).

Therefore, the WSRF model had superior perfor-
mance due to the evaluation metrics of accuracy (0.87),
kappa (0.73), precision (0.92), FAR (0.08), and CSI (0.75).
This method can organize and categorize a very sparse
dataset with random forests created by small subspaces
through a variable weighting method, rather than the
traditional approach of random variable sampling (Xu
et al. 2012). To the best authors’ knowledge, there is not
any study that has used the WSRF model for groundwater
susceptibility modeling; however, the good performance
of this model has been proved in other fields. For example,
Singla and Rana (2016) indicated the best performance
of the WSRF among the 13 machine learning models
in eye state prediction. Also, in another study Wilkes
et al. (2018) demonstrated that the WSRF model could
accurately predict the biochemical interpretation of urine
steroid profiles.

Susceptibility Mapping of Groundwater Nitrate Pollution
After calibration and validation of the machine learn-

ing models using the best input combination, the pixel
value of inputs for the whole region was used and the
groundwater nitrate pollution, spatially, was predicted.
Predicted output maps were classified into three suscepti-
bility classes (i.e., low, medium, and high) based on the
Natural Breaks (Jenks) classification method (Figure 3).
According to the susceptibility maps, the percentage of
high susceptibility class was greater respectively for mod-
els of GAMLOESS, WSRF, KKNN, and RF with 38.4,
36.4, 35.7, and 34.0% of the whole region. However,
the location of the susceptibility classes produced by the

different models was approximately matched. The high
class is mostly located in the middle regions of the plain,
which mostly have land uses for agriculture, residential,
and industrial. Inorganic nitrate sources from agricultural
areas such as chemical fertilizers, organic nitrate sources
from residential areas such as human waste and munici-
pal sewage effluents, and industrial wastewaters can be the
main cause of high susceptibility in these areas (Dongol
et al. 2005; Amiri et al. 2014; Esmaeili et al. 2014; Matzeu
et al. 2017; Sajedi-Hosseini et al. 2018).

Conclusions
This study tried to model groundwater susceptibil-

ity using limited and parsimonious parameters. So, the
best input combination was identified by the k -fold cross-
validation methodology through four machine learning
models. The valuable result obtained is that using all
variables as input does not guarantee a better model per-
formance. Variables of precipitation, groundwater level,
and lithology were identified as the best input combina-
tion. Modeling performance using the best combination
demonstrated that the new ensemble model, the WSRF
model, had superior performance according to the eval-
uation metrics of accuracy (0.87), kappa (0.73), preci-
sion (0.92), FAR (0.08), and CSI (0.75). Therefore, the
results of this study indicated a good performance using
the limited parameters which are most parsimonious and
important for water resources and health planning in a
data-scarce region. However, hydrologically, groundwa-
ter pollution studies are confronted with some inevitable
limitations such as temporal variations of pollution and
migration of contaminants in groundwater; which should
be considered in groundwater pollution risk management.
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