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ABSTRACT The DC-Link capacitor is defined as the essential electronics element which sources or sinks
the respective currents. The reliability of DC-link capacitor-banks (CBs) encounters many challenges due
to their usage in electric vehicles. Heavy shocks may damage the internal capacitors without shutting down
the CB. The fundamental development obstacles of CBs are: lack of considering capacitor degradation in
reliability assessment, the impact of unforeseen sudden internal capacitor faults in forecasting CB lifetime,
and the faults consequence on CB degradation. The sudden faults change the CB capacitance, which leads
to reliability change. To more accurately estimate the reliability, the type of the fault needs to be detected
for predicting the correct post-fault capacitance. To address these practical problems, a new CB model and
reliability assessment formula covering all fault types are first presented, then, a new analog fault-detection
method is presented, and a combination of online-learning long short-term memory (LSTM) and fault-
detection method is subsequently performed, which adapt the sudden internal CB faults with the LSTM to
correctly predict the CB degradation. To confirm the correct LSTM operation, four capacitors degradation is
practically recorded for 2000-hours, and the off-line faultless degradation values predicted by the LSTM are
compared with the actual data. The experimental findings validate the applicability of the proposed method.
The codes and data are provided.

INDEX TERMS Capacitor-bank, deep learning, power system reliability, artificial intelligence (AI),
machine learning, electronics.

NOMENCLATURE
CB Capacitor bank.
C Capacitance of each internal capacitor (F).

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Tedesco .

CCB Capacitance of CB (F).
i Total series capacitors in a column of the CB

matrix.
j Total number of columns of the CB matrix.
n Column number in the CB matrix.
m Row number in the CB matrix.
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Cnm Capacitor in column n and row m.
x Number of capacitors that are shorted.
xn Number of capacitors that are shorted in column

n.
y Number of capacitors that are opened.
yn Number of open-circuit faults in each column of

n.
ESRCB Equivalent series resistance of the CB (�).
Ipeak,CB Capacitor bank peak output current (A).
VO Maximum capacitor rated voltage (V).
L Lifetime (h).
B Rated lifetime (h).
Ea Activation energy (1.4 eV).
k Boltzmann’s constant (8.617E-5 eV/K)
TA Application temperature (Celsius).
TC Category temperature (Celsius).
VR Rated voltage of capacitor (V).
ESRDC DC Equivalent series resistance (�).
1t Time deviation (s)
ESRt ESR value at the time t (�).
ESR0 Initial ESR (�).
E Activation energy/Boltzmann constant (4700).
xt Input vector to the LSTM.
t Time (h).
VCnm Voltage of capacitor in column n and rowm (V).
VCB Capacitor bank voltage (V).
1V Deviation of voltage (V).
λp Failure rate (Failures/(106Hours)).
λb Base failure rate (Failures/(106Hours)).
πCV Capacitance factor of a capacitor.
πQ Quality factor.
πE Environment factor.
T Ambient temperature (Celsius).
S Stress voltage.
R(t) Reliability in time t (%).
MTTF Mean Time to Failure (h).
δ Impedance phase angle.
V Operating voltage of electrolyte capacitor (V).
Ct LSTM cell state vector.
ht LSTM hidden state vector.
ht−1 LSTM output function at earlier time.
Ct−1 LSTM cell state vector at earlier time.
MAPE Mean absolute percentage error (%).
MSE Mean squared normalized error.
RMSE Root mean squared normalized error.
ME Maximum error.
iC Capacitor current (A).
Cd Ideal capacitance
f Frequency (Hz).
XCd Impedance of capacitor (�).
At Actual value.
Ft Forecast value.
n Number of fitted points.

I. INTRODUCTION
The utilization of capacitor banks (CBs) as energy storage
in power grids, railroad systems, and electric vehicles (EVs)

has been increased significantly over the past few years [1].
Over the recent decades, CBs have become important due
to applications in DC link inverters, microgrids, switched
capacitors, and Metro system drives, and various sections of
EVs [2]; thus, through the sensitivity of these applications,
their diagnosis is also very important. As far as CBs are
capable of storing energy, their fast energy compensation
plays an essential role in controlling the frequency of micro-
grids, especially when it develops into renewable energy
sources [3]. So far, different models have been proposed for
simulating different CB situations. In [4] and [5], different
models and technologies of power semiconductors and CBs
have been introduced, which can be used in power grids for
renewable energy generation. The CB is typically a combi-
nation of series-parallel electrolytic capacitors [1]. The elec-
trolytic capacitor performance is complicated and is strongly
influenced by operating conditions such as frequency, cur-
rent, voltage, and ambient temperature. Furthermore, their
degradation process affects the electrolytic capacitors, reduc-
ing reliability, lifetime, and output. Simple equivalent circuit
of a capacitor is shown in Figure 1(a). Cd and Equivalent
series resistance (ESR) are the main factors responsible for
the degradation of the CB, where the ESR is the limiting fac-
tor of the output current of the CB.Much research has focused
on the study of electrolyte capacitor degradation [1], [6],
[7], [8], [9], [10], [11]. For instance, Authors in [6] improve
the CB aging model considering the temperature, variable
load, and constant charge. Also, this work explores the CB
aging behavior by periodically monitoring the electrical and
electrochemical health status. In addition, numerous research
studies use artificial intelligence (AI) to predict degradation
and lifetime of the CBs [7]. With the correct prediction of
ESR and capacitance degradation, the reliability, lifetime and
peak output current of the CB can be calculated. In [8] and [9]
off-line learning data were used to predict the degradation
independent of sudden failures. However, a sudden fault may
occur in the internal capacitors of the CB. The short/open-
circuit faults might occur for several reasons: current surges,
electrolytic capacitor swelling, and material oxidation used
in the electrolytic capacitor [1]. Other unforeseen faults can
sometimes befall (e.g., a heavy shock to the CBs), which
might damage the internal structure of the CBs. When a fault
occurs, the reliability, degradation value, and storage energy
of the CB will change, so the off-line AI training may not be
used and the learning data must be updated after the fault.

While many models for capacitors have been presented to
evaluate reliability and degradation [10], [11], it is necessary
to develop a model of the CB that includes all types of short-
circuit and open-circuit faults of the internal capacitors to
predict degradation correctly. Using an appropriate CBmodel
and adapting a fast fault detection method with a suitable
AI method, the degradation may be predicted, which will
evaluate the CB’s reliability, peak current, and maximum
stored energy.

This manuscript is a sequel to the 13-level inverter [12],
which aims to apply long short-term memory (LSTM) to
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TABLE 1. The advantages and disadvantages of the LSTM.

