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Abstract

In this paper we introduce three combinatorial models for symmetrized poly-
Bernoulli numbers. Based on our models we derive generalizations of some identities
for poly-Bernoulli numbers. Finally, we set open questions and directions of further
studies.

Mathematics Subject Classifications: 05A19, 11B68

1 Introduction

The symmetrized poly-Bernoulli numbers were introduced by Kaneko-Sakurai-Tsumura
[12] in order to generalize the dual formula of poly-Bernoulli numbers. The poly-Bernoulli

polynomials B
(k)
n (x) of index k ∈ Z are defined by the generating function

∞∑
n=0

B(k)
n (x)

tn

n!
= e−xt

Lik(1− e−t)
1− e−t

,

where Lik(z) is the polylogarithm function:

Lik(z) =
∞∑
m=1

zm

mk
(|z| < 1).
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The two types of poly-Bernoulli numbers, B
(k)
n and C

(k)
n [3, 10, 11] are special values of

the poly-Bernoulli polynomials at x = 0 and x = 1:

B(k)
n (0) = B(k)

n and B(k)
n (1) = C(k)

n .

For negative k index these number sequences are integers (A099594 and A136126 [18])
and have several interesting combinatorial interpretations [5, 6, 7].

Both B
(−k)
n and C

(−k)
n are symmetric number arrays. These properties are special

cases of the more general identity on poly-Bernoulli polynomials which hold for any non-
negative integers n, k and m:

m∑
j=0

[
m

j

]
B(−k−j)
n (m) =

m∑
j=0

[
m

j

]
B

(−n−j)
k (m),

where
[
n
k

]
is the (unsigned) Stirling number of the first kind which counts the number of

permutations of [n] = {1, 2, . . . , n} with k disjoint cycles. Kaneko-Sakurai-Tsumura [12]
defined this expression as the symmetrized poly-Bernoulli numbers :

B(−k)
n (m) :=

m∑
j=0

[
m

j

]
B(−k−j)
n (m).

Note that

B(−k)
n (0) = B(−k)

n and B(−k)
n (1) = C(−k−1)

n .

The authors [12] suggested the combinatorial investigations of these number sequences.
The first result in this direction is due to the second author. Matsusaka [13] showed
that the alternating diagonal sums of symmetrized poly-Bernoulli numbers coincide with
certain values of the Dumont-Foata polynomials/Gandhi polynomials. Precisely,

n∑
j=0

(−1)jB(−j)
n−j (k) = k!(−1)n/2Gn(k), (1)

where Gn(z) denotes the Gandhi polynomials satisfying

Gn+2(z) = z(z + 1)Gn(z + 1)− z2Gn(z)

with G0(z) = 1 and G1(z) = 0. Special cases of the theorem [13] are

n∑
j=0

(−1)jB
(−j)
n−j =

{
1, if n = 0,

0, if n > 0,

which was proven analytically in [4] and combinatorially in [5], and

n∑
j=0

(−1)jC
(−j−1)
n−j = −Gn+2,
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where Gn := (2 − 2n+1)B
(1)
n (1) are the Genocchi numbers 0, 1, −1, 0, 1, 0, −3, 0, 17,

0, −155, . . . A001469 [18]. This last identity was proven by using analytical methods in
[12], but providing a combinatorial explanation is still open and seems to be a difficult
problem.

The paper is organized as follows. In the first three sections after the introduction
we introduce three combinatorial models for the normalized symmetrized poly-Bernoulli
numbers. In Section 5 we prove some recurrence relations. In the last section we formulate
a conjecture and pose some open questions.

2 Barred Callan sequences

In this section we present a model of the normalized symmetrized poly-Bernoulli numbers
B̂k
n(m). We are interested in the combinatorics of symmetrized poly-Bernoulli numbers

with negative k indices (since these numbers are positive integers). Keeping the notation
simpler, we define for non-negative integers n,k and m,

B̂k
n(m) :=

1

m!
B(−k)
n (m) ∈ Z.

In A099594 [18] Callan has given a combinatorial interpretation of the poly-Bernoulli

numbers in certain type of permutations. Namely, B
(−k)
n is the number of permutations

of [n + k] = {1, . . . , n + k} such that all substrings of elements 6 n and all substrings
of elements > n are in increasing order. Such permutations were called in the literature
[5, 6] Callan permutations. Essentially the same are Callan sequences that we define
as follows. Consider the set N = {1, . . . , n} ∪ {∗} (referred to as red elements) and
K = {1, . . . , k} ∪ {∗} (referred to as blue elements). Let R1, . . . , Rr, R

∗ be a partition
of the set N into r + 1 non-empty blocks (0 6 r 6 n) and B1, . . . , Br, B

∗ a partition of
the set of K into r + 1 non-empty blocks. The blocks containing ∗ and ∗ are denoted by
B∗ and R∗, respectively. We call B∗ and R∗ extra blocks, while the other blocks ordinary
blocks. We call a pair of a blue and a red block, (Bi;Ri) for an i a Callan pair. A Callan
sequence is a linear arrangement of Callan pairs augmented by the extra pair

(B1;R1)(B2;R2) · · · (Br;Rr) ∪ (B∗;R∗).

It is easy to check that this definition is equivalent with the one given by Callan in [18].
Given a Callan sequence, write the elements of the blocks in increasing order, record the
blocks in the given order and if there are elements in R∗ besides ∗ move this red elements
into the front of the sequence, while the elements in B∗ at the end of the sequence. Delete
∗ and ∗, and shift the blue elements by n, i→ i+ n.

