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ABSTRACT

Detection and Classification of a brain tumor is an important step to better understanding its mechanism.
Magnetic Reasoning Imaging (MRI) is an experimental medical imaging technique that helps the radiol-
ogist find the tumor region. However, it is a time taking process and requires expertise to test the MRI
images, manually. Nowadays, the advancement of Computer-assisted Diagnosis (CAD), machine learning,
and deep learning in specific allow the radiologist to more reliably identify brain tumors. The traditional
machine learning methods used to tackle this problem require a handcrafted feature for classification
purposes. Whereas deep learning methods can be designed in a way to not require any handcrafted fea-
ture extraction while achieving accurate classification results. This paper proposes two deep learning
models to identify both binary (normal and abnormal) and multiclass (meningioma, glioma, and pitu-
itary) brain tumors. We use two publicly available datasets that include 3064 and 152 MRI images,
respectively. To build our models, we first apply a 23-layers convolution neural network (CNN) to the first
dataset since there is a large number of MRI images for the training purpose. However, when dealing with
limited volumes of data, which is the case in the second dataset, our proposed “23-layers CNN” architec-
ture faces overfitting problem. To address this issue, we use transfer learning and combine VGG16 archi-
tecture along with the reflection of our proposed “23 layers CNN” architecture. Finally, we compare our
proposed models with those reported in the literature. Our experimental results indicate that our models
achieve up to 97.8% and 100% classification accuracy for our employed datasets, respectively, exceeding
all other state-of-the-art models. Our proposed models, employed datasets, and all the source codes are

publicly available at: (https://github.com/saikat15010/Brain-Tumor-Detection).
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

1. Introduction

quickly and disperse across the surrounding brain tissue, whereas
benign tumors tend to grow slowly. However, benign tumors can

A brain tumor is one of the deadliest illnesses which occurs due
to the sudden and unregulated brain tissue growth inside the skull.
It can be either benign or malignant. Malignant tumors can expand
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also be dangerous as their proliferation may affect surrounding
brain tissues. About 70% of the tumors are benign, and 30% are
malignant [1]. So far, more than 120 different brain tumors includ-
ing meningioma, glioma, and pituitary as the most popular ones
have been detected and identified. Among these three, menin-
gioma tumors are perhaps the most prominent primary brain
tumor in the meninges and affect the brain and spinal cord [2].
On the other hand, glioma tumors grow from glial cells called
astrocytes. The most prominent tumor of glioma is an astrocytoma,
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a low-risk tumor that suggests slow development. However,
high-risk glioma is one of the most severe brain tumors. Pituitary
is another type of tumor that is due to excessive growth of brain
cells in the pituitary gland of the brain. Therefore, early diagnosis
of a brain tumor is essential due to its deadly aspect.

According to the International Association of Cancer Registries
(IARC), there are more than 28,000 people diagnosed with brain
tumors every year just in India in which more than 24,000 people
die [3]. Another study reported that there are approximately 5,250
deaths recorded annually in the United Kingdom due to brain tumors
[4]. In the United States, the impact of brain tumors is even more sig-
nificant than in other countries. Just in 2019, about 86,970 cases of
benign and malignant brain tumors are diagnosed [5]. The radiologist
uses different experimental procedures for diagnosing brain tumors,
including biopsy, Cerebrospinal fluid (CSF) analysis, and X-ray analy-
sis. In the biopsy procedure, a small fragment of tissue is removed by
surgery. The radiologist then determines whether the tissue holds a
tumor or not. However, the biopsy process introduces many risks
including inflammation and severe bleeding. It also has just 49.1%
accuracy [6]. CSF is a colorless fluid that illustrates inside the brain.
The radiologist tests the liquid to detect a brain tumor. However,
similar to biopsy, it introduces many risks including bleeding from
the incision site to the bloodstream and perhaps an allergic reaction
after the treatment [7]. Similarly, using X-rays on the skull can lead
to an increase in the risk of cancer due to the radiation.

Nowadays, image modalities are becoming more popular for
radiologists since they are more accurate and introduce much less
risk to patients. There are different methods for capturing medical
imaging data including radiography, magnetic reasoning imaging
(MRI), tomography, and echocardiography. Among them, MRI is
the most prominent as it provides higher resolution images with-
out any radiation. MRI is a non-invasive procedure that provides
the radiologist with useful knowledge of medical image data to
diagnose brain abnormalities [8,9]. On the other hand, the
Computer-Aided Diagnosis (CAD) method is designed for detecting
brain tumors in the early stages without any human intervention.
CAD systems can produce diagnostic reports based on MRI images
and offer guidance to the radiologist [10].