FIGURE 1. (a) Equivalent model of a capacitor, and (b) CB structure.

sudden faults. Hochreiter and Schmidhuber first proposed
the deep learning method in 1997 [13]. The LSTM in deep
learning is a subset of artificial recurrent neural networks
(RNN). In contrast to feedforward neural networks, LSTM
possesses feedback in its structure. This neural network is
appropriate for sequential data and is among the most suitable
networks based on time series data [14]. The decreasing gra-
dient problem in the RNN is also solved in this network [15].
Table 1 shows the advantages and disadvantages of the LSTM
[16], [17], [18], [19]. High memory requirements, high com-
putational complexity, and a large number of data are themain
disadvantages of the LSTM. The method presented in this
paper covers major disadvantages of the LSTM, meaning that
both the complexity and need for numerous data are reduced
and eliminated respectively.

A. MOTIVATION AND INCITEMENT OF SUDDEN FAULTS
In [16], [17], [18], [19], and [20], several deep learning meth-
ods have been discussed for predicting the corresponding
parameters such as remaining useful life and health status of
batteries, which are similar to CB degradation. These meth-
ods include the LSTM, bi-directional-LSTM, adaptive boost-
ing (AB), support vector regression (SVR), convolutional
neural network (CNN), multi-layer perceptron (MLP), Elman
recurrent neural network (ERNN), echo state network (ESN),
gated recurrent unit network (GRU), temporal convolutional
network (TCN), back-propagation neural networks (BPNN),
k-nearest neighbor (KNN), and input selection hybrid fore-
casting (IS-HF). Among all of them, the LSTM method have
been exhibited the best results. In view of these results and
the advantages listed in Table 1, we selected the LSTM for
this study.

Most of the predictions made by the LSTM in studies
[16], [17], [18], [19] are based on past data, and sudden
failures are disregarded. It seems that the impact of sudden
faults on the CB is a gap that has not been fully answered.
The collision’s effects on the ground resulted in a change

in the capacitor bank’s capacitance and ESR, although the
CB’s appearance was unchanged. Two main reasons exist
for using equivalent capacitance and equivalent ESR, which
are applied in fault diagnosis and higher accuracy reliability
evaluation [26]. Note that applying Equivalent Capacitance
and ESR allows for a more accurate capacitor bank relia-
bility and lifetime calculation. Also, it facilitates faster fault
detection and prevention of capacitor bank explosion. In [27],
a new analysis based on an offline look-up table was proposed
to predict the lifetime performance of multiple CB designs.
A novel methodology for internal failure detection in large
shunt CBs has been introduced in [28], where the lookup table
is adopted for scaling data. However, the look-up-table-based
methodologies are not effective because of the changes in the
CB’s voltages and various levels of degradation of the capac-
itors under different environmental conditions. To address
the above problems, numerous research studies focused on
artificial intelligence (AI) to predict the degradation and life-
time of the CBs according to the change in the environment
condition.

The reliability of the capacitor depends on the capacitance,
and by predicting the capacitance, the reliability and lifetime
are possible to be predicted. When a sudden fault occurs,
the capacitance of the CB changes, and thus the capacitance
prediction before the fault occurred becomes invalid, which
means that the reliability and lifetime of the CB become
invalid. The reason is that the prediction was based on the
pre-fault data and the post-fault data is different from the pre-
fault data, so the Deep Learning LSTM needs to be re-trained
with the new post-fault data to provide a correct prediction of
the capacitance. The training data required for the LSTM is
determined by the detection of the fault type, i.e., by detecting
the fault type, the new capacitance value of the capacitor bank
is supplied to the LSTM as new training data. The pre-fault
data will cause errors in the prediction. Therefore, the pre-
fault data should be cleared, and by knowing the type of the
fault, the correct capacitance value will be given to the LSTM
as new training data, and as a result, the new capacitance value
will be predicted.

In our paper, the hypothesis is based on the CB’s sudden
unforeseen failure, whereas the trained data is updated imme-
diately, and the past data is excluded based on the proper
operation of the CB; thus, the prediction will be based on the
actual conditions.

Considering an EV using a CB as storage energy, suddenly
it crashes with another car and the CB damages harshly.
This kind of accident is not predictable, but the impulse that
indirectly enters the CB can cause an internal fault. Our work
investigates these kinds of sudden unforeseen faults and faults
on the CB’s internal capacitors. Also, forecasting the peak
output current and the reliability of CB following the fault is
carried out using LSTM in real-time.

B. LITERATURE REVIEW OF THE ONLINE LSTM
Based on the LSTM and employed time-series data, [21]
predicted the operation of wind turbines and detected the
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fault based on the difference between actual data and the
predicted data. Based on raw data and dynamic newmatching
data, this study presents a fault diagnosis method with the
LSTM. The proposed method has been implemented in the
Tennessee Eastman benchmark. The data are verified in both
online and offline modes. The main difference of [22] from
presented work is the use of the LSTM in a different structure.
proposed method is tested practically in a subsystem, and
practice tests are also conducted to make an accurate forecast
and evaluation. Some of the faults mentioned in our study
do not shut down the system but weaken the CB’s perfor-
mance. The following difference is related to the type of fault
detection. In presented work, analog fault detection using an
electronic circuit combines with the LSTM prediction; Thus,
the detection speed significantly increases (less than 1 ms),
but in [22], fault detection is accomplished only with the help
of the LSTM. Reference [23] presents a method for detecting
high current DC faults using the combined RNN based auto
encoder (AE) and the LSTM. Evaluation of the suggested
method using pulse load and proving the performance cor-
rectness in distinguishing the pulse current from the short-
circuit fault current is also part of the tasks performed in this
paper. The load current is monitored and recorded to detect
faults. This paper’s central mission of deep learning is fault
detection, while time series prediction is not implemented.
Among the advantages of presented study compared to [23],
the following can be asserted: i) despite fault detection, life-
time and capacitance of CB prediction are also implemented,
ii) the proposed method can detect both fault and fault type.
In [24], the authors investigated the diagnosis of open cir-
cuit faults of switches used in DFIG wind turbine back-to-
back converters using the LSTM. Semiconductor switches are
more likely to be short-circuited after a fault compared with
open-circuit. Therefore, it might be more proper to consider
short-circuit faults plus monitoring and diagnosing switch
open-circuit faults.

C. CONTRIBUTION AND PAPER ORGANIZATION
In reviewing the literature on LSTM and CB fault detection,
the following gaps were identified. 1) Quantitative research
has been conducted in the field of fault detection, which
includes the combination of analog fault detection and arti-
ficial intelligence. By combining these two methods, the
shortcomings of each method can be compensated by the
other, and the speed and accuracy can be increased. 2) The
lack of a capacitor bank model that includes all types of
internal capacitor faults. 3) The effects of sudden faults on
LSTM forecasting have been poorly researched. In the case
of a sudden fault, the predicted value differs greatly from the
actual value and the learning data must be updated. Little
research has been done on how to update the training data
in online-LSTM.

