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ABSTRACT
Accurate estimation of the longitudinal dispersion coefficient (LDC) is essential formodeling the pol-
lution status in rivers. This research investigates the capabilities of machine-learning methods such
as multi-layer perceptron (MLP), multi-layer perceptron trained with particle swarm optimization
(MLP-PSO), multi-layer perceptron trained with Stochastic gradient descent deep learning (MLP-
SGD) and different regressions including linear and non-linear regressions (LR and NLR) methods
for determining the LDC of pollution in natural rivers and evaluates the accuracy of these meth-
ods in comparisonwith real measured data. Furthermore, the correlation coefficient (CC), rootmean
squared error (RMSE) and Willmott’s Index (WI) were implemented to evaluate the accuracies of the
mentioned methods. Comparison of the results showed the superiority of the MLP-SGDmodel with
CC of 0.923, RMSE of 281.4 and WI of 0.954, which indicates the undeniable accuracy and quality of
the deep-learning model that can be used as a powerful model for LDC simulation. Also due to the
acceptable performance of the PSO algorithm in the hybridization of the MLPmodel, the use of PSO
algorithms is recommended to train machine-learning techniques for LDC estimation.
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1. Introduction

Nowadays, one of the most important environmental
subjects in the world is the study of surface water and
river quality. Since rivers and surface waters are the main
sources of water supply for different purposes, it is sig-
nificant to determine and protect their quality. The main
causes of surface water pollution are sewage and indus-
trial wastes and the use of pesticides and insect killers in
agriculture. On the other hand, other problems such as
drought damage make it necessary to study the issue of
water quality.

As mentioned, the entry of various agricultural and
industrial wastes into rivers and streams has become a
common way to dissolve and eliminate biological mat-
ter. One of the solutions that can be applied to con-
trol pollution in open channel streams is the effluence
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Amir Mosavi amir.mosavi@kvk.uni-obuda.hu

of contaminants in a controlled and logical mode that
enables the utilization of the process of dispersion and
self-purification of the river, which is one of the most
important methods of river environmental management,
to decrease the damage to the environment. Therefore, it
is necessary to have sufficient and accurate knowledge of
the ability of water to carry, spread and clean the contam-
ination along a certain length of its path, which is called
the full mixing length.

Pollutants are released under the effect of transfer
and mixing processes in vertical, transverse and lon-
gitudinal directions. Capability and strength of rivers
and other surface flows in the distribution of additional
materials in longitudinal, transverse and vertical direc-
tions are expressed by dispersion coefficients Kx, Ky
and Kz, respectively (Tayfur & Singh, 2005). Kx is the
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most important coefficient, which has a significant effect
on farther distances as well (Chatila, 1997). Therefore,
appropriate and accurate evaluation of longitudinal dis-
persion coefficient (LDC) is one of the main prerequi-
sites for the study of variations in the concentration of
contaminants in natural rivers. Also, accurate modeling
and estimation of this coefficient has special position
in reservoirs and deltas designing, environmental issues
and river engineering (Fischer et al., 1979). The LDC
can be easily specified in the presence of real data, but
unknown features and characteristics of mixing and dis-
persion in most rivers have forced researchers to use
different experimental relations. Some experimental and
theoretic approaches that have been extensively devel-
oped, comprise those by Elder (1959), Fisher (1968,
1975), McQuivey and Keefer (1974), Liu (1977), Fischer
et al. (1979), Iwasa and Aya (1991), Seo and Cheong
(1998), Kashefipour and Falconer (2002) and Disley et al.
(2015). Although empirical equations are valuable, they
have disadvantages such as low accuracy and high cost.
Also, each of these relations considers only some of the
effective parameters and a comprehensive relation has
not yet been accepted by all researchers which comprises
all the effective parameters. In recent years, in addition
to the use of these equations, the implementation of
artificial intelligence methods that are highly accurate
has attracted the attention of many river engineers and
researchers.

Kargar et al. (2020) investigatedmultiple linear regres-
sion, random forest, M5 model tree (M5P), Gaussian
process regression and support vector regression tomod-
eling LDC in 60 natural streams of different regions
around the world. They used various geometric and
hydraulic information of the study area as model input
and compare the result with empirical models. It was
concluded that the established M5P technique had bet-
ter accuracy in comparison with empirical equations
and other machine-learning techniques. Noori et al.
(2009) estimated the LDC applying adaptive neuro-
fuzzy inference system (ANFIS) and support vector
machine (SVM)models. Results indicated that the estab-
lished models were superior to classical regression meth-
ods. In another study, LDC was forecasted by genetic
programming method in natural rivers. The developed
genetic programming method created precise results
(RMSE = 0.085 and R2 = 0.98) (Azamathulla & Ghani,
2011). Tayfur and Singh (2005) calculated the LDC in
natural rivers and streams implementing artificial neu-
ral network (ANN) technique. The model input vari-
ables include geometric features (channel shape param-
eter, channel sinuosity, and channel width) and hydraulic
parameters (relative shear velocity, shear velocity, flow
velocity, flow depth, and flow discharge). They indicated