Example 1 (All Callan sequences with n = 2 and k = 2).

(1, 2, ∗; 1, 2; ∗) (1, 2; 1, 2)(∗; ∗), (1; 1, 2)(2, ∗; ∗), (2; 1, 2)(1, ∗; ∗), (1, 2; 1)(∗; 2, ∗),
(1, 2; 2)(∗; 1, ∗), (1; 1)(2, ∗; 2, ∗), (2; 1)(1, ∗; 2, ∗), (1; 2)(2, ∗; 1, ∗), (2; 2)(1, ∗; 1, ∗),
(1; 1)(2; 2)(∗; ∗), (1; 2)(2; 1)(∗; ∗), (2; 1)(1; 2)(∗; ∗), (2; 2)(1; 1)(∗; ∗).
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We list the corresponding Callan permutations in the same order as above

1234, 3412, 3124, 4123, 2341,

1342, 2314, 2413, 1324, 1423,

3142, 3241, 4132, 4231.

Definition 2. For integers n, k > 0 and m > 0, the m-barred Callan sequence of size
n×k is the Callan sequence with m bars inserted between (before and after) the ordinary
pairs. We let Ckn(m) denote the number of all m-barred Callan sequences of size n× k.

Example 3 (All 2-barred Callan sequences with n = 3 and k = 1).

||(1, ∗; 1, 2, 3, ∗), ||(1; 1, 2, 3)(∗; ∗), ||(1; 1, 2)(∗; 3, ∗), ||(1; 1, 3)(∗; 2, ∗),
||(1; 2, 3)(∗; 1, ∗), ||(1; 1)(∗; 2, 3, ∗), ||(1; 2)(∗; 1, 3, ∗), ||(1; 3)(∗; 1, 2, ∗),
|(1; 1, 2, 3)|(∗; ∗), |(1; 1, 2)|(∗; 3, ∗), |(1; 1, 3)|(∗; 2, ∗), |(1; 2, 3)|(∗; 1, ∗),
|(1; 1)|(∗; 2, 3, ∗), |(1; 2)|(∗; 1, 3, ∗), |(1; 3)|(∗; 1, 2, ∗),
(1; 1, 2, 3)||(∗; ∗), (1; 1, 2)||(∗; 3, ∗), (1; 1, 3)||(∗; 2, ∗), (1; 2, 3)||(∗; 1, ∗),
(1; 1)||(∗; 2, 3, ∗), (1; 2)||(∗; 1, 3, ∗), (1; 3)||(∗; 1, 2, ∗).

Remark 4. m-barred Callan sequences can be viewed in fact as a pair (P,BP ), where P
is a preferential arrangement of a subset of {1, 2, . . . , n} and BP is a barred preferential
arrangement of a subset of {1, 2, . . . , k}. Barred preferential arrangements were introduced
in [2] and were used for combinatorial analysis of generalizations of geometric polynomials
for instance in [15].

Theorem 5. The number Ckn(m) of m-barred Callan sequences of size n × k is given by

the normalized symmetrized poly-Bernoulli number B̂k
n(m).

Proof. Let r be the number of ordinary pairs. Partition the elements of N into r + 1
blocks in

{
n+1
r+1

}
ways, similarly K into r + 1 blocks in

{
k+1
r+1

}
ways. (

{
n
k

}
denotes the

Stirling number of the second kind, counting the number of partitions of an n-element
set into k non-empty blocks.) Order both types of ordinary blocks in r! ways and choose
the positions of the m bars from the r + 1 places between the ordinary blocks (note that
repetition is allowed) in

(
r+1+m−1

m

)
ways. By summing them up, we have

Ckn(m) =

min(n,k)∑
r=0

(
r +m

m

)
(r!)2

{
n+ 1

r + 1

}{
k + 1

r + 1

}
. (2)

By comparing this expression (2) with the closed formula derived in [12, (2.9)] for the
symmetrized poly-Bernoulli numbers, the theorem follows.

It obviously follows from the definition that

Ckn(m) = Cnk (m).
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Corollary 6. A labeled m-barred Callan sequence is an m-barred Callan sequence such
that the bars are labeled. The number of labeled m-barred Callan sequences of size n × k
is given by B(−k)

n (m). Clearly, B(−k)
n (m) = B(−n)

k (m).

By the right-hand side of (2), we define Ckn(m) for n = 0 or k = 0. Namely, C0n(m) =
Ck0 (m) := 1.

Theorem 7. For integers n > 0 and k > 0, the number Ckn(m) obeys the recurrence
relation of

Ckn(m) = Ck−1n (m) +
n∑
j=1

(
n

j

)
Ck−1n−j+1(m) +m

n∑
j=1

(
n

j

)
Ck−1n−j (m).

Proof. We count m-barred Callan sequences of size n×k according to the following cases.
We let |` denote ` consecutive bars.

(0) |m(1, 2, . . . , k, ∗; 1, 2, . . . , n, ∗).

(1) (1, B;R) is the first ordinary Callan pair with B 6= ∅.

(2)` |`(1;R) is the first ordinary Callan pair.

(3)` (B′;R)|`(1, B;R′) for some (B′;R) and B 6= ∅.

(4)0 (B′;R)|0(1;R′) for some (B′;R).