The main novelties of this paper are i) introducing a new
real-time fault detection technique to detect both the fault
and type of the fault, ii) combining LSTM technique with
novel analog control to online-forecasting the capacitance

and equivalent series resistance (ESR) due to sudden faults,
and iii) proposing a newCBmodel including short-circuit and
open-circuit faults.

This paper consists of the following sections: I) inves-
tigating the effects of open circuit and short circuit fault
of internal capacitors on the reliability and peak output
current of the CB, II) CB modeling in short circuit fault
and open circuit fault of series-parallel combined capacitors,
III) introduction a new method for detecting the type and
location of a faulty-internal-capacitor in the CB, IV) effect
of ESR and capacitance degradation on reliability and peak
current of a CB considering fault, V) application of the
real-time LSTM deep learning method in predicting ESR
and capacitance degradation considering all types of sudden
faults, VI) experimental test on a small scale to evaluate ESR
and capacitance degradation and validate the LSTM method,
VII) experimental test to validate the proposed method to
detect the type and location of faulty-capacitors of the CB,
and IX) discussion on experimental test results and peak
current calculations of the CB and its reliability after some
random faults. Finally, the result of this article might be
generalized to the battery as well. Currently, batteries are
being used more than CBs in EVs.

II. EFFECTS OF OPEN-CIRCUIT AND SHORT-CIRCUIT
FAULTS
There are two types of short-circuiting and open-circuit faults
in the CB system, and each has different adverse effects on the
system. The capacitor’s equivalent circuit and the structure
of a CB composed of electrolytic capacitors are shown in
Figure 1. The series capacitors (n) range from 1 to i, and each
column (m) from 1 to j.

Due to the distinct impacts of various faults on the CBs,
the CB model seems necessary to achieve reliability and
peak current calculations; thus, a novel model is proposed by
considering the effect of faults.

A. NEW MODELING OF CAPACITOR BANK
1) EQIVALENT CAPACITANCE
According to Figure 1(b), if the internal capacitors of the CB
are assumed to bematrix elements while the improvedmodel-
ing of the CB including capacitance and ESR are performed.
Here it is assumed that all internal column capacitors are
equal; Thus, the capacitance of the fault-free CB is equivalent
to:

CCB = j×
C
i

(1)

The capacitance of the CB will be equal to:

CCB =

j−y∑
n=1

Cnm

i
,m = 1. (2)

Equation (2) is for calculating the CB capacitance in the
absence of short-circuit fault. More precisely, the equation
will be, as in (3), shown at the bottom of the next page.
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Therefore, the capacitance fault impact factor is obtained
by dividing the capacitance gained after the fault via the fault-
free capacitance value:

FIFC =

j∑
n=1

yn×Cnm
i−xn

j× C
i

. (4)

2) EQIVALENT ESR
Figure 1(a) shows the equivalent circuit of the capacitor. After
a short-circuit fault, the Cd is cleared, and only the ESR
remains in the circuit. In case of no-fault, the equivalent ESR
of a CB is:

ESRCB = i×
(
ESR/

j
)
, (5)

If an open circuit fault occurs, the capacitors of the related
column will be disconnected, and the ESR is equal to, as in
(6), shown at the bottom of the next page.

The ESR fault impact factor is gained by dividing the ESR
obtained after the fault has occurred by the ESR value without
fault. Therefore, the maximum output current of the CB, after
the xn number of short circuit faults in the nth column, and
the yn capacitor open circuit fault in the nth column, will be
as follows:

Ipeak,CB

=
1
2


j∑

n=1

yn×Cnm
i−xn

× VR

1t +

((
i∑

n=1

yn×ESRnm
j

)
×

(
j∑

n=1

yn×Cnm
i−xn

))
 ,

(7)

B. THE EFFECT OF FAILURES OF AN INTERNAL CAPACITOR
IN CB
1) IDENTIFICATION OF FAULT TYPE AND LOCATION
Three significant reasons can be provided for the reasons why
fault detection is essential. First, the fault leads to a change in
CB lifetime and output current. Second, Troubleshooting and
accurate prediction of a lifetime and maximum current can
keep the system stable. Third, CB system recovery is faster,
and more significant system faults are avoided. Figure 1(b)
shows the monitoring approach of the current and voltage of
the CB, the current flowing through each series of capacitors,
and the voltage of the first capacitor of each column. One
of the benefits of the proposed method is that it is possible
to use inexpensive voltage and current sensors commercially
available for fault detection. The total voltage sensing of
the CB module is carried out, and also, in each column of
series-capacitors, only the voltage of the first capacitor is

measured. With this voltage sampling, the effects of fault
can be identified. The proposed fault detection method and
flowchart are prepared based on these tips. Depending on the
voltage change that occurs on each capacitor of the voltage
sampler, it is possible to determine the column in the fault
that has occurred.

2) FAULT DETECTION FLOWCHART
If the CB is considered a matrix, m is a row, and n is a
column. The capacitor voltage is not always regular andmight
fluctuate depending on the application. Tomake experimental
tests, fluctuating CB voltage was selected, which is the most
challenging condition of the test. Since there is a delay in
measuring the sampling voltage, and the voltage also fluctu-
ates, the1V range is taken into account. Therefore, instead of
a number, there is a comparable voltage range. Themagnitude
of this 1V depends on the type of CB application in the
electronic system.

a: CALCULATION OF THE 1V RANGE
The minimum value of the sampled capacitor voltage (VCmn)
is the voltage of the capacitor bank with no fault occurrence.
Any short circuit in a column capacitor of the capacitor bank
will cause the CB voltage to be distributed to the rest of
the series capacitors, increasing the remaining voltage of the
capacitors. Therefore, the value of 1V should be as low as
possible so that there is no interference between the voltage
measurement ranges in each block and so that the fault detec-
tion process can be performed correctly. Equations (8) and (9)
show the voltage range of the capacitor VCmn in the normal
state without a fault and in the state of a short-circuit fault.

VCB
i
−1V < VCmn <

VCB
i
+1V (No SC fault), (8)

VCB
i− 1

−1V < VCmn <
VCB
i− 1

+1V (One SC fault). (9)

If (10) holds, there is no interference between the ranges:

VCB
i− 1

+1V <
VCB
i
−1V . (10)

Simplification yields the following relationship:

|1V | <
VCB

2i (i− 1)
, (11)

where i is the total number of series capacitors in a capacitor
bank column. Therefore, the value of 1V depends on the
voltage of the capacitor bank and the number of capacitors
connected in series, and if the voltage is constant, the value
of 1V can be considered constant. If the voltage of the
capacitor bank is variable, the lowest value of the voltage
of the capacitor bank should be considered in relation (11).