that the developed ANN model can be more useful
than empirical formulas in prediction of LDC. Sattar
and Gharabaghi (2015) presented a new gene expres-
sion model to establish experimental relations between
the LDC and different control parameters in rivers of
New Zealand, Europe, Canada, and the United States.
Findings displayed that the developed models are accu-
rate and can be efficiently utilized to forecast the LDC
in the studied areas. In the research of Antonopoulos
et al. (2015), an empirical equation and ANNmodel were
developed for dispersion coefficient estimation based
on various hydrodynamic and hydrological information
of Axios River. They presented that the ANN mod-
els showed results with acceptable accuracy. Applying
MLP and the radial basis function (RBF) techniques and
empirical equations, Parsaie and Haghiabi (2015) fore-
casted the LDC in rivers and revealed that MLP and
RBF models had appropriate performance for estimating
LDC. Najafzadeh and Tafarojnoruz (2016) examined the
capabilities of neuro-fuzzy-based group method of data
handling (NF-GMDH) and enhanced this method by
means of particle swarm optimization algorithms (PSO)
in LDC estimation. The comparison of the NF-GMDH-
PSO results with the results of artificial neural network
(ANN), model tree (MT), and the differential evolution-
ary (DE) displayed that DE model as superior technique.
Alizadeh et al. (2017) considered Bayesian network (BN)
method for estimation of LDC based on two types of
input data covering dimensionless and dimensional vari-
ables. The established technique provided an appropri-
ate method for pollutant transport prediction in natural
streams. Mohammad Najafzadeh et al. (2021) performed
uncertainty analysis in estimation of longitudinal and lat-
eral dispersion coefficients (Kx and Ky) in rivers. For this
purpose, they implemented five intelligent models for
estimation of the mentioned coefficients. They reported
that support vector machine gives least uncertainty in
both Kx and Ky estimation. Ghiasi et al. (2021) suggested
implementing Deep Convolutional Network (DCN) for
improving the accuracy of LDC estimation. They stated
that the utilized DCN model demonstrates exceptional
accuracy in estimating LDC over the full possible range
of data in comparisonwith the empirical andMLmodels.
Naser Arya Azar et al. (2021) used least square-support
vector machine (LS-SVM), adaptive neuro-fuzzy infer-
ence system (ANFIS), and ANFIS optimized by Harris
hawk optimization (ANFIS-HHO) for LDC estimation
and they compared the results with that of the experi-
mental methods. The obtained results exhibited that the
proposed ANFIS-HHO performed better than the other
two models. The superiority of artificial intelligence and
machine-learning methods over experimental equations
in estimating longitudinal scattering coefficient has also
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been expressed in other studies (Azamathulla & Wu,
2011; Najafzadeh & Sattar, 2015; Noori et al., 2011, 2015;
Piotrowski et al., 2012; Riahi-Madvar et al., 2009; Sahay,
2011; Toprak et al., 2004, 2014; Toprak&Cigizoglu, 2008)

The special position of LDC in contamination trans-
fer and its dependency on geometric and hydrodynamic
factors can be concluded from the number of studies that
have been conducted over the past decades until now
(Altunkaynak, 2016; Bencala&Walters, 1983;Deng et al.,
2001; Etemad-Shahidi & Taghipour, 2012; Rutherford,
1994; Tutmez & Yuceer, 2013; Wang et al., 2017).

The main purpose of this study is to investigate dif-
ferent experimental methods and equations for accurate
estimation of LDC in natural rivers and to evaluate the
performance accuracy of these methods in comparison
with real measured data. So, the main contribution of
this study is evaluatingMLP-SGDdeep learning and PSO
algorithm to improve the accuracy of standalone MLP in
LDC estimation. Finally, the results of empirical equa-
tions and LR and NLR models are compared with each
other.

2. Material andmethods

2.1. Database used

Estimation of longitudinal dispersion coefficient using
experimental equations requires a set of hydraulic and
geometric data of the rivers. In this study, data from 50
different rivers in the US and the UK (see Appendix),
which have been used in different sources have been gath-
ered (Fisher, 1968; Graf, 1995; McQuivey & Keefer, 1974;
Nordin & Sabol, 1974; Rutherford, 1994) The dataset
includes flow depth (m), river width (m), average flow
velocity (m/s), flow shear velocity (m/s), and ε(m2/s).
Table 1 presents the variables required for the experimen-
tal equations, the parameters used for modeling, and the
statistical parameters of the data used.

2.2. Models used in the research

The use of dimensional analysis method and presen-
tation of dimensionless variables allows more detailed
study of the factors affecting the relationships governing
the LDC. The most important parameters that affect the
diffusion phenomenon are three categories of fluid prop-
erties (density fluid (ρ), fluid viscosity coefficient (μ)),
hydraulic characteristics of flow (average flow velocity
(U), flow depth (h) and flow shear rate (U∗)) and geo-
metric parameters of flow cross section (river width (w),
flow path shape, etc.). in other words:

ε = f1(u, h, w, U∗, ρ, μ) (1)

Equation 2 can be obtained by using Buckingham
theorem.

ε

HU∗
= f2

(
U
U∗

,
W
H

, Re∗
)

(2)

ε/HU∗ is dimensional mixing or dispersion coefficient
without dimension and Re∗ is the shear Reynolds num-
ber. If the turbulent flow is rough (Re∗ ≥ 70), the effect
of fluid viscosity can be disregarded and Equation 2 can
be summarized as Equation 3.