(4)` (B′;R′)|`(1;R) for some ` > 0 and (B′;R′).

The cases (0) and (1) are in bijection with m-barred Callan sequences of size n×(k−1)
by deleting 1. So the number of such cases is Ck−1n (m).

Next, we consider the cases (2)0, (3)`, and (4)0. In these cases, we delete 1 and R,
and insert the additional number 0 as follows. We assume that R contains j elements.
(1 6 j 6 n).

(2)0 Insert 0 into the extra red block.

|0(1;R)|`′(B′;R′) · · · (B′′, ∗;R′′, ∗)↔ |`′(B′;R′) · · · (B′′, ∗; 0, R′′, ∗).

This gives m-barred Callan sequences of size (n− j + 1)× (k − 1) such that 0 is in
the extra pair.

(3)` Replace R with 0.
(B′;R)|`(1, B;R′)↔ (B′; 0)|`(B;R′).

This gives m-barred Callan sequences of size (n − j + 1) × (k − 1) such that 0 is
alone in an ordinary pair.
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(4)0 Replace R with 0, and merge with R′.

(B′;R)|0(1;R′)↔ (B′; 0, R′).

This gives m-barred Callan sequences of size (n − j + 1) × (k − 1) such that the
block that contains 0 includes also other red elements.

Clearly, the number of ways to create the R with j elements is
(
n
j

)
. Thus, the number of

patterns in the cases (2)0, (3)` (0 6 ` 6 m), and (4)0 is

n∑
j=1

(
n

j

)
Ck−1n−j+1(m).

Finally, consider the remaining cases (2)` and (4)` with 1 6 ` 6 m. If we delete the
pair (1;R), we obtain m-barred Callan sequences of size (n − j) × (k − 1). However, we
obtain the same sequence m-times since (1;R) could have been after any bar. Indeed,
conversely, take an m-barred Callan sequence of size (n− j)× (k− 1) and insert the pair
(1;R) after any bar. Thus, now we have

m
n∑
j=1

(
n

j

)
Ck−1n−j (m).

This concludes the proof.

We give another type of recursion. Let B̂k
n(m; r) denote the number of m-barred

Callan sequences with r ordinary blocks. Then we have the following recursion.

Theorem 8. For positive integers n, k > 0 and m > 0, it holds

B̂k
n(m) =

n∑
j=1

(
n

j

)min (n−j,k−1)∑
r=0

(m+ r + 1)B̂k−1
n−j(m; r) +

min (n,k−1)∑
r=0

(r + 1)B̂k−1
n (m; r).

Proof. Consider an m-barred Callan sequence. There are two cases: k is in an ordinary
pair as a singleton, or not, i.e., it is in an ordinary pair with other elements or in the extra
pair. If it is in an ordinary pair as a singleton, let j be the number of the red elements in
this pair. Choose in

(
n
j

)
ways such a Callan pair. Since it is an ordinary pair, j is at least

1. This new block can be inserted into the arrangement of the ordinary blocks and bars
formed by the m-barred Callan sequence of size (n− j)× (k− 1) with r ordinary blocks,
i.e., in m+ r + 1 ways. This gives the first part of our sum.

On the other hand, if we insert k into any block that contains a blue element already,
or into the extra block, that can be done in r + 1 ways, which gives the second part of
the sum.
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3 Weighted barred Callan sequences

In this section we present a combinatorial interpretation, which allows us to extend the
number that counted in our previous model the bars inserted between the Callan pairs,
to arbitrary numbers.

Let π be a permutation π = π1π2 . . . πn ∈ Sn. The left-to-right minimum of the per-
mutation π is the element πi such that if j < i then πi < πj. We denote by LR-min(π)
the set of left-to-right minima of the permutation π. Let w(π) = |LR-min(π) − 1|. For
instance, for π = 869572341 w(π) = 4. It is well-known that the left-to-right minima
correspond to cycles via Foata’s fundamental transformation [19]. In particular, permu-
tations with a given number of left-to-right minima are enumerated by the Stirling number
of the first kind, and the generating function is given by the rising factorial. In particular,
for the reduced weight w(π) we have∑

π∈Sn

xw(π) = (x+ 1)n−1,

where xn = x(x+ 1)(x+ 2) · · · (x+ n− 1) is the rising factorial.
We define a weight on a 1-barred Callan sequence (from now on barred Callan se-

quence) using the LR-min statistic of permutations. Since a Callan sequence is built up
of two ordered partitions, an ordered partition of red blocks and an ordered partition
of blue blocks, one can speak about the order of blue blocks. We say that the natural
order of the blocks in a partition σ = B1/B2/ . . . /Bn is given by the least elements. For
instance, the blocks of the partition {1, 3, 9}/{2, 4, 7}/{5, 6}/{8} are listed in the natural
order. So we can talk about the left-to-right minimum of an ordered partition also and
define an analogue weight on a 1-barred Callan sequence.

Definition 9. Let Bkn denote the set of barred Callan sequences of size n×k and α ∈ Bkn.
Consider the set of ordinary blue blocks of the Callan sequence with the natural order
and add | as the smallest element to the set. The weight w(α) is the weight w(π) of the
permutation of the blue blocks (and the bar) in the barred Callan sequence α, i.e., the
number of left-to-right minima reduced by one.