The CAD process has improved dramatically using machine
learning (ML) and deep learning (DL) applications in the medical
imaging field [11-13]. Such techniques lead to better accuracy in
terms of detecting brain tumors in the CAD system. Machine learn-
ing techniques are based on feature extraction, feature selection,
and classification approaches. Different feature extraction tech-
niques, including thresholding-based, clustering-based, contour-
based, and texture-based are used for segmenting the tumor region
from the human skull [14]. Such techniques extract the features
from the MRI images where the important features are selected
through the feature selection process. Extracting features with sig-
nificant discriminatory information lead to achieving high accu-
racy [15]. However, using features extraction, it is possible to
discard important information from the original image [16].

On the other hand, DL methods address this issue by using the
original image as input[17]. In other words, they do not require
handcrafted features for classification purposes. Among DL models,
Convolutional Neural Network (CNN) provides|18] different con-
volution layers which will automatically extract features from
the images[19]. CNN performed well when working with a large
dataset which is not always easy to obtain in the medical imaging
field [20]. One method to address this issue is to use transfer learn-
ing. In transfer learning[21], a model that has been previously
trained with another large dataset related to another domain is
used for the classification purpose[22]. Such knowledge helps the
model to achieve high accuracy on a small dataset [23].

In this paper, we propose a system for automatically classifying
brain tumors based on two deep learning models. A “Fine-tuned
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proposed model with the attachment of the transfer learning based
VGG16” architecture is used for classifying normal and abnormal
brain images. Four dense layers are employed in place of the com-
pletely connected layers during the tuning process, with the last
dense layer equipped with a softmax activation function being
used to identify brain tumors. To transform the two-dimensional
matrix into a vector, we use Global Average Pooling 2D instead
of flattening layers. A total of 71 normal and 81 abnormal MRI
images are used in this classification to address the data imbalance
problem. On the other hand, we propose a “23-layers CNN” archi-
tecture for classifying multiclass brain tumors. In this work, a total
of 3064 MRI images are used for training the CNN model. A dropout
layer is applied to solve the overfitting issue. In addition, different
kernel sizes are integrated with the model to extract the complex
features from the MRI images, making the model more robust.
Our experimental results indicate that our models reach up to
97.8% and 100% prediction accuracies for our employed, exceeding
all other previous studies found in the literature.

To summarize, the main contributions of this study are as
follows:

e The “23-layer CNN” framework provides segmentation-free fea-
ture extraction techniques that do not require any handcrafted
feature extraction method relative to the conventional machine
learning methods.

o In this model, we replace the fully connected layers with four
dense layers which facilitate the tuning process.

e Data imbalance issue is solved in the Harvard Medical dataset
by taking an almost equal number of MRI slices in both normal
and abnormal tumor classes.

e The overfitting issue is solved in this study by increasing the
number of MRI slices using a data augmentation strategy and
introducing the dropout layers within both models.

e The proposed “23-layers CNN” framework performance is eval-
uated on both large and small datasets. Results indicate that our
framework is able to outperform previous studies found in the
literature.

o To prevent overfitting in a small image dataset, we merged the
“23-layers CNN” framework with the transfer learning-based
VGG16 model. Results show that the suggested technique per-
forms splendidly in the test images without experiencing any
overfitting problems.

Our proposed models, employed datasets, and all the source
codes are publicly available at: https://github.com/saikat15010/
Brain-Tumor-Detection.

2. Background

During the past decades, a wide range of machine learning and
deep learning models for detecting brain tumors have been pro-
posed. In this section, a summary of such models is presented.

2.1. Brain tumor detection with segmentation based machine learning
technique

As a large volume of medical MRI imaging data is gathered
through image acquisition, the researchers are now proposing dif-
ferent machine learning methods to identify brain tumors. These
methods are based on feature extraction, feature selection, dimen-
sionality reduction, and classification techniques. Most of those
suggested machine learning models are focused on the binary
identification of brain tumors. For example, Kharrat et al. proposed
a binary classification of brain images using a support vector
machine (SVM) and a genetic algorithm (GA) [24]. In this study,


https://github.com/saikat15010/Brain-Tumor-Detection
https://github.com/saikat15010/Brain-Tumor-Detection

Md. Saikat Islam Khan, A. Rahman, T. Debnath et al.

the features are extracted using Spatial Gray Level Dependency
(SGLDM) method. In a different study, Bahadure et al., used Berke-
ley wavelet transformation (BWT) and SVM to segment and cate-
gorized normal and abnormal brain tissues [25]. They were able
to achieve 96.5% prediction accuracy on 135 images. In a related
study, Rehman et al., used a Random Forest (RF) classifier to the
2012 BRATS dataset [26]. They compared their model to other clas-
sifiers and found that the RF classifier achieve better results in
terms of precision and specificity.