ε

HU∗
= f2

(
U
U∗

,
W
H

)
(3)

For this reason, the existing experimental equations use
the parameters of dimensionless velocity and dimension-
less flow depth to estimate this coefficient.

2.3. Experimental equations

In order to estimate the LDC in the rivers, researchers
presented various experimental relationships, the most
important of which are presented in Table 2. As can be
seen, all of these formulas calculate the LDC using vari-
ables related to the average flow conditions in the river
section.

2.4. Feed-Forwardmulti-layer perceptron (MLP)

In this study, forward multilayer perceptron neural net-
works were used to estimate LDC. This network is made
up of simple operational elements called neurons that
work in parallel. Multilayer neural networks consist of an
input layer (for input data), one or more hidden layers
(for organizing neurons), and an output layer (for output
data). The function of the neural network is determined
by how the components are connected, by adjusting the
values of each connection, which is called the connection
weight. One of the most widely used types of neural net-
works in hydrology and water resources is feed-forward
multilayer perceptron neural networks with back prop-
agation error training pattern (Ulke et al., 2009). In this
type of neural networks, the direction of data flows from
the input layers towards the hidden layers as described as
follows by (Tayfur, 2012).

wnew
ij = wold

ij − η
∂E
∂wij

(4)

Where wold
ij and wnew

ij are the weights between neurons
i and j, respectively, before and after a given repetition,
η is the learning rate, and E is the error function. Net-
work training and error reduction continue until network
convergence is established. Neural networks can have
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Table 1. Statistical characteristics of utilized data.

Parameters Mean Minimum Maximum Standard deviation Coefficient of variation Skewness

W(m) 49.582 1.4000 253.600 48.285 0.973 2.160
H(m) 1.476 0.14 20.900 2.071 1.403 6.195
U(m/s) 0.473 0.029 1.730 0.318 0.672 1.595
U∗(m/s) 0.084 0.0016 0.553 0.072 0.851 3.925
ε(m2/s) 83.294 0.200 1486.500 180.954 2.172 4.791
W/H 47.308 2.202 403.750 46.852 0.990 4.437
U/U∗ 7.000 0.777 20.250 4.652 0.664 1.277
ε/HU∗ 1210.855 3.083 37140.740 3629.165 2.997 7.944

Table 2. Empirical equations for LDC estimation.

Method Equation Notation

Seo and Cheong (1998)
ε

HU∗
= 5.915 ×

(
W

H

)0.62

×
(

U

U∗

)1.428

S-C

Li, Liu, and Yin (2013)
ε

HU∗
= 2.282 ×

(
W

H

)0.7613

×
(

U

U∗

)1.4713

L

Zeng and Huai (2014)
ε

HU∗
= 5.4 ×

(
W

H

)0.7

×
(

U

U∗

)1.13

Z-H

Zhang, Huai, and Zhao (2016)
ε

HU∗
= 17.648 ×

(
W

H

)0.3619

×
(

U

U∗

)1.16

W-H

Kargar et al. (2020)
ε

HU∗
= 1.6896 ×

(
W

H

)
+ 20.0124 ×

(
U

U∗

)
+ 393.3346 If

W

H
≤ 47.238 K

ε

HU∗
= 2.8759 ×

(
W

H

)
+ 181.7915 ×

(
U

U∗

)
+ 339.5557 If

W

H
> 47.238

multiple hidden layers, however, research shows that for-
ward neural networks, with a hidden layer, are able to
approximate any nonlinear function (Hornik et al., 1989).

2.5. Particle swarm optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm is
a social search algorithm inspired by the social behav-
ior of birds and fishes when searching for food. In
this algorithm, each solution (in this study, the weights
and biases of the neural network), which is also called
a particle, is equivalent to a bird in a pattern in the
collective movement of birds and it is determined by a
target function. In the PSO algorithm, the particles work
together to achieve a common goal, so this method is
more effective when the particles act separately. In the
PSO algorithm, collective behavior is not only related to
the behavior of the individual in the community but also
to how the group interacts. So, the particles are spread
in the search space, then in order to achieve the best
solutions, under the influence of their own experience
and knowledge and the knowledge of other particles of
their neighbors, gradually tend to successful areas (opti-
mal solutions). Compared to other evolutionary algo-
rithms, the PSOalgorithmhas interesting features such as
constructive collaboration and shared memory between
individuals. Therefore, in this algorithm, moving to areas
containing better solutions has a better chance and dis-
covering solutions with the desired quality is faster. In

addition, this algorithm is very simple and has high speed
and low memory. Moreover, first a number of particles
are created with random position and speed, then in
each iteration; the particles correct themovement toward
the target according to the best position of their past
and their neighbors. After consecutive repetitions, the
problem converges to the optimal answer. The correction
of the velocity and position of each particle is done by
the Equations 5 and 6, respectively& nbsp;as described
by Marini and Walczak (2015).