Example 10 (All 1-barred Callan sequences with n = 2 and k = 2 with indication of
their weight).

|(1, 2, ∗; 1, 2, ∗), |(1, 2; 1, 2)(∗; ∗) |(1; 1, 2)(2, ∗; ∗), |(2; 1, 2)(1; ∗; ∗),
|(1, 2; 1)(∗; 2, ∗), |(1; 1)(2, ∗; 2, ∗), |(2; 1)(1, ∗; 2, ∗), |(1, 2; 2)(∗; 1, ∗),
|(1; 2)(2, ∗; 1, ∗), |(2; 2)(1, ∗; 1, ∗), |(1; 1)(2; 2)(∗; ∗), |(2; 1)(1; 2)(∗; ∗),
|(1; 2)(2; 1)(∗; ∗), |(2; 2)(1; 1)(∗; ∗), (1, 2; 1, 2)|(∗; ∗), (1; 1, 2)|(2, ∗; ∗),
(2; 1, 2)|(1; ∗; ∗), (1, 2; 1)|(∗; 2, ∗), (1; 1)|(2, ∗; 2, ∗), (2; 1)|(1, ∗; 2, ∗),
(1, 2; 2)|(∗; 1, ∗), (1; 2)|(2, ∗; 1, ∗), (2; 2)|(1, ∗; 1, ∗), (1; 1)|(2; 2)(∗; ∗),
(2; 1)|(1; 2)(∗; ∗), (1; 2)|(2; 1)(∗; ∗), (2; 2)|(1; 1)(∗; ∗), (1; 1)(2; 2)|(∗; ∗),
(2; 1)(1; 2)|(∗; ∗), (1; 2)(2; 1)|(∗; ∗), (2; 2)(1; 1)|(∗; ∗).
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Definition 11. We define the Callan polynomial for any positive integers n and k as

Ck
n(x) =

∑
α∈Bkn

xw(α).

By the above example, we see that C2
2(x) = 2x2 + 15x+ 14.

Proposition 12. The polynomials Ck
n(x) are given by

Ck
n(x) =

min(n,k)∑
j=0

j!(x+ 1)j
{
n+ 1

j + 1

}{
k + 1

j + 1

}
.

Proof. It is straightforward from the definition of barred Callan sequences and the defi-
nition of the weight.

We give the generating function for the Callan polynomial in the next proposition.

Proposition 13.

∞∑
n=0

∞∑
k=0

Ck
n(x)

Xn

n!

Y k

k!
=

eX+Y

(eX + eY − eX+Y )x+1
.

Proof. By Proposition 12, we have

∞∑
n=0

∞∑
k=0

Ck
n(x)

Xn

n!

Y k

k!
=
∞∑
n=0

∞∑
k=0

∞∑
j=0

j!(x+ 1)j
{
n+ 1

j + 1

}{
k + 1

j + 1

}
Xn

n!

Y k

k!

= eX+Y

∞∑
j=0

(x+ 1)j
(eX − 1)j(eY − 1)j

j!
.

Here we use the fact [3, Proposition 2.6, (7)]

∞∑
k=0

{
k + 1

j + 1

}
tk

k!
=
et(et − 1)j

j!
.

By the series expansion
1

(1− t)x+1
=
∞∑
j=0

(x+ 1)j
tj

j!
,

we obtain the proposition.

Next, we show the recursion by modifying the proof appropriately in the previous
section. We define C0

n(x) = Ck
0 (x) = 1.

Theorem 14. For any integers n > 0 and k > 0, we have

Ck
n(x) = Ck−1

n (x) +
n∑
j=1

(
n

j

)
Ck−1
n−j+1(x) + x

n∑
j=1

(
n

j

)
Ck−1
n−j (x). (3)
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Proof. We split the set Bkn into disjoint subsets as follows: Let A denote the set α ∈ Bkn
such that k is in the extra pair with ∗. Let B denote the set β ∈ Bkn such that k is in the
first Callan pair alone and there is no bar before it. Let C denote the set γ ∈ Bkn such
that k is in an ordinary block. Further, if it is alone in the first Callan pair, then the bar
is before it.

If k is in the extra blue block B∗, we simply take a barred Callan sequence with k− 1
blue elements and n red elements and insert k into the extra block. The extra block does
not affect the weight. Thus, we have∑

α∈A

xw(α) = Ck−1
n (x).

We obtain a Callan sequence β ∈ B by choosing in
(
n
j

)
ways j red elements for the

first Callan pair (k;R1), and constructing from the remaining n−j red elements and k−1
blue elements a barred Callan sequence. (k;R1) is glued simply before the sequence. The
weight will be increased by one, since the block (k;R1) is the greatest among the blocks.
Hence, we have ∑

β∈B

xw(β) = x

n∑
j=1

(
n

j

)
Ck−1
n−j (x).

We split the set C into further disjoint subsets as follows. C1 are the Callan sequences,
where k is alone in its ordinary block and the bar is directly before it. C2 consists of the
Callan sequences, where k is alone, a bar is not before it and it is not in the first Callan
pair. Finally, C3 are the Callan sequences, where k is not alone in its blue block. Clearly,
C = C1 ] C2 ] C3.

Choose again j red elements in
(
n
j

)
ways for k to create a block (k; R̂). Construct a

barred Callan sequence with ([n]\R̂) ∪ {0} red elements and [k − 1] blue elements. We
have three cases:

If 0 is in the extra block, delete 0 and insert (k; R̂) directly after the bar. In this case
we obtain the set C1. The weight does not change, since k is “greater” than |.