Later, for the purpose of identifying brain tumors, Chaplot et al.
used a discrete wavelet transform (DWT) as a feature extractor and
SVM as a classifier [27]. On 52 images, they achieved 98% predic-
tion accuracy. The K-nearest neighbor (KNN) classifier was then
applied by El-Dahshan et al. to 70 images, and the results showed
98.6% prediction accuracy [28]. For feature extraction and feature
reduction, they employed DWT and the principle component anal-
ysis (PCA), respectively. They also used Particle Swarm Optimiza-
tion (PSO) and SVM to select and classify textural features. To
detect different grading of glioma tumors, Chen et al., used a 3D
convolution network to segment the tumor region [29]. The seg-
mented tumors are then classified using the SVM classifier. They
also used the recursive function exclusion (RFE) method to extract
features with significant discriminatory information. More
recently, Ranjan et al., proposed a new model using 2D Stationary
Wavelet Transform (SWT) as a feature extractor, and AdaBoost and
SVM classifiers to detect brain abnormalities.

Although those techniques significantly enhanced brain tumor
detection accuracy, they still have several limitations, including:

¢ Since all these methods are based on binary classification (nor-
mal and abnormal), it is not sufficient for the radiologist to
decide the patient’s treatment concerning tumor grading.

e Those methods are based on different hand-crafted feature
extraction techniques, which are time-consuming, complex,
and in many cases not effective.

e Techniques that were used in those studies performed well with
a small amount of data. However, working with a large volume
of data required advanced classifiers.

2.2. Brain tumor detection using convolution neural networks (CNN)

CNN presents a segmentation-free method that eliminates the
need for hand-crafted feature extractor techniques. For this reason,
different CNN architectures have been proposed by several
researchers. Most of the CNN models reported multiclass brain
tumor detection, including a vast number of image data. For exam-
ple, Sultan et al., suggested a CNN model with 16 layers [30]. The
CNN model tested on two publicly available datasets. One dataset
identified tumors as meningioma, glioma, and pituitary tumors,
and the other dataset differentiated between the three grades of
glioma tumors, including Grade II, Grade IIl, and Grade IV. They
achieved 96.1% and 98.7% prediction accuracies on datasets with
3064 and 516 images, respectively. Hossain et al., used the Fuzzy
C-Means clustering technique to extract the tumor area from the
MRI images [31]. They proposed a new CNN-basedmodel and com-
pared it to six other machine learning models. The reported 97.9%
prediction accuracy outperforms prior models.

A novel hybrid CNN model was created by Ertosun et al. in a dif-
ferent study to find multiclass glioma tumors [32]. For Grade II,
Grade III, and Grade IV glioma tumors, they achieved classification
accuracy of 96.0%, 71.0%, and 71.0%, respectively. In a similar study,
Anaraki et al., identified glioma tumors with 90.9% prediction accu-
racy using CNN and GA [33]. They obtained 94.2% prediction accu-
racy for the diagnosis of pituitary, meningioma, and glioma
tumors. More recently, Ozyurt et al., suggested a combined Neu-
trosophy and CNN model. In this model, the Neutrosophy tech-
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nique is used to segment the tumor zone, the segmented portion
is extracted using the CNN model and then classified using SVM
and KNN classifiers [34]. In a different study, Igbal et al., intro-
duced a 10-layer CNN model to tackle this problem [35]. They car-
ried out their experiment on the BRATS 2015 dataset and achieved
promising results. As it is discussed here, CNN appears to be doing
well for a large image dataset. However, it also suffers from two
main limitations as follows:

e CNN model required a vast number of images for training,
which is often difficult to obtain in the medical imaging field.

e Convolutional Neural Networks (CNN) perform remarkably well
at classifying images that are quite similar to the dataset. CNNs,
on the other hand, struggle to classify images that have a slight
tilt or rotation. This can be fixed by utilizing data augmentation
to continuously introduce new variants to the image during
training. To address this problem in our research, we employed
the data augmentation technique.