Vi+1(t + 1) = ωVi(t) + C1

× (rand1(pbesti(t) − Xi(t))

+ C2 × (rand2(gbesti(t) − Xi(t)) (5)

Xi(t + 1) = Xi(t) + Vi(t + 1) (6)

In which gbest represents the best position obtained by
the particle population and pbest represents the best posi-
tion the particle itself has ever experienced, t represents
the number of iterations, c represents the acceleration
constant and rand1 and rand2 are random numbers in
the range zero and 1. The coefficients C1 and C2 are cog-
nitive parameter (personal experience) and social param-
eter (collective experience), respectively, and determine
the slope of movement in local search. The value of these
two coefficients is determined in the range of zero and 2.
Moreover, ω is a coefficient that decreases linearly and is
usually defined in the range of zero and 1. The operation
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Figure 1. Performance of PSO algorithm.

of the PSO algorithm, which is adapted fromMarini and
Walczak (2015) is shown in Figure 1.

2.6. Application of PSO algorithm in optimization
and training of neural networks

In the neural network training, optimization variables
include the weights and biases of that network. If the
nth layer of a hypothetical neural network consisting of
input R and M neurons is considered, then the matrix
of weights (Wn) and biases (Bn) of this layer can be
represented using as follows:

Wn =

⎡
⎢⎢⎢⎣

(Wn
1 )T

(Wn
2 )T

...
(Wn

M)T

⎤
⎥⎥⎥⎦ , Bn =

⎡
⎢⎢⎢⎣
bn1
bn2
...
bnM

⎤
⎥⎥⎥⎦ (7)

Where
[
Wn

m,1 Wn
m,2 . . . Wn

m,R
]T is the vector of the

weights that themneuron relates to the inputs of the same
layer. The vector of the parameters of this layer can also
be shown with Equation 8.

Xn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wn
1
...

Wn
M

−
bn1
...
bnM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Similarly, for each layer in the neural network, the weight
and bias matrices and vectors of the corresponding
parameters are defined. By subtracting the vector param-
eters of all network layers, the vector of the desired opti-
mization variables is formed. Finally, for a network with
L layer, the vector ofX variables can be obtained from the
equation 9.

X =

⎡
⎢⎢⎢⎣
X1

X2

...
XL

⎤
⎥⎥⎥⎦ (9)

where the vector represents the particle position as
the optimal value . The position vector N of Xi
(i = 1,2, . . . ,N), represents the quantity of the members
of the particle solutions. The neural network urther oper-
ates for parameters of the vectors’ variables. As decribed
by Garro and Vázquez (2015) the equations 5 and 6 in
the next step are used for calculation of the new position
vectors.

2.7. Multilayer perceptron-stochastic gradient
descent (MLP-SGD)

Stochastic gradient descent (SGD) is a repeating method
for improving a purpose function with proper soft-
ness properties. To estimate the gradient in the gradi-
ent descent (GD), the average of all n samples must be
obtained. If the training dataset consists of millions or
billions of samples, the average will be difficult to calcu-
late, so each iteration will be long. SGD is used to prevent
such a problem. In other words, in each iteration, a sam-
ple of a micro-batch M is sampled from n samples in the
training dataset. These samples are uniformly sampled
from the training dataset and the size of n is constant
and relatively smaller than n. To update all parameters,
a gradient is estimated for all pairs of specimens in the
M sub-category. The SGD training transforms to gradi-
ent descent when the batch size is n. In the SGD method
the parameters are upgraded more repeatedly than for
the gradient descent, and the convergence is rummaged.
When the batch size is 1, the maximum iteration of
upgrades is done, leading to an ordinary perceptron-like
algorithm (Tsuruoka et al., 2009). In this case, the equiv-
alent of the gradient estimate for any data such as x(i) and
its corresponding value y(i) would be as follows:

gSGD = 1
n

n∑
i=1

∇θ ζ(x(i), y(i), θt) (10)

After estimating the gradient, the parameter is updated
in the opposite direction of the gradient:

θt+1 = θt − ηgSGD (11)
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In Equation (11) η is the learning rate which decreases as
the repetition process.

MLP-SGD is a MLP based method that is improved
by SGD. The MLP-SGD network consists many hid-
den layers include neurons with a scaled sigmoid, rec-
tifier, max out, and ExpRectifier activation functions.
Progressed features such as epochs, rho, L1 or L2 adjust-
ment, momentum training, adaptive learning rate, and
rate annealing allow for high prediction precision. The
mentioned parameters activate if the adaptive learning
rate is disabled.

2.8. Error evaluation indicators

In order to evaluate and compare the results obtained
from machine learning and regression models with
observed LDC data, correlation coefficient (CC), root
mean squared error (RMSE) and Willmott’s Index (WI)
were used. The equations of the indicators used are as
follows:

CC =

( n∑
i=1

OiPi − 1
n

n∑
i=1

Oi
n∑

i=1
Pi
)

(
n∑

i=1
Oi

2 − 1
n

( n∑
i=1

Oi

)2
)

(
n∑
i=1

Pi2 − 1
n

( n∑
i=1

Pi
)2
)

(12)

RMSE =
√√√√1

n

n∑
i=1

(Pi − Oi)
2 (13)

WI = 1 −

⎡
⎢⎢⎣

n∑
i=1

(Oi − Pi)2

n∑
i=1

(∣∣Pi − __
Oi
∣∣+ ∣∣Oi −

__
Oi
∣∣)2
⎤
⎥⎥⎦ (14)

where Oi and Pi are the measured and estimated values,
respectively. Ōi represents themean value of the observed
values and n represents the number of data. The CC and
WI values close to 1 and RMSE values close to 0 indi-
cate the high quality of the LDC estimation. The Taylor
diagrams with different colors at the polar poles (Taylor,
2001) are used to evaluate the model accuracy and the
estimated valuesof LDC prediction.