If 0 is in an ordinary block and there is no other red element in its block, merge
(k; R̂) to this Callan pair by (B; 0) → (B, k; R̂). Do not change the position of the bar.
This case gives the set C3. The weight does not change, since the so obtained blue block
contains smaller elements than k, and the order of the blocks are determined by their
least elements.

If 0 is in an ordinary pair, say (B; 0, R) and this block contains other red elements also,

then delete 0 and insert (k; R̂) after this Callan pair, that is, (B; 0, R) → (B;R)(k; R̂).
If the bar was directly after this pair (B; 0, R), then delete it from here and place it now

after (k; R̂). This case gives the set C2. The weight does not change since there is a block

with smaller value (respecting to the order of blocks) to the left of the block (k; R̂), hence,

(k; R̂) does not affect the weight anymore.
We have ∑

γ∈C

xw(γ) =
n∑
j=1

(
n

j

)
Ck−1
n−j+1(x),
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which concludes the proof.

Corollary 15. For any integers n, k > 0 and m > 0, we have

Ck
n(m) = Ckn(m) = B̂k

n(m).

Finally, we derive the recursion also using the generating function of Callan polynomi-
als given in Proposition 13. Let Fx(X, Y ) denote the generating function in Proposition
13. We can directly check that(

(eX − 1)
∂

∂X
− ∂

∂Y
+ x(eX − 1) + 1

)
Fx(X, Y ) = 0.

The recursion in Theorem 14 immediately follows from the differential equation. Indeed,
the first term equals

(eX − 1)
∂

∂X
Fx(X, Y ) =

(
∞∑
j=1

Xj

j!

)
·

(
∞∑
n=0

∞∑
k=0

Ck
n+1(x)

Xn

n!

Y k

k!

)

=
∞∑
n=1

∞∑
k=0

(
n∑
j=1

(
n

j

)
Ck
n−j+1(x)

)
Xn

n!

Y k

k!
.

The second term equals

∂

∂Y
Fx(X, Y ) =

∞∑
n=0

∞∑
k=0

Ck+1
n (x)

Xn

n!

Y k

k!
.

The third term equals

x(eX − 1)Fx(X, Y ) = x

(
∞∑
j=1

Xj

j!

)
·

(
∞∑
n=0

∞∑
k=0

Ck
n(x)

Xn

n!

Y k

k!

)

=
∞∑
n=1

∞∑
k=0

(
x

n∑
j=1

(
n

j

)
Ck
n−j(x)

)
Xn

n!

Y k

k!
.

4 Weighted alternative tableaux of rectangular shape

In this section we introduce a weight on alternative tableaux of rectangular shapes and
show that the so obtained polynomials are identical with the Callan polynomials, hence,
the numbers of such tableaux are the normalized symmetrized poly-Bernoulli numbers.
Alternative tableaux were introduced by Viennot [20]. The literature on alternative
tableaux and related topics is extremely rich. For instance, a combinatorial interpre-
tation of the generalized Dumont-Foata polynomial in terms of alternative tableaux was
given in [9].
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Definition 16. [14, Definition 1.2] An alternative tableau of rectangular shape of size
n× k is a rectangle with a partial filling of the cells with left arrows ← and down arrows
↓, such that all cells pointed by an arrow are empty. We let T kn denote the set of all
alternative tableaux of rectangular shape of size n× k.

Example 17. In Figure 1 we give an example of alternative tableaux of size 5× 6 with
its weight defined later.

Figure 1: An alternative tableaux of size 5× 6.

We introduce a weight on alternative tableaux as follows. For each λ ∈ T kn ,

1. Consider the first (from the top) consecutive rows that contain left arrows ←.

2. Count the number of left arrows ← such that all ← in the upper rows are located
further to the right.

We let w(λ) denote the number of such left arrows. For instance, the alternative tableau
in Figure 1 has the weight w(λ) = 3. In Figure 2 we list all 31 elements in T 2

2 with their
weights.

Figure 2: Alternative tableaux of size 2× 2 with their weights.

We define the polynomial T kn (x) by

T kn (x) :=
∑
λ∈T k

n

xw(λ).
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From the above example, T 2
2 (x) = 2x2 + 15x + 14, which coincides with the Callan

polynomial C2
2(x). In general, the following holds.

Theorem 18. We define T 0
n(x) = T k0 (x) = 1. For any integers n, k > 0, the polynomial

T kn (x) coincides with the Callan polynomial Ck
n(x).

Proof. For each λ ∈ T kn , we let R = R(λ) denote the rightmost column of λ. We split the
set T kn into disjoint subsets as follows: Let A denote the set λ ∈ T kn such that R contains
no ←. Let B denote the set λ ∈ T kn such that the top-right box is empty and R contains
at least one ←. Let C denote the set λ ∈ T kn such that the top-right box contains ←.

If λ ∈ A, thenR is empty or contains the unique ↓. The remaining rectangle λ− := λ\R
defines a sub-rectangle in T k−1n , and we see that w(λ) = w(λ−). The number of patterns
of R is n+ 1 (empty or one ↓). Thus, we get∑

λ∈A

xw(λ) = (n+ 1)T k−1n (x).