CCB =

 j∑
n=1

yn × Cnm

i− xn
,

m = 1
yn = 0,For open circuit fault of capacitor in column n
yn = 1,For non-faults of open circuit in column n

 . (3)
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In the experimental setup of our article, i=3 and VCB=24 V,
thus according to (11):

|1V | <
24

2× 3× (3− 1)
⇒ |1V | < 2(V) (12)

It is preferable to set the value of 1V slightly smaller than
the limit value so that the fault detection process can be
performed correctly. In this study the 1V=1.

3) FAULT DETECTION PROCESS
Figure 3(b) shows the flowchart of the online fault detection.
First, the CB voltage and the voltages of the first capacitor of
each column are measured.
Block 1: First, a voltage comparison is performed to detect

a short-circuit fault in column j. The value of n increases from
column 1 to column j; therefore, the total voltage comparison
of the first capacitor with the specified range is performed.
A matrix will be formed by comparing the voltage arrays of
the first row to the voltage range. This voltage range is the
voltage obtained by dividing the voltage of the CB by the
number of capacitors in the series. If there is no short-circuit
fault, all capacitors work in a specific voltage range. In this
case, If the current in the column is non-zero, it implies that no
short circuit fault exists and the measurement process repeats.
Block 2: If voltage is not within the allowed range; thus,

the voltage comparison takes place in block 2. If the voltage
is VCmn ≥

(
VCB

/
i
)
+1V , two situations might occur:

1) shorting one capacitor of column n series, 2) opening
one capacitor of column n. If the output current of this column
is zero, this means that a capacitor open circuit fault has
occurred, and if there is a current, at least one capacitor in
this column is short-circuited.
Block 3: If the condition of block 3 is satisfying, a capacitor

of the nth column of the connection is shorted, and if this
condition is not satisfactory, the state of block four should be
checked.
Block 4: Block four monitors how many capacitors in the

nth column are shorted. If none of the provided conditions
occur, it means that the CB is disconnected or permanently
interrupted. MIL-STD-11991 recommends that the applied
voltage of the capacitor should be half the rated voltage of the
capacitor [25]. Thus, if half of the capacitors in a column are
shorted, the CB should stop working immediately; otherwise,
the CB will explode or burst.

III. EFFECT OF ESR AND CAPACITANCE DEGRADATION
CONSIDERING FAULTS
The reliability of the CB decreases over time. Based on
the MIL-HDBK-217 standard, the reliability of the capacitor

depends on the temperature, the voltage stress on the capac-
itor, the environment, and the quality of the capacitor [26].
Many component datasheets state the lifetime of capacitors.
However, Standard 217 can also calculate electronic compo-
nents’ failure probability, reliability, and lifetime [26]. The
standard MIL-HDBK-217 seems sufficient to investigate the
effects of time-lapse on ESR and capacity degradation. Note
that standard 217 is only enough if only one CB is consid-
ered. Equation (13) is used to determine the failure rate of
aluminum, dry electrolyte, and polarized capacitors:

λp = λbπCVπQπE . (13)

The πCV and λb are calculated by this equation:

πCV = 0.32C0.19, (14)

λb = 0.0028

[(
S

0.55

)3

+ 1

]

× exp

(
4.09

(
T + 273
358

)5.9
)
. (15)

S is calculated by:

S =
Vapplied
Vnominal

. (16)

Based on [26], for non-military capacitors πQ = 10, and
πE = 1 in ground-based systems. The reliability and lifetime
relationships are obtained according to the following equa-
tions [26]:

R(t) = e−λt , (17)

MTTF =
1
λ
. (18)

Equation (14) shows the dependence of the reliability on
the capacitance of the capacitor and (16) also shows the
dependence of the reliability on voltage stress.

Under the same operating voltage, the greater the number
of series capacitors, the greater the reliability. In a 24-volt
CB, there might be two connected in each column and three
capacitors in series. Figure 2 shows comparison curves of
CBs with 4 × 3 capacitors and 4 × 2 capacitors. Clearly,
by increasing the number of capacitors connected in series,
the reliability increases; The reason is to decrease the voltage
stress on each capacitor. The lower the voltage stress, the
better the reliability. Table 2 illustrates the reliability of each
capacitor in 4 × 3 and 4 × 2 arrangements of the capacitor
bank.

There is both the possibility of a short-circuit fault of the
internal capacitors and the possibility of an open-circuit fault
in the capacitor bank. Therefore, from the digital viewpoint,

ESRCB =

 i∑
n=1

yn × ESRnm

j
,


m = 1
yn = 0,For open circuit fault in column n
yn = 1,For non-faults of open circuit
in column n

 . (6)
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FIGURE 2. Comparison of the reliability of capacitor banks including
capacitors using 4× 3 and 4× 2 layout.

TABLE 2. The values of the reliability assessment parameters of one
capacitor taken from MIL-HDBK-217.

either a short-circuit fault or an open-circuit fault occurs
in each internal capacitor. When an open circuit occurs,
the internal capacitor disconnects from the other capacitors,
so that the entire column in CB is disconnected. Assuming
that the identical internal capacitors may fall into open circuit
faults, the following reliability relationship is obtained for a
CB:

RCB,OC = 1−
j∏

n=1

(
1−

i∏
m=1

(1− Rmn(t))

)
, (19)

when a short circuit occurs, the ESR of the internal capacitor
is maintained, in other words, the relevant column of the CB
does not disconnect, but the voltage of the CB is distributed to
the other capacitors of the relevant column capacitors, thus,
the reliability relationship of the CB becomes as follows:

RCB,SC =
j∏

n=1

(
1−

i∏
m=1

(1− Rmn(t))

)
, (20)

therefore, the reliability of the capacitor bank will be as in
(21), shown at the bottom of the next page.

Substituting the R(t) obtained from Table 2 into (21) and
considering the time from zero to 2 × 106, Figure 2 is
obtained.