3. Results and discussion

In the present study, 149 datasets belonging to 50 dif-
ferent rivers were used to model and estimate the LDC.
Furthermore, there is no direct way for separating train-
ing and testing datasets. For example, for developing
the model, Deo et al. (2018) and Samadianfard et al.
(2019a, 2019b, 2020) implemented 70% of their data,

Table 3. Performance of S-C, L, Z-H, W-H and K empirical models
based on utilized statistical parameters.

Empirical models

Models CC RMSE WI

S-C 0.739 791.0 0.796
L 0.776 532.9 0.872
Z-H 0.774 454.8 0.863
W-H 0.640 550.3 0.772
K 0.774 674.8 0.800

while Qasem et al. (2019) applied 67%, Diop et al. uti-
lized 75% and Zounemat-Kermani et al. (2019) used 80%
of whole data for training step. Accordingly, 70% of data
(104 cases) is used as training, and the rest of them
(45 cases) are applied for the testing part. It is worth
mentioning that the data were divided randomly.

Four-layer perceptron neural network (one input
layer, two hidden layers and one output layer) was used
to estimate LDC using MLP method. The Levenberg-
Marquardt algorithmwas implemented in estimating the
LDC due to its efficiency and faster convergence in neu-
ral network training. Activation functions in latent and
output layer neurons were considered sigmoid and lin-
ear, respectively. In order to use the PSO algorithm in this
research, population size, maximumnumber of iteration,
inertia weight and initial particles were considered 1000,
500, 0.9, and 30, respectively.

Using 30% of the dataset collected in this study, which
was used to test the models, the LDC values were cal-
culated using each of the relationships in Table 2 and
their accuracy was evaluated using the measured data.
Table 3 shows the results of the implemented empirical
equations. Z-H is the most accurate empirical equation,
with CC, RMSE andWI values of 0.774, 454.8, and 0.863,
respectively, which shows the efficiency of this equation.
Additionally, the proposed S–C equations have the low-
est accuracy so that CC, RMSE, andWI values are 0.739,
791.0, and 0.796, respectively. The high value of RMSE
indicates the inefficiency of this equation. Efficiency or
inefficiency of these equations can be deduced from the
scatter and comparison plots that have presented in Fig-
ures 2 and 3.

Additionally, Table 4 represents the evaluation meters
of MLP, MLP-PSO, MLP-SGD, and regression meth-
ods. Accordingly, the best performance belongs to the
MLP-SGD with CC of 0.923, RMSE of 281.4, and WI of
0.954. Thus, MLP-SGD had high potential compared to
other models for low-error modeling of LDC values. On
the other hand, according to the results obtained from
MLP-PSOmodel, the use of PSO algorithm inMLP neu-
ral network training improved the performance of the
MLP neural network model, so that all values of the
validation indices of the standalone MLP model have
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Figure 2. Scatterplots of measured and estimated LDC.

improved. To better understand, the CC, RMSE, and WI
values have changed from 0.769–0.884, 803.6–347.8, and
0.775–0.937, respectively. In other words, these param-
eters have improved by 14.9%, 56.7%, and 20.9%m

respectively. Regression equations for LDC estimation
were obtained using LR andNLRmethods and presented
in Table 5. These equations depend on the values ofW/H
and U/U∗. According to the results shown in Table 4,
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Figure 3. Comparative plots of measured and estimated LDC.
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Figure 4. Comparative graph between superior methods.

the performance accuracy of the NLR with CC of 0.864,
RMSE of 431.7, andWI of 0.856 and LRwith CC of 0.639,
RMSE of 590.0, and WI of 0.584 are lower than the opti-
mizedMLP-PSOmethod. But due to the reasonable error
of the NLR method, the resulted equation of NLR may
be proposed for LDC estimation. It should be noted that
the equation presented by NLRmethod was presented in
two domains ofW/H > 29 andW/H ≤ 29. By compar-
ing the results of Table 4 with Table 3, it can be concluded
that the performance of NLR is superior to the empirical
equations examined in this study. Scatter and compara-
tive plots of the implemented methods are shown in Fig-
ures 2 and 3.As can be seen fromFigures 2 and 3, the scat-
ter of points (light blue points) around the bisector line
(solid black line) of the MLP-SGD are lower than other
methods. Furthermore, the conformity of the estimated
points (dark blue points) on the measured data line (red
dotted line) in the MLP-SGDmodel is more than others,
which indicates the superiority of the MLP-SGD model.

To compare the superior methods between empiri-
cal and machine-learning models and to identify the
most efficient method, Figure 4 was drawn to compare
the results of Z-H and the MLP-PSO, MLP-SGD, and
NLRmachine-learningmethods that the proximity of the
points related to the MLP-SGD (pale blue points) to the
observed data line (red dotted line) showed the suitability
of this method for estimating LDC. Moreover, Figure 5

Table 4. Performance of MLP, MLP-PSO, MLP-SGD, LR and NLR
models based on utilized statistical parameters.