2.3. Brain tumor detection through transfer learning

Transfer learning does well when the volume of data is limited
since such a model is previously trained on a large dataset (e.g., the
ImageNet database), containing millions of images. In this
approach, the pre-trained model with adjusted weights is adopted
for the classification tasks. Another benefit is that it does not
require a massive amount of computational resources since only
the model’s fully connected layers need to be trained. Due to such
advantages, different transfer learning models have been used for
diagnosing brain tumors. For instance, Talo et al., used a pre-
trained ResNet34 model to detect normal and abnormal brain
MRI images. A large-scale of data augmentation is also carried
out to reach high prediction accuracy [36]. Furthermore, for detect-
ing multiclass brain tumors, Swati et al., proposed a fine-tuned
VGG19 model [37]. Later on Lu et al., suggested a fine-tuned Alex-
Net structure to diagnose brain abnormalities [38]. In this study,
just 291 images were used. In a similar study, Sajjad et al., used
a fine-tuned VGG19 model for multiclass brain tumor detection
and conducted it on 121 images [39]. They achieved an overall pre-
diction accuracy of 87.4% before the data augmentation. Finally, by
applying the data augmentation technique, they increased the
accuracy to 90.7%. Despite all the benefits, there are several short-
comings associated with transfer learning which are listed below:

e Pre-trained models fail to obtain satisfactory results when
training on imbalance datasets. They are more biased towards
classes with a larger number of samples [36][38][56].

e Proper fine-tuning is required in pre-trained models. Otherwise,
the model will fail to achieve satisfactory results [37][39].

Although previous studies achieved significant improvement in
brain tumor diagnosis, there is still room for improvement. This
research mainly concentrated on overcoming those shortcomings
by fine-tuning the deep learning models and improving forecast
accuracy.

3. Methodology

Our proposed block diagram for automated binary and multi-
class brain tumor detection is shown in Fig. 1. The architecture
starts with image extraction and loading labels from the dataset.
The extracted images then need to be preprocessed before splitting
them into training, validation, and test set. Finally, our proposed
“23-layers CNN” and the “Fine-tuned VGG16” architectures are
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Fig. 1. Proposed architecture for brain tumor detection..

applied to the employed datasets. In the following sections, the
block descriptions of our proposed methods are discussed in detail.

3.1. Dataset

In this study, two different datasets are used. The first one (re-
ferred to as dataset 1 in this article) is a publicly available CE-MRI

No
Tumor
Harvard
Medical
Dataset
Tumor
Menin-
gioma
Figshare
Dataset
Glioma
Pituitary

Figshare dataset [40]. The data was collected from General Hospital,
Tianjin Medical University, and Nanfang Hospital (China) during
2005 to 2010. This dataset contains a total of 3064 T1- weighted
contrast MRI slices from 233 patients diagnosed with one of the
three brain tumors, including meningioma, glioma, and pituitary
(as shown in Fig. 2). The MRI images used in this dataset have three
different views including axial, coronal, and sagittal.

Fig. 2. Different samples of brain tumors. Glioma, Metastatic adenocarcinoma, Metastatic bronchogenic carcinoma, Meningioma, and Sarcoma tumors from left to right in

Harvard medical dataset. The tumor presents within the rectangle.
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The second dataset (referred to as dataset 2 in this article) is
collected by the Harvard repository [41]. The dataset includes a
total of 152 T1 and T2-weighted contrast MRI slices. Among them,
71 slices are healthy images that do not contain any tumor, and a
total of 81 are abnormal images containing a tumor. The abnormal
brain slices have five different types of tumors, including Glioma,
Metastatic adenocarcinoma, Metastatic bronchogenic carcinoma,
Meningioma, and Sarcoma (as shown in Fig. 2). Tables 1 and 2
include detail information of these two datasets.

3.2. Data preprocessing

We employ several preprocessing techniques before feeding the
images into our classifiers. For instance, all the MRI images in the
Figshare dataset are in.mat type (defined in Matlab). Hence, to read
the image, we require to expand the dimension of the image. After
that, we transform all the images into NumPy arrays (available in
python) so that our model can take up less space. Before splitting
the dataset, we have shuffled the data so that our model can train
on unordered data. After shuffling the data, we divide the dataset
into three sections including train, test, and validation. Approxi-
mately 70% of the data is used for training, and a further 30% is
used for validation and testing purposes (see Table 4).

On the other hand, all the MRI images in the Harvard Medical
dataset are in.GIF type. To process the dataset, we have converted
the MRI images to.JPEG type. To reduce the image’s dimensionality,
we down-size the original image from 256 x 256 x 1 to
128 x 128 x 3. We replicate the pixel intensity value three times
to create three channels according to the pre-trained VGG16 archi-
tecture input size. Although only 152 images are available in data-
set 2, we have conducted several data augmentation techniques for

Table 1
Number of MRI slices in dataset 2.