In the case of a fault, the voltage stress factor is modified
according to the respective fault. With these interpretations,
the reliability assessment also improves. Degradation occurs
in both capacitance and ESR of the capacitors. Over time,
capacitance decreases, and ESR increases. ESR plays no
role in calculating reliability, but it does play a significant
role in calculating the maximum power that a capacitance

bank might provide. The peak output current supplied by the
capacitor is calculated as follows [27]:

Ipeak =
1
2VR

1t
C + ESRDC

=
1
2

CVR
1t + ESRDC × C

. (22)

Equation (22) confirms that the maximum current that CB
can supply depends on the capacitance of C and ESR. Hence,
the degradation of these two variables is very effective in
determining the maximum current. The LSTM method is in
charge of estimating and predicting the degradation of ESR
and Capacitance after encountering a fault. The ESR of a
capacitor is resistance and could be calculated using (23) in
time [28]:

ESRt =
ESR0(

1− k.t. exp
(
−E

T+273

)) . (23)

IV. PROPOSED ONLINE LSTM METHOD CONSIDERING
FAULTS
In this paper, the LSTM has two main tasks:1) ESR and
capacitance degradation forecasting of CB by considering
sudden faults over real-time, and 2) fault detection in case of
damage and problems in the analog fault detection system.
A standard LSTM network unit comprises three principal
cells: an input gate, a forget gate, and an output gate. To estab-
lish long-term time dependency, the LSTM determines and
maintains the cell state to adjust the flow of information,
which is a crucial criterion in the LSTM framework [16]. The
state of the memory cell Ct−1 intervenes with the intermedi-
ate output ht−1 and the subsequent input xt to define which
elements of the internal state vector need to be updated, main-
tained, or disappeared based on the outputs of the preceding
time steps and the inputs of the current time step.

The gate processing options include a sigmoid network
and bitwise multiplication. A sigmoid network can produce
a value between 0 and 1, which specifies whether the input
value can pass through a gate or not. The objective of the
forget gate is to enable the LSTM network to forget earlier
worthless information [16].

ft = σ
(
W [xt , ht−1,Ct−1]+ bf

)
. (24)

The input gate function defines the present state Ct under the
current input [ht−1; xt ; Ct−1] and Ct−1.

it = σ (W [xt , ht−1,Ct−1]+ bc) , (25)

Ct = ft .Ct−1 + i1. tanh (W [xt , ht−1,Ct−1]+ bc) . (26)

ot = σ (W [xt , ht−1,Ct ]+ bo) , (27)

ht = tanh(Ct ).ot (28)

in which σ is a logical function with the outputs scaled
to (0,1) [16].

A. THE PROPOSED LSTM RNN METHOD STRUCTURE
The RNN Deep learning method employed in this paper
comprises three LSTM layers and a single dense layer,
a Fully-connected layer. The LSTM conducts the ESR and
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TABLE 3. Parameters of the proposed LSTM.

Capacitance forecast and fault detection of the proposed CB.
Table 3 displays the LSTM network information. In neural
network learning, sometimes, not entire input data is trans-
ferred. Input data is split into smaller same-size packets, and
the information is sent in batch sizes. During network learn-
ing, the dropout accidentally releases some neurons. Due to
the network architecture, an adequate dropout may result in
proper learning.

Here, the LSTM operation is divided into two major com-
ponents: fault-free mode and post-fault mode. In the case
of no-fault, the LSTM continues to operate normally, and
the dropout of the first and second layer is 50% and 40%,
respectively, and in post-fault mode, the dropout is zero.
Figure 3 shows the dropout of the proposed LSTM prediction
method. This figure shows the reduction in processing when
the dropout is taken into consideration. Optimizers represent
the algorithms or approaches employed to modify neural
network attributes to minimize losses. The optimizer used
here is Adaptive Moment Estimation (Adam) [29].

In the proposed framework, a relationship was made
between the predicted and actual data values using the eval-
uation criteria Max Error, MSE, RMSE, and MAPE, which
are as follows [25]:

MAPE =
1
n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣× 100% (29)

MSE =
1
n

n∑
i=1

(Ai − Fi)2, (30)

RMSE =

√√√√1
n

n∑
i=1

(Ai − Fi)2, (31)

Max Error (ME) = MAX
i
|Ai − Fi| (32)

The flowchart of the reliability and maximum current of
CB prediction and fault detection using the online LSTM is
presented in Figure 3(a). First, the voltages and currents are

measured. Based on these parameters, the reliability and peak
current of the CB can bemeasured, and the analog fault detec-
tion process can be started, as shown in Figure 3(b). Post-
fault LSTM performance is different from pre-fault. After
occurring the fault, the time for voltage sampling decreases,
and the dropout becomes 0. Still, before the event of the fault,
the voltage sampling increases, the data transferred to the
LSTM are performed every 5 (h), and the dropouts of the first
and second layers are 50% and 40%, respectively. The data is
entered into the LSTM, the prediction process is executed,
and finally, the feedback of the predicted data enters the fault
process block to be compared with the actual data, as shown
in Figure 3(b).

B. OFF-LINE LSTM
In this section, an initial test is conducted to validate
the capacitor capacitance prediction by the LSTM method.
The capacitance degradation of four parallel capacitors
was recorded during 2000 (h) in a 13-level multilevel
inverter [12]. In the previous section, the CB was used to
validate the flowchart diagram of the improved fault detec-
tion method. These capacitors have been under voltage and
current stress and tension for 2000 (h). To record the actual
information, the capacitors were disassembled separately, and
the capacitance of each capacitor was measured individually,
and they were reassembled in the inverter.

To validate the LSTM prediction in its normal state, exper-
imental tests were conducted on four real capacitors, and the
forecast results of each capacitor were compared with the
LSTM prediction. Figure 5 shows a comparison of the LSTM
prediction and the actual measured capacitance. The LSTM
outputs are ESR and Capacitance degradation predictions that
were slightly different from the actual value, allowing them
to be used in subsequent forecasts.

Figure 5 shows that as time increases, the capacitance of
the capacitor decreases, and consequently, the output current
supplied by the CB also decreases. The maximum output
current is calculated according to Eq. 21 in dt = 0.001.
Figure 6 also shows the effect of the ESR degradation over
2000 (h) on the output current of the CB. It is clear from
the figure that the ESR increases over time, reducing the
maximum output current of the CB.

C. ON-LINE (REAL-TIME) LSTM
When a fault occurs, the magnitude of the ESR and the capac-
itance suddenly increase or decrease. The magnitude of this

RCB = RCB,OC + RCB,SC −
(
RCB,OC × RCB,SC

)

=



(
1−

j∏
n=1

(
1−

i∏
m=1

(1− Rmn(t))
))
+

(
j∏

n=1

(
1−

i∏
m=1

(1− Rmn(t))
))
−[(

1−
j∏

n=1

(
1−

i∏
m=1

(1− Rmn(t))
))
×

(
j∏

n=1

(
1−

i∏
m=1

(1− Rmn(t))
))]

 (21)
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FIGURE 3. The reliability and peak current forecast diagram based on the LSTM, a) the reliability and peak CB current forecasting flowchart, b) Real-Time
Fault detection flowchart of the capacitor bank.