Machine learning models

Models CC RMSE WI

MLP 0.769 803.6 0.775
MLP-PSO 0.884 347.8 0.937
MLP-SGD 0.923 281.4 0.954
LR 0.639 590.0 0.584
NLR 0.864 431.7 0.856

Figure 6. The Taylor diagrams of observed and estimated LDC
values.

demonstrates the boxplots of the utilized models. Sim-
ilarly, it is clear that the estimates of MLP-SGD are in
better agreement with the measured LDC values.

In Figure 6, the Taylor diagrams of models areillus-
trated where the RMSE is presented as the distance from
the reference point. The model with high accuracy is
considered as less distance between reference and the
correspondent point. As the brownpoint forMLP-SGD is

Figure 5. Boxplots of measured and estimated LDC.
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Table 5. Linear and nonlinear regression equations obtained to estimate the LDC.

Method Equation Data domain

Linear regression
ε

HU∗
= 7.751 ×

(
W

H

)
+ 35.906 ×

(
U

U∗

)
+ 0.011

Non- linear regression
ε

HU∗
= 7.112 ×

(
W

H

)0.561

×
(

U

U∗

)1.158 W

H
> 29

ε

HU∗
= 19.011 ×

(
W

H

)0.635

×
(

U

U∗

)0.139 W

H
≤ 29

Table 6. Effect of removing input variables on the accuracy of
MLP-SGDmodel in LDC estimation.

Statistical Parameter

Model
(MLP-SGD) Input

Parameters CC RMSE WI

1 All 0.923 281.4 0.954

2 Remove
W

H
0.361 677.2 0.372

3 Remove
U

U∗
0.503 583.1 0.526

the nearest point to the reference point, it delivers more
accuracy.

Comparing the results of this study with the findings
of Kargar et al. (2020) indicated that the developedMLP-
SGD model (with RMSE of 281.4) estimated LDC with
higher accuracy than M5P (with RMSE of 454.9), as the
best model of Kargar et al. (2020). So, based on the out-
comes of this research, the proposed MLP-SGD may be
recommended for LDC estimation with high degree of
confidentiality.

4. Sensitivity analysis

Sensitivity analysis indicates the effect of different input
parameters of the model, in which the values of each
parameter include the range of that parameter, which is
located between the lower and upper limits of the range
of changes of that parameter; In this way, one param-
eter changes between its lower and upper limit, while
the other parameter remains constant in its average. The
results of sensitivity analysis showed that the importance
of the flow-to-depth ratio (W/H) is higher thanU/U∗ for
estimating LDC using the most accurate model (MLP-
SGD). This importance is due to the removal of this
parameter from LDCmodeling, which resulted in 60.9%
decrease in CC, 140.6% increase in RMSE, and 61.0%
decrease in WI indices, while these changes are 42.0%
decrease in CC, 107.2% increase in RMSE and 44.9%
decrease inWI indices by removingU/U∗. The complete
results of the sensitivity analysis can be seen in Table 6.

5. Conclusion

Proper estimation of longitudinal dispersion coefficient
of pollution is very important due to its undeniable

effect on pollution control and management in rivers. In
this study, the LDC values were estimated through sev-
eral experimental equations and machine learning and
regression methods such as MLP, MLP-PSO, MLP-SGD,
NLR, and LR and their accuracy were evaluated using
the measured data. To achieve this goal, 149 datasets
belonging to 50 rivers in the United States and the United
Kingdom were divided into two parts: 70% training and
30% testing. Among the experimental methods, the Z-
H had the best performance with the CC of 0.774, the
RMSE of 454.8, and WI of 0.863. Among machine-
learningmethods, theMLP-SGDmethod showedhighest
accuracy with CC of 0.923, RMSE of 281.4, and WI of
0.954. Also the MLP-PSO method indicated acceptable
accuracy with CC of 0.884, RMSE of 347.8, and WI
of 0.937. Therefore, it may be concluded that the PSO
algorithmhad a significant effect on improving the results
of the standalone MLP method, which indicates the effi-
ciency of this optimization algorithm. UsingNLR and LR
methods, equations for LDC estimation were presented,
which NLR equations in two domains with CC of 0.864,
RMSE of 431.7, and WI of 0.856 had acceptable accu-
racy. Thus, LDC can be estimated by these non-linear
equations considering low error values. Finally, due to the
importance of estimating LDC as accurately as possible,
the use of deep-learning methods and PSO optimization
algorithms is recommended.
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Appendix

NO Stream W (m) H (m) U(m/s) U∗(m/s) ε(m2/s)