If λ ∈ B, then R contains j ←’s (1 6 j 6 n− 1). For each j, the number of patterns
of R is

(
n
j+1

)
, (j ← and zero or one ↓). In the rectangle λ\R, j rows are killed, and the

remaining rows define a sub-rectangle λ− ∈ T k−1n−j . In this case it holds for the weight
w(λ−) = w(λ), and hence,

∑
λ∈B

xw(λ) =
n−1∑
j=1

(
n

j + 1

)
T k−1n−j (x) =

n−1∑
j=1

(
n

j − 1

)
T k−1j (x).

Finally, if λ ∈ C, then R contains (j+ 1)←’s (0 6 j 6 n−1). For each j, the number
of patterns of R is

(
n
j+1

)
. In the rectangle λ\R, (j+ 1) rows are killed, and the remaining

rows define a sub-rectangle λ− ∈ T k−1n−j−1. In this case, the ← in the corner affect the
weight of λ, thus w(λ−) = w(λ)− 1. Hence,

∑
λ∈C

xw(λ) = x
n−1∑
j=0

(
n

j + 1

)
T k−1n−j−1(x) = x

n−1∑
j=0

(
n

j

)
T k−1j (x).

Therefore, we have

T kn (x) = (n+ 1)T k−1n (x) +
n−1∑
j=1

(
n

j − 1

)
T k−1j (x) + x

n−1∑
j=0

(
n

j

)
T k−1j (x), (4)

which is equivalent to the recursion formula for the Callan polynomial in Theorem 14.

Corollary 19. For any integers n, k > 0 and m > 0, we have

T kn (m) = B̂k
n(m).
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5 Applications

First, we present a generalization of Ohno-Sasaki’s result on poly-Bernoulli numbers [16,
Theorem 1] (see also [17]):∑

06i6`6m

(−1)i
[
m+ 2

i+ 1

]
B

(−k)
n+` = 0, (n > 0,m > k > 0). (5)

The theorem gives a new type of recurrence relation for the (normalized) symmetrized

poly-Bernoulli numbers B̂k
n(m) with the single index k, (see also a related question in [3,

Remark 14.5]).

Theorem 20. For any n > 0,m > k > 0, we have

m∑
`=0

(−1)`
[
m+ 1

`+ 1

]
Ck
n+`(x) = 0.

Proof. By Proposition 12, the left-hand side equals

k∑
j=0

j!(x+ 1)j
{
k + 1

j + 1

} ∞∑
`=0

(−1)`
[
m+ 1

`+ 1

]{
n+ `+ 1

j + 1

}
.

By showing the identity

∞∑
`=0

(−1)`
[
m+ 1

`+ 1

]{
n+ `+ 1

j + 1

}
= 0 for j < m, (6)

the theorem holds by the assumption k < m. We prove Equation (6) by induction on n.
Let δi,j denote the Kronecker delta defined by δi,j = 1 if i = j and δi,j = 0 otherwise. For
n = 0, by [1, Section 24.1.4.II], we have

∞∑
`=0

(−1)`
[
m+ 1

`+ 1

]{
`+ 1

j + 1

}
= (−1)jδj,m,

which equals 0 if j < m. For any positive n, by the recurrence relation of the Stirling
numbers of the second kind,

∞∑
`=0

(−1)`
[
m+ 1

`+ 1

]{
n+ `+ 1

j + 1

}
=
∞∑
`=0

(−1)`
[
m+ 1

`+ 1

]({
n+ `

j

}
+ (j + 1)

{
n+ `

j + 1

})
,

which also equals to 0 by the induction hypothesis.

For example, since Ck
n(0) = B̂k

n(0) = B
(−k)
n , we get

m∑
`=0

(−1)`
[
m+ 1

`+ 1

]
B

(−k)
n+` = 0 (n > 0,m > k > 0). (7)
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Our formula looks simpler than Ohno-Sasaki’s formula (5). Here we show the relation
between these two results. Let OS(n) be the left-hand side of (5). By a direct calculation,

OS(n)−OS(n+ 1) =
∑

06i6`6m

(−1)i
[
m+ 2

i+ 1

]
B

(−k)
n+` +

∑
16i6`6m+1

(−1)i
[
m+ 2

i

]
B

(−k)
n+`

=
m∑
`=0

(−1)`
[
m+ 2

`+ 1

]
B

(−k)
n+` +

m+1∑
i=1

(−1)i
[
m+ 2

i

]
B

(−k)
n+m+1.

Since
n∑
j=0

[
n+ 1

j + 1

]
xj = (x+ 1)n

and
[
n
n

]
= 1 hold, the last sum becomes

∑m+1
i=1 (−1)i

[
m+2
i

]
= (−1)m+1. Hence,

OS(n)−OS(n+ 1) =
m+1∑
`=0

(−1)`
[
m+ 2

`+ 1

]
B

(−k)
n+` ,

which coincides with the left-hand side of (7) with shifted m by one. This concludes that
the equation (5) implies (7).

Next, we give another recurrence formula.

Theorem 21. For any integers n, k > 0, we have

n∑
`=0

[
n+ 1

`+ 1

]
Ck
` (x) = n!

min(n,k)∑
j=0

(x+ 1)j
{
k + 1

j + 1

}(
n+ 1

j + 1

)
.

Proof. By using Proposition 12 again, the left-hand side becomes

∞∑
j=0

j!(x+ 1)j
{
k + 1

j + 1

} n∑
`=0

[
n+ 1

`+ 1

]{
`+ 1

j + 1

}
.