FIGURE 4. Capacitors that were assembled and disassembled for
measurement.

increase or decrease depends on the type and severity of the
fault. Thus, after the failure, the data used for LSTM training
deviated from the actual data. Therefore, it is necessary to
update the data used by the LSTM. Figure 5 shows how the
capacitance of the capacitors are derived and predicted by
LSTM after degradation and fault.

As shown in Figure 7, until a fault happens, the LSTM uses
the initial data of the previously tested capacitors as Xt input
and switches to new real-time data as soon as the fault occurs.
Since the first fault occurs, the LSTM no longer uses the
initial data from the old capacitors and uses new input data.
After each fault, all input data is cleared, and the latest current

FIGURE 5. Comparison of LSTM capacitance predictions with actual
values of capacitors with no fault encountered.

information is recorded, memorized, and used for prediction
after the fault.

Using (24), the capacitance of the CB is measured and
compared to the predicted output of LSTM [30]:

iC = C(CB)
dVCB

dt
⇒ CCB = iC ×

1t
1VCB

. (33)
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FIGURE 6. The effect of capacitance degradation on the output current of
a capacitor bank during 2000 (h).

FIGURE 7. Real-time forecast diagram of ESR and capacitor factors after
the fault.

The ESR of the capacitor is also calculated according to:

tan δ =
ESR
XCd
= 2π fCdESR⇒ ESR =

tan δ
2π fCd

(34)

The tanδ changes with time. In [39], the tanδ changes were
recorded during a 5-month endurance test, and the results
show that the tanδ changes are less than 0.6%. Considering
1% of the measured capacitance difference, it seems that
the presented method calculates the ESR value with less
than 1.6% error. The value tanδ = 0.12 is given in the
UVY1H102MHD1TO capacitor datasheet. Since the capac-
itor operates at a frequency of 100 Hz (two half cycles
of 50 Hz) and, the capacitance is 1000 microfarads, for each
capacitor, the value of ESR= 0.19�. Thus, according to (25),
the ESR of the CB in regular operation with no fault is equal
to 0.1425 �. The LSTM forecasts the ESR and capacitance
of the CB. The CB’s reliability, lifetime, and peak output
current are calculated from the artificial intelligence output
data. Figure 8(a) and Figure 8(b) illustrate the capacitance
and ESR prediction of the CB by taking into account all types
of faults. Figure 8(a) illustrates the difference between the
actual capacitance and the predicted capacitance by LSTM
over 2000 (h). Figure 8(b), also shows the difference between

FIGURE 8. The difference between the actual and the predicted data: a)
the difference between the actual capacitance and the predicted
capacitance over 2000 (h), b) the difference between the actual ESR and
the predicted ESR over 2000 (h).

FIGURE 9. The CB parameters prediction: (a) the comparison of LSTM
prediction and actual capacitance, (b) the comparison of LSTM prediction
and actual ESR.

the actual ESR and the predicted ESR through the LSTM
over 2000 (h). In these two figures, there are empty spaces on
the screen; these spaces represent the first (h) after the fault
in which the artificial intelligence is being trained. After the
fault, the primary data is cleared and the LSTM training is
performed using the new data.

Also, Figure 9(a) shows the comparison of LSTM predic-
tion and actual capacitance. It also illustrates the effect of
experimentally tested short circuit faults on the normalized
capacitance. First C31 short circuit fault occurs at t = 151 h,
subsequent C32 short circuit fault occurs at t = 400 h, and
finally, C21 open-circuit fault occurs at t = 1010 h on the CB.
The short circuit fault leads to an increase in capacitance, and
the open-circuit fault leads to a decrease in capacitance of the
CB. Figure 9(b) shows the comparison of LSTM prediction
and actual ESR. It also displays the effect of the tested faults
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FIGURE 10. The prototype configuration of the multi-level inverter.

on the ESR of the CB. It can be argued that the ESR resistance
does not change with a short-circuit fault of the capacitor. But
with an open-circuit fault, the whole column of capacitors
disconnects. With an open-circuit fault of the capacitor, the
ESR of the CB increases, which means a decrease in the
current drawn from the CB.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. FAULT DETECTION
A CB consisting of 12 capacitors was used on a smaller
scale to validate the indicated content. Figure 10 shows
the multilevel inverter that was used for the test [12]. The
arrangement of the capacitors is shown in Figure 1(b).
UVY1H102MHD1TO is the part number of 12 capacitors
in the experimental test. Figure 11(a) shows the voltages
VCB and VC11 of the inverter in regular operation without
fault. This CB in the 13-level inverter is a type of switched
capacitor.

The short circuit in the experimental setup is implemented
using a wire across the related capacitors. In preparation for
the open circuit test, one of the capacitors was disconnected
from the board, and the pins were connected to the board with
two wires. Then the capacitor was disconnected by cutting
one of the wires.

The worst-case scenario that can happen to the CB’s inter-
nal capacitors is the simultaneous short circuit of several
capacitors because the voltage of the capacitor bank is dis-
tributed among the remaining series capacitors of the relevant
column. Note that if the applied voltage is higher than the
capacitor’s rated voltage, the capacitor explodes.

To sense each capacitor voltage, an ADC pin of the pro-
cessor is assigned, then the voltage is measured continuously,
and the processor reads the data steadily.

The voltage is measured instantaneously and the compar-
ison is made instantaneously. In other words, we don’t wait
until the capacitor’s voltage peak is reached before measuring
and comparing the voltages of the first capacitor (in this case,
capacitor C11) and VCB.

To perform the experimental tests, four scenarios are
examined, including all possible faults on one CB’s column
which are C31 short circuit, simultaneous C21 and C31 short

circuits, C11 open circuit, and C31 open circuit. In the fol-
lowing, the different scenarios are described:

1) SCENARIO NO. 1: OCCURRENCE OF A SHORT-CIRCUIT
FAULT IN ONE OF THE INTERNAL CAPACITORS
The first scenario is when the capacitor C31 is short-circuited.
The voltage of each capacitor before the short circuit is
VCB/3, but when one capacitor is shorted, the voltage of the
other two capacitors becomes VCB/2. Following this fault,
the voltage across capacitor C11 increases from a peak of
8 volts to a peak of 12 volts. According to the fault detection
flowchart shown in Figure 3(b), a fault is detected in block
3 for i = 3. A short-circuit fault in one capacitor of a column
causes the voltage of the capacitor bank to be distributed
to other capacitors. By inserting the approximate value of
the voltages at the fault point, (35) can be represented. Fig-
ure 11(b) shows is related to this scenario.{

1
2VCB − 1 ≤ VC11 ≤ 1

2VCB + 1 ⇒ VCB ≈ 19.5,VC11 ≈ 9

⇒ {8.75 ≤ VC11 ≈ 9 ≤ 10.75
(35)

2) SCENARIO NO. 2: THE OCCURRENCE OF A
SIMULTANEOUS SHORT-CIRCUIT FAULT OF TWO INTERNAL
CAPACITORS IN ONE COLUMN
The second scenario is the simultaneous short circuit of two
capacitors C31 and C21. Before the short circuit, the voltage
on each capacitor isVCB

/
3, but when these two capacitors are

shorted, the voltage of the remaining capacitor becomes VCB.
Figure 11(c) illustrates the voltage of capacitor C11 when C21
and C31 are shorted simultaneously. Each column has three
capacitors; shorting these two capacitors makes the voltage
C11 equal to the voltage of the capacitor bank. Detecting
this fault is the task of block 4 of the flowchart shown in
Figure3(b). Note that the output x of block 4 is equal to 2
(x=2). 