1 Copper Creep, VA (below guage) 15.9 0.49 0.21 0.079 19.52
2 Copper Creep, VA (below guage) 18.3 0.84 0.52 0.1 21.4
3 Copper Creep, VA (below guage) 16.2 0.49 0.25 0.079 9.5
4 Clinch River, TN (below gage) 46.9 0.86 0.28 0.067 13.93
5 Clinch Rriver, TN (below gage) 59.4 2.13 0.86 0.104 53.88
6 Clinch River, TN (below gage) 53.3 20.9 0.79 0.107 46.45
7 Copper Creek, VA (above gage) 18.6 0.39 0.14 0.116 9.85
8 Power River, TN 33.8 0.85 0.16 0.055 9.5
9 Clinch River, VA 36 0.58 0.3 0.049 8.08
10 Green and Duwamish 21.77 1.58 0.31 0.058 6.5
11 Green and Duwamish 29.61 1.08 0.36 0.048 0.5
12 Bayou Anacoco 19.8 0.41 0.29 0.044 13.94
13 Nooksack River 86 2.94 1.2 0.514 153.29
14 Antietam Creek 15.8 0.39 0.32 0.06 9.29
15 Antietam Creek 19.8 0.52 0.43 0.069 16.26
16 Antietam Creek 24.4 0.71 0.52 0.081 25.55
17 Monocacy River 35.1 0.32 0.21 0.04 4.65
18 Monocacy River 36.6 0.45 0.32 0.05 13.94
19 Monocacy River 47.5 0.87 0.44 0.07 37.16
20 Missouri River 182.9 2.23 0.93 0.065 464.52
21 Missouri River 201.2 3.56 1.27 0.082 836.13
22 Missouri River 196.6 3.11 1.53 0.077 891.87
23 Wind/Bighom Rivers 67.1 0.98 0.88 0.11 41.81
24 Elkhom River 32.6 0.3 0.43 0.046 9.29
25 Elkhom River 50.9 0.42 0.46 0.046 20.9
26 John day River 25 0.56 1.01 0.137 13.94
27 Comite River 12.5 0.26 0.31 0.043 6.97
28 Comite River 15.8 0.41 0.37 0.055 13.94
29 Amite River 36.6 0.81 0.29 0.068 23.23
30 Amite River 42.4 0.8 0.42 0.068 30.19
31 Sabine River 103.6 2.04 0.56 0.054 315.87
32 Sabine River 127.4 4.75 0.64 0.081 668.9
33 Muddy Creek 13.4 0.81 0.37 0.077 13.94
34 Muddy Creek 19.5 1.2 0.45 0.093 32.52
35 Sabine River, Texas 35.1 0.98 0.21 0.041 39.48
36 White River 67.1 0.55 0.35 0.044 30.19
37 Chattahoochee River 65.5 1.13 0.39 0.075 32.52
38 Susquehanna River 202.7 1.35 0.39 0.065 92.9
39 Antietam Creek 10.97 0.52 0.21 0.075 17.5
40 Antietam Creek 23.47 0.7 0.52 0.101 101.5
41 Antietam Creek 24.99 0.45 0.41 0.081 25.9
42 Antietam Creek 12.8 0.3 0.42 0.057 17.5
43 Antietam Creek 24.08 0.98 0.59 0.098 101.5
44 Antietam Creek 11.89 0.66 0.43 0.085 20.9
45 Antietam Creek 21.03 0.48 0.52 0.069 25.9
46 Monocacy River 48.7 0.55 0.26 0.05 37.8
47 Monocacy River 92.96 0.71 0.16 0.05 41.4
48 Monocacy River 51.21 0.65 0.62 0.04 29.6
49 Monocacy River 97.54 1.15 0.32 0.058 119.8
50 Monocacy River 49.99 0.95 0.32 0.075 29.6
51 Monocacy River 33.53 0.58 0.16 0.041 66.5
52 Monocacy River 40.54 0.41 0.23 0.04 66.5
53 Conococheague Creek 42.21 0.69 0.23 0.064 40.8
54 Conococheague Creek 49.68 0.41 0.15 0.081 29.3
55 Conococheague Creek 42.98 1.13 0.63 0.081 53.3
56 Conococheague Creek 43.28 0.69 0.22 0.064 40.8
57 Conococheague Creek 63.7 0.46 0.1 0.056 29.3
58 Conococheague Creek 59.44 0.76 0.68 0.072 53.3
59 Chattahoochee River 75.6 1.95 0.74 0.138 88.9
60 Chattahoochee River 91.9 2.44 0.52 0.094 166.9
61 Chattahoochee River 99.97 2.5 0.3 0.105 166.9
62 Salt Greek 32 0.5 0.24 0.038 52.2
63 Difficult Run 14.5 0.31 0.25 0.062 1.9
64 Difficult Run 11.58 0.4 0.22 0.087 1.9

(continued)
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Appendix. Continued.

NO Stream W (m) H (m) U(m/s) U∗(m/s) ε(m2/s)