The inner sum is an expression for the Lah numbers, which satisfies

n∑
`=0

[
n+ 1

`+ 1

]{
`+ 1

j + 1

}
=

(
n

j

)
(n+ 1)!

(j + 1)!
.

Both sides of the identity counts the ways of partitions of {1, 2, . . . , n+1} into j+1 linear
arrangements, lists. In order to obtain a set of lists, split first the n + 1 elements into
` + 1 cycles, then partition the ` + 1 cycles into j + 1 blocks. The product of the cycles
determines the list in a block. On the other hand, take a permutation of [n+ 1] and place
bars to split it into j + 1 pieces (from the n places between the elements we choose j to
place the bars in

(
n
j

)
ways). Since the order of the lists is irrelevant, we divide by the

number of permutations of the lists, (j + 1)!.
The theorem follows.
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To apply the theorem for the special cases at x = 0 and x = 1, we recall the following
identity.

Lemma 22. For any integers n > 0, k > 0, we have

∞∑
j=0

j!

{
k + 1

j + 1

}(
n

j + 1

)
=

n∑
i=1

ik =: Sk(n). (8)

Proof. Let sk(n) the left-hand side of (8), and consider the generating function

∞∑
k=0

sk(n)
tk

k!
=
∞∑
j=0

j!

(
n

j + 1

) ∞∑
k=0

{
k + 1

j + 1

}
tk

k!
= et

∞∑
j=0

(
n

j + 1

)
(et − 1)j.

The last equality follows from the fact [3, Proposition 2.6, (7)]

∞∑
k=0

{
k + 1

j + 1

}
tk

k!
=
et(et − 1)j

j!
.

This implies that

∞∑
k=0

(sk(n+ 1)− sk(n))
tk

k!
= et

n∑
j=0

(
n

j

)
(et − 1)j = e(n+1)t =

∞∑
k=0

(n+ 1)k
tk

k!
,

that is, sk(1) = 1 and sk(n+ 1) = sk(n) + (n+ 1)k. Hence sk(n) = Sk(n).

Remark 23. We can also prove the equation

sk(n+ 1)− sk(n) =
∞∑
j=0

j!

{
k + 1

j + 1

}(
n

j

)
= (n+ 1)k

combinatorially. The term (n + 1)k counts the number of words w1w2 · · ·wk of length k
out of an alphabet with n + 1 distinct letters {0, 1, . . . , n}. We can get such a word as
follows also: add the special position w0 := 0 and partition the k+1 positions of the word
into j + 1 subsets, on the positions of a subset, the entries are the same. We choose the
remaining entries in j!

(
n
j

)
ways.

Corollary 24.

n∑
`=0

[
n+ 1

`+ 1

]
B

(−k)
` = n!Sk(n+ 1), (9)

n∑
`=0

[
n+ 1

`+ 1

]
B̂k
` (1) = n!(n+ 1)k+1. (10)

the electronic journal of combinatorics 28(1) (2021), #P1.47 15



Proof. The first equation (9) immediately follows from Theorem 21 and Lemma 22.
For the second equation (10), by Theorem 21 again, we have

n∑
`=0

[
n+ 1

`+ 1

]
B̂k
` (1) = n!

min(n,k)∑
j=0

(j + 1)!

{
k + 1

j + 1

}(
n+ 1

j + 1

)
= n!(n+ 1)k+1.

The last equation is given combinatorially by counting the term (n + 1)k+1 in a similar
way as the proof of Lemma 22. In this argument, we do not need the special position
w0.

We also give a direct combinatorial proof for the identity (10). Both sides of the
equation counts the number of permutations of [n + (k + 1)] such that tall substrings of
consecutive elements greater than n are in increasing order. Such a permutation can be
decoded by a pair (π,w), where π ∈ Sn, a permutation of n and w = w1 . . . wkwk+1 is
a word of length k + 1 on the alphabet {0, 1, . . . , n}. Let σ be a permutation with the
above property. Then the subsequence of the elements {1, 2, . . . , n} is π, while wi is the
number of the elements to the left of i + n that are smaller than or equal to n. Clearly,
the number of such pairs is given by n!(n+ 1)k+1. For instance, for n = 7 and k = 6 the
permutation σ = 11− 6− 8− 10− 3− 1− 13− 14− 7− 5− 4− 2− 9− 12 is decoded
by the pair (π;w) = (6− 3− 1− 7− 5− 4− 2; 1710733).

On the other hand, we obtain such a permutation σ using Callan sequences as follows.
A C-Callan permutation is a Callan permutation starting with an element greater than
n. Equivalently, a C-Callan sequence is a (0-barred) Callan sequence of size n×k with an
extra red block R∗ = {∗}. It can be shown that C-Callan permutations are in bijection

with 1-barred Callan sequences, and hence, their number is B
(−k)
n (1) = B̂k−1

n (1). Take a
C-Callan sequence with red elements {1, . . . , `, ∗} and blue elements {1, . . . , k, k + 1, ∗}.
By the definition of the C-Callan sequence, this ends with (B ∪ {∗}; ∗). Construct a
permutation of {0, 1, . . . , n} with `+1 cycles c0, c1, . . . , c` in