1
i−xVCB −1V ≤ VCnm ≤

1
i−xVCB +1V(

m = 1, n = 1 to j
x = 1 to (i− 1)

)

⇒


i = 3
x = 2
1V = 1

(36)

VCB − 1 ≤ VC11 ≈ VCB ≤ VCB + 1 (37)

Due to equations (36) and (37), it is evident that the voltage
is in the specific range determined by block 4. The nominal
voltage of the capacitor selected for testing is 50 volts, which
means that if two of the three capacitors in the column are
short-circuited, the capacitors’ nominal voltage is still higher
than the applied voltage. However, sometimes when a short-
circuit fault occurs, the applied voltage is higher than the
nominal voltage. In this case, the algorithm should issue a
quick command to disconnect from the system and discharge
the energy of the capacitor bank.
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FIGURE 11. The result of the experimental prototype: (a) C11 and VCB voltages in the normal operating mode without fault, (b) the effect of C31 short
circuit fault, (c) the effect of simultaneous short circuit faults of C21 and C31, increase in capacitance leads to decrease in voltage fluctuations, and
(d) the effect of C12 open circuit fault, as a result of the noticeable reduction in capacitance of the capacitance bank, the voltage fluctuation increases.

FIGURE 12. Topology corresponding to the experimental platform.

3) SCENARIO NO. 3: THE OCCURRENCE OF AN
OPEN-CIRCUIT FAULT OF AN INTERNAL CAPACITOR
In this scenario, an open-circuit fault occurs for capacitor
C12. It is worth noting that the open-circuit fault of one, two,
or more capacitors make no difference from the standpoint of
the presented method because the same open-circuit fault in
an internal capacitor leads to the disconnection of the entire
corresponding series capacitors. By breaking the connection,
the remaining capacitors do not discharge quickly, so their

voltage remains constant for a while (the time during which
the fault detection process operates is referred to as constant
here) and slowly discharges. The capacitor’s constant voltage
is depicted in Figure 11(d) along with the voltage sampling
results. Immediately after an open-circuit fault occurs, the
capacitor voltage remains constant at the voltage it had and
does not fluctuate. In this case, the output current of this
column is zero; this fault is detected in block 1. Equations(38)
and (39) illustrate the related calculations. However, the most
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obvious sign of a short-circuit fault is the zero amperes of
output current flowing through the column. Even without the
need for block 1 relationships, the occurrence of a short-
circuit fault can be detected if it is specified that the output
current of the column is zero.{

1
i VCB −1V ≤ VCmn ≤

1
i VCB +1V

(m = 1, n = 1 to j)

⇒


i = 3,
m = 1,
n = 1,
1V = 1

,

{
VCB ≈ 20.5
VC11 ≈ 7.6

(38)

{
1
3VCB − 1 ≤ VC11 ≤ 1

3VCB + 1

(m = 1, n = 1 to j)

⇒


i = 3,
m = 1,
n = 1,
1V = 1

{
5.83 ≤ 7.6 ≤ 7.83,
I11 = 0.

(39)

An increase in the voltage ripple of the capacitor bank
is another sign of an open-circuit fault. The voltage rip-
ple increases as the energy demanded by the mains/system
remain constant, according to equation (40).

The occurrence of an open-circuit fault can be detected
based on this increase in voltage ripple, but to ensure the
occurrence of a fault, the current of each column is measured.
Figure 11(d) depicts the rise in CB voltage ripple following
the fault.

IC = C
dv
dt
⇒ dv =

IC × dt
C

(40)

4) SCENARIO NO. 4: TWO CAPACITORS OPEN CIRCUIT
FAULTS AT THE SAME TIME
In this scenario, an open circuit fault occurs on two capacitors
C21 and C31 at the same time. Because of the open circuit,
the results of this scenario are similar to scenario number
3 because the occurrence of an open circuit on one capacitor
does not differ from the occurrence on two capacitors at the
same time, and the results are the same.

B. ADAPTION OF THE FAULT DETECTION METHOD AND
LSTM PREDICTION TECHNIQUE
The topology corresponding to the experimental platform is
shown in Figure 12. In the proposed manuscripts, the fault
detection is implemented in the local processor, the AVR
microcontroller. Then, the ESR and capacitance data of the
capacitor bank are transferred to the main processor, here
the PC. The real-time forecasting considering the faults is
accomplished on the PC using Python software. The results
of the previous section figures show that the short-circuit
fault leads to an increase in capacitance, the ESR does not
change and the CB current increases, and the open-circuit
fault increases the ESR, decreasing the current and the capaci-
tance. Short-circuit fault leads to a severe momentary drop in
reliability and completely drops the entire reliability curve,

FIGURE 13. The low post-failure and input data of the LSTM. a) low
post-failure data lead to erroneous predictions, ESR predictions, b) input
data of the LSTM, two post-failure data, and 100 (h) pre-failure data,
c) input data of the LSTM, 10 post-failure data, d) input data of the LSTM,
10 post-failure data, and 100 (h) pre-failure data, In the 100 (h) that the
LSTM predicts.

and open-circuit fault slightly increases reliability. Following
Eq. 8, a reduction in capacitance leads to a reduction in
the capacitance factor, which increases the reliability of the
capacitor.

When a fault occurs, several problems arise: 1) the fault
that occurred suddenly is irrelevant to the internal structure
of the capacitor, and this fault may not occur again, so the
data should not be used for training, 2) with the average
of every 5-(h), it takes a long time for the LSTM to be
able to make accurate predictions. 3) the LSTM needs to
be instructed not to use pre-failure data. But the biggest
challenge is that the LSTM needs a minimum of training data
to make a correct forecast.