65 Bear Creek 13.7 0.85 1.29 0.553 2.9
66 Little Pincy Creek 15.9 0.2 0.39 0.053 7.1
67 Bayou Anacoco 17.5 0.45 0.32 0.024 5.8
68 Bayou Anacoco 25.9 0.94 0.34 0.067 27.6
69 Bayou Anacoco 36.6 0.91 0.4 0.067 40.2
70 Comite River 15.7 0.2 0.36 0.04 69
71 Comite River 6.1 0.49 0.25 0.058 69
72 Bayou Bartholomew 33.4 1.4 0.2 0.03 54.7
73 Bayou Bartholomew 37.49 2.07 0.1 0.04 54.7
74 Amite River 21.3 0.5 0.54 0.027 501.4
75 Amite River 46.02 0.53 0.41 0.043 501.4
76 Tickfau River 14.9 0.59 0.27 0.08 10.3
77 Tickfau River 41.45 1.04 0.07 0.09 10.3
78 Tangipahoa River 31.4 0.81 0.48 0.072 45.1
79 Tangipahoa River 29.9 0.4 0.34 0.02 44
80 Tangipahoa River 42.98 1.28 0.26 0.068 45.1
81 Tangipahoa River 31.7 0.76 0.36 0.053 44
82 Red River 253.6 0.81 0.48 0.072 45.1
83 Red River 161.5 0.4 0.34 0.02 44
84 Red River 152.4 1.62 0.61 0.032 143.8
85 Red River 155.1 3.96 0.29 0.06 130.5
86 Red River 248.11 4.82 0.31 0.065 143.8
87 Sabine River, LA 116.4 3.66 0.45 0.057 227.6
88 Sabine River, LA 160.3 1.74 0.47 0.036 177.7
89 Sabine River, TX 14.2 1.65 0.58 0.054 131.3
90 Sabine River, TX 12.2 2.32 1.06 0.054 308.9
91 Sabine River, TX 21.3 0.5 0.13 0.037 12.8
92 Sabine River, TX 21.64 0.61 0.08 0.042 12.8
93 Sabine River, TX 17.37 1.23 0.04 0.05 14.7
94 Sabine River, TX 31.39 1.43 0.13 0.041 24.2
95 Wind/Bighom Rivers 44.2 1.4 0.99 0.14 184.6
96 Wind/Bighom Rivers 85.3 2.4 1.73 0.15 464.6
97 Copper Creek 16.7 0.5 0.2 0.08 16.8
98 Clinch River 48.5 1.2 0.21 0.07 14.8
99 Copper Creek 18.3 0.4 0.15 0.12 20.7
100 Powell River 36.8 0.9 0.13 0.05 15.5
101 Clinch River 28.7 0.6 0.35 0.07 10.7
102 Copper Creek 19.6 0.8 0.49 0.1 20.8
103 Clinch River 57.9 2.5 0.75 0.1 40.5
104 Conchelaa Canal 24.7 1.6 0.66 0.04 5.9
105 Clinch River 33.53 0.78 0.19 0.049 10.7
106 Clinch River 55.78 2.26 0.69 0.099 36.93
107 Clinch River 53.2 2.4 0.66 0.11 36.9
108 Coachell Canal, CA 23.77 1.6 0.67 0.04 5.96
109 Coachell Canal, CA 24.99 1.54 0.66 0.037 5.92
110 Copper Creek 16.8 0.5 0.24 0.08 24.6
111 Missoury River 180.6 3.3 1.62 0.08 1486.5
112 Bayou Anacoco 25.9 0.9 0.34 0.07 32.5
113 Bayou Anacoco 36.6 0.9 0.4 0.07 39.5
114 Nooksack River 64 0.8 0.67 0.27 34.8
115 Wind/Bighom Rivers 59.4 1.1 0.88 0.12 41.8
116 Wind/Bighom Rivers 68.6 2.2 1.55 0.17 162.6
117 John Day River 34.1 2.5 0.82 0.18 65
118 Yadkin River 70.1 2.4 0.43 0.1 111.5
119 Yadkin River 71.6 3.8 0.76 0.13 260.1
120 Colorado River 106.1 6.1 0.79 0.088 181
121 Colorado River 71.6 8.2 1.2 0.337 243
122 Albert 100 4.4 0.029 0.0016 0.2
123 Dessel-Herentals 35 2.5 0.037 0.0022 0.2
124 Yuma Mesa A 7.6 3.45 0.68 0.047 0.5
125 Bocholt-Dessel 35 2.5 0.107 0.0063 1.4
126 Villemsvaart 34 2.5 0.13 0.0079 1.7

(continued)
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Appendix. Continued.

NO Stream W (m) H (m) U(m/s) U∗(m/s) ε(m2/s)

127 Chicago Ship Canal 49 8.07 0.27 0.019 3
128 Irrigation 1.4 0.19 0.38 0.11 9.6
129 Irrigation 1.5 0.14 0.33 0.1 1.9
130 Puneha 5 0.28 0.26 0.21 7.2
131 Kapuni 9 0.3 0.37 0.15 8.4
132 Kapuni 10 0.35 0.53 0.17 12.4
133 Manganui 20 0.4 0.19 0.18 6.5
134 Waiongana 13 0.6 0.48 0.24 6.8
135 Stony 10 0.63 0.55 0.3 13.5
136 Waiotapu 11.4 0.75 0.41 0.061 8
137 Manawatu 59 0.72 0.37 0.07 32
138 Manawatu 63 1 0.32 0.094 22
139 Manawatu 60 0.95 0.46 0.092 47
140 Tarawera 25 1.21 0.73 0.084 27
141 Tarawera 20 1.92 0.62 0.123 11.5
142 Tarawera 25 1.38 0.77 0.091 20.5
143 Tarawera 25 1.4 0.78 0.091 15.5
144 Tarawera 25 1.57 0.83 0.096 18
145 Tarawera 85 2.6 0.69 0.06 52
146 Waikato 120 2 0.64 0.05 67
147 Miljacka 11 0.29 0.35 0.058 2.7
148 Upper Tame 9.9 0.83 0.46 0.09 5.5
149 Upper Tame 9.9 0.92 0.52 0.1 5.1
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