[
n+1
`+1

]
ways. Let ci denote the

ith cycle in the natural order of the cycles determined by the smallest elements of them. So
for instance c0 denotes the cycle that contains 0. Replace in the C-Callan sequence ∗∗ by
c0, and each red element for i > 0 by the cycle ci and take the product of the cycles in each
red block. Finally, delete 0 and shift the blue elements by n, i→ i+ n. The so obtained
permutation is σ. For instance, the C-Callan sequence (4; 4)(1, 3; 1)(6, 7; 2, 3)(2, 5, ∗; ∗)
and the cycles c0 = (0), c1 = (1, 3), c2 = (2, 7), c3 = (4, 5), c4 = (6) with n = 7, k = 6, ` = 4
correspond to the above σ by

(4; 4)(1, 3; 1)(6, 7; 2, 3)(2, 5, ∗; ∗)→ 4(6)13(1, 3)67(2, 7)(4, 5)25(0)

→ 4− 6− 1− 3− 3− 1− 6− 7− 7− 5− 4− 2− 2− 5− 0

→ 11− 6− 8− 10− 3− 1− 13− 14− 7− 5− 4− 2− 9− 12.

6 Further problems

In section 4, we define the weight w←(λ) := w(λ) on alternative tableaux by using left
arrows ←. We let w↓(λ) denote another weight on alternative tableaux corresponding to
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down arrows similarly. More precisely, for each λ ∈ T kn , the weight w↓(λ) is defined as
follows.

1. Consider the first (from the right) consecutive columns that contain down arrows ↓.

2. Count the number of down arrows ↓ such that all ↓ in the right-hand columns are
located in the upper rows.

Figure 3 shows the list of all elements in T 2
2 with the weight w↓(λ).

Figure 3: Alternative tableaux of size 2× 2 with their weights w↓(λ).

We define the two-variable polynomial

T kn (x, y) :=
∑
λ∈T k

n

xw←(λ)yw↓(λ).

From the above example, T 2
2 (x, y) = x2y + xy2 + x2 + 7xy + y2 + 7x+ 7y + 6. By simple

observations, we also see that

T 1
n(x, y) = T n1 (x, y) = (2n−1 − 1)xy + 2n−1x+ 2n−1y + 2n−1.

Conjecture 25. We put

t0n(x, y) = tk0(x, y) = 1,

t1n(x, y) = tn1 (x, y) = (2n−1 − 1)xy + 2n−1x+ 2n−1y + 2n−1

as initial values. The polynomials defined by

tkn(x, y) :=
n∑
j=0

(
n+ 1

j

)
tk−1j (x, y) + (x− 1)

n−1∑
j=0

(
n

j

)
tk−1j (x, y)

+ (y − 1)
n−1∑
j=0

(
n

j

)
tk−1j (x, y) + (x− 1)(y − 1)

n−1∑
j=0

(
n− 1

j

)
tk−1j (x, y)

coincide with T kn (x, y).
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We checked the coincidence for (n, k) = (2, 2), (3, 2), and (2, 3) by hand. By comparing
the recurrence formula at x = 1 or y = 1 with that in (4), we easily see that tkn(x, 1) =
tkn(1, x) = T kn (x).

Another direction is to consider the polynomial at other values, for instance at negative
integers.

By applying Theorem 20 for n = −1 formally, we get

“C−1k (x) = − 1

m!

m∑
`=1

(−1)`
[
m+ 1

`+ 1

]
C`−1
k (x)”.

Here we used the symmetric property Ck
n(x) = Cn

k (x). Recalling the condition m > k > 0
on m, and specializing by m = k + 1, we tentatively define C−1k (x) by

C−1k (x) :=
1

(k + 1)!

k∑
`=0

(−1)`
[
k + 2

`+ 2

]
C`
k(x).

Proposition 26. For any integer k > 0, we have

C−1k (x) = −Sk(−x)

x
,

where Sk(x) is the Seki-Bernoulli polynomial [3, Section 1.2] defined by

Sk(x) :=
1

k + 1

k∑
j=0

(
k + 1

j

)
Bjx

k+1−j

with the classical Bernoulli number Bk = B
(1)
k (0).

Proof. Let sk(x) := xC−1k (−x). By Proposition 12,

sk(x) = xC−1k (−x) = − 1

(k + 1)!

k∑
j=0

j!(−x)j+1

{
k + 1

j + 1

} ∞∑
`=0

(−1)`
[
k + 2

`+ 2

]{
`+ 1

j + 1

}
.

Since the inner sum over ` equals (−1)j(k + 1)!/(j + 1)! for 0 6 j 6 k (see for instace
Equation 6.25 in [8]) we have

sk(x) =
k∑
j=0

(−1)j+1(−x)j+1

{
k + 1

j + 1

}
1

j + 1
.

For any positive integer n > 0,

sk(n) =
k∑
j=0

j!

(
n

j + 1

){
k + 1

j + 1

}
.

By Lemma 22, this equals Sk(n). Since sk(x) and Sk(x) are polynomials, this concludes
the proof, that is, sk(x) = Sk(x).
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One natural question is whether there exists a suitable generalization of the Callan
polynomial Ck

n(x) or the symmetrized poly-Bernoulli numbers B̂k
n(m) for negative integers

k and m.
It would be interesting to investigate the polynomials that arise by the weight function

on alternative tableaux of other special shapes or on arbitrary shapes.
In this paper we did not provide bijections between our models. It would be interesting

to find simple bijections, especially between alternative tableaux and the Callan sequences.
Also there should exist combinatorial proofs of Theorem 20 and so on.
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