To overcome these challenges, as shown in Figure 3, the
first thing to do after the fault occurs is two actions: 1) the
data previously used for fault-free capacitors for the LSTM
input should no longer be used, and new data switched, i.e.,
the health data of capacitors completely is deleted and new
update data used, and 2) after a fault occurs, instead of 5 (h) on
average, input data is added to the LSTM approximately
every 15-(min) until the correct prediction is made and the
difference from the actual value is minimized. The following
figures show how prediction goes wrong with insufficient
data.

In Figure 13(a), two post-failure data and ten pre-failure
data are given to the LSTM to predict the next 10-(h), where
the markers are data indicated in the figure. After the fault,
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TABLE 4. Capacitor monitoring and fault detection comparison between similar approaches and the proposed technique.

the command is sent through the processor, and instead of
averaging data for every 5-(h), data is sent to the LSTM
every 15-(min) to increase the accuracy of the prediction. The
prediction deviates from the true value because the entirety of
the learning data is insufficient, i.e., more data is needed after
the fault occurrence. The purpose of showing this figure was
to validate the fact that more data is required to make accurate
predictions. Now the data of pre-failure is added to observe
the result of the prediction. Figure 13(c) shows the ESR
prediction for the next ten (h) by the LSTM with input data
from ten (h) before the failure and ten data after the failure.
At t = 1010 (h), the C21 open-circuit fault occurs. As it
can be seen, the difference between the predicted and actual
data is quite small. The result shows that with the LSTM
parameters set, in ten (h) of the pre-faults and ten post-fault
data input and training, the prediction is highly satisfactory.
Note that the pre-fault data is learned to the LSTM on average
every 5 (h) and post-fault data is learned every 15 (min) on
average. Hence, ten post-fault data correspond to 150 (min)
or two (h) and 30 (min) (less than half the time of one of
the pre-fault data). Figure 13(d) shows the prediction of the
next 100 (h) of ESR by the LSTM artificial intelligence
method with ten post-fault data and one hundred (h) of pre-
fault data. The difference between the prediction and the
actual is insignificant. The result depicts only ten data (about
150 (min)) after the fault, and one hundred (h) before the fault

FIGURE 14. Post-Fault forecast of the next 100 (h) of CB capacitance,
a) The first sudden short-circuit failure of C31 at t=150 (h), b) The second
sudden short-circuit failures of C21 at t=150, and C31 at t=400 (h),
c) Short-circuit failures of C21 and C31, and open circuit failure of C12 in
t=1010 (h).

are sufficient to make a fairly accurate prediction of the next
100 (h) data.
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TABLE 5. Proposed LSTM method comparison with similar deep learning methods.

FIGURE 15. Comparison of error criteria results with different post-fault
data.

Figure 14 shows the prediction of capacitance by the
LSTM for the next 100 (h) with ten data after the fault, and
100 (h) of data before the fault as its input. The figures show
that although the most difficult case with little data (ten data
after the fault) is given as input to the LSTM, the prediction
is relatively acceptable.

The largest MAPE difference is observed in item 3, where
the input data for the LSTM consists of two post-fault data
and 10 (h) of data before the fault occurs, and the forecast is
made for the next 100 (h). The result shows that the LSTM
with low learning input data produces inaccurate predictions.
Figure 15 depicts a comparison of error criteria results with
different post-fault data. It is clear from the figure that the
worst response of the LSTM is the ESR prediction after error
as well as low post-fault data. With the proposed method,
the voltage sampling time is reduced from 5 (h) to 15 (min)
immediately after the fault occurrence, and this data is con-
sidered input data for the LSTM.

After the initial forecasting is performed, the LSTM
repeats a separate forecast every 5 (h) for lowMAPE. As long
as no fault occurs, no continuous operation of the processor
is required. After the fault detection, the LSTM input data is
modified, and the forecasting begins using new input data.
Using the proposed method, instead of 15 (min) of post-fault
sampling, it is possible to sample the required parameters
even every one second and allow the LSTM to predict much
faster. A trade-off between system performance, processor
performance prioritization, and prediction intensity is estab-
lished. So, the input data sampling for the LSTM needs to be
determined based on overall system performance.

Table 4 illustrates the comparison between the proposed
analog fault detection method and other similar methods,
and Table 5 shows the comparison of the applied LSTM
method with similar deep learning methods used for predic-
tion. As shown in these tables, the advantages of the proposed
combined methods are: accurate sensing of current and volt-
age is not required (Inexpensive sensors are sufficient), fast
internal fault detection, non-invasive measurement, ability to
detect sudden faults and predict normal faults, high accuracy
and, the disadvantages are: additional sensor required and the
LSTM deep learning implementation requires a PC to use the
Python software for prediction.

VI. CONCLUSION
Sudden faults can damage the internal capacitors of the CB.
These damages may include short-circuit and open-circuit
faults of the internal capacitors, which change the capacitance
and ESR of the CB. In addition, the ESR and capacitance
of capacitors are degraded over time. Capacitor degradation
reduces the energy storage factors, capacitor current, relia-
bility, and system lifetime. In this paper, the LSTM artifi-
cial intelligence method is used to forecast the degradation
of capacitor parameters. By using the obtained results, the
reliability and peak output current of the CB is predicted. The
effect of fault types on capacitor parameters is investigated,
and the adverse impact on the predictions is presented. The
post-failure challenges of the accurate forecast of the LSTM
are also examined, and solutions are provided. A method
based on the measurement of voltage and current changes
is used to detect sudden faults, and an algorithm for fault
detection is proposed. The proposedmethod enables the iden-
tification of the type and approximate location of the fault
of each capacitor array in the CB. The fault detection results
served an essential purpose in modifying the input data for
the LSTM learning.

In this paper, two experimental tests were conducted. Four
capacitors were loaded for 2000 (h) in the first test, and their
degradation was recorded. The recorded data was used as the
primary data required for the LSTM Deep learning, and the
LSTM validated the accurate prediction of the degradation
of capacitor parameters. Then, in the second test, in a CB
composed of 12 capacitors in four columns, different types
of short circuit and open circuit faults were applied, and the
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proper operation of the detection method was demonstrated.
The actual results and prediction of the parameters of the
capacitance bank validated the correct process of the pro-
posed novel method based on artificial intelligence LSTM
deep learning. Finally, based on the final results and consid-
ering the faults, the CB’s reliability and the peak current are
predicted.

As shown in Table 4 and Table 5, the advantages of the
proposed combined methods are: accurate sensing of current
[31] and voltage is not required (Inexpensive sensors are
sufficient), fast internal fault detection, non-invasive mea-
surement, able to detect sudden faults and predict normal
faults, high accuracy, and, the disadvantages are: additional
sensor required and the LSTM deep learning implementation
requires a PC to use the Python software for prediction.
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