Brain Tumor Class Number of Slices
Normal Normal Image 71
Abnormal Glioma 29
Metastatic audenocarcinoma 8
Metastatic bronchogenic carcinoma 12
Meningioma 16
Sarcoma 16
Total 152
Table 2

Number of MRI slices in dataset 1.

Tumor Class Number of Patients Number of MR Slices
Meningioma 82 708
Glioma 91 1426
Pituitary 60 930
Total 233 3064
Table 3
Data augmentation strategy used in this study.
Serial Parameter Value
1 shear range 0.2
2 zoom range 0.2
3 rotation 90
4 width shift range 0.1
5 height shift range 0.1
6 vertical_flip True
7 horizontal_flip True
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Table 4
MRI slices distribution for training validation and testing purposes.
Dataset Brain Tumor Type  Training  Validation  Testing
Harvard Medical Normal 357 42 14
Abnormal 406 49 16
Figshare Meningioma 502 56 150
Glioma 1032 115 279
Pituitary 674 75 181

solving the overfitting issue, increasing the dataset size, and mak-
ing the model more robust [42,49,50]. Further descriptions of the
data augmentation technique are provided in Table 3. As a result,
the number of images increased from 152 to 884 after performing
data augmentation. Additionally, we have used 70% of the data to
train the model, and a further 30% of the data were used to validate
and test the proposed method. (see Table 4).

3.3. Proposed 23-layers CNN architecture

Fig. 3 demonstrates the proposed “23-layers CNN” architecture
used to classify different tumor types, including meningioma,
glioma, and pituitary. In the proposed architecture, we take MRI
slices as input, process the slices in different layers, and differenti-
ate them from one another. In this study, a total of 23 layers are
used to process the slice. Below is the description of each layer:

One of the predominant building blocks of the CNN model is the
convolutional layer. It is a mathematical method that performs a
dot product between two matrices to construct a transformed fea-
ture map. One matrix relates to the kernel, while the other pre-
sents the pixel intensity values of the original image. The kernel
is used to move vertically and horizontally over the original image
to extract properties such as borders, corners, shapes, etc. When
we move further into the model, it begins to find more better fea-
tures like blurring, sharpening, texturing, and gradients direction
[43]. A total of four convolutional layers with different kernel sizes,
including 22 x 22,11 x 11,7 x 7, and 3 x 3, are included in the
“23-layers CNN” architecture. We move the filter 2 pixels at a time
using stride two over the input matrix. For padding, we preserve
the original size of the image by applying zero paddings, to avoid
losing the details of the image. The following equation describes
the convolutional layer:

C(h,d) = (kxf)(h,d) = > k(h —i,d —j)f(i.j) (1)
j

i

where, K is the image with a size of (h, d), and (i, j) corresponds to
the kernel size value with an f-number of filters. Fig. 4 illustrates
the convolutional approach to generate the feature map.

As an activation function, we use the Rectified Linear Unit
(ReLU) which performs non-linear operations within the convolu-
tional layer. The RelU activation function helps to solve the gradi-
ent vanishing problem using the backpropagation process [44]. The
RelU is defined as follows:

f(z) = max(0,2) 2)

The ReLU activation function is graphically presented in Fig. 5.

In the next level, Pooling layers help to minimize the dimension
of the transformed feature map. In this architecture, a total of 3
pooling layers are used. Different pooling layers are available in
the CNN model, including max pooling, min pooling, and average
pooling. We choose max pooling with varying sizes of the pool,
such as 4 x 4 and 2 x 2, to retrieve the most prominent features
from the transformed feature map [45]. Fig. 7 illustrates the
max-pooling procedures where the feature map is in 4 x 4 blocks.
As shown in this figure, max-pooling generates the most dominant
features in every 2 x 2 blocks.
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Fig. 4. Convolution operation on 5 x 5 image using 3 x 3 kernel.
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Fig. 5. ReLU operation.
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Fig. 6. Dropout layer.

Batch normalization also plays a vital role in designing an accu-

rate CNN model. It is used to regulate the model and enables a
higher learning rate. It also helps to re-scale all the data to normal-
ize the input data. Here we use a total of 7 batch normalization lay-
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Fig. 7. Max Pooling procedure.

ers to build our model. Before feeding the data into a fully
connected layer, GlobalAveragePooling2D is used to convert
multi-dimensional data into a one-dimensional vector. It takes
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the average output of each convoluted feature map from the previ-
ous layer and build a one-dimensional vector. Next, the one-
dimensional vector is fed into the fully connected layer as the
input. Additionally, we employ a total of four fully connected lay-
ers to construct our model, with the classification taking place in
the final fully connected layer. We have used softmax function as
our activation function in the output layer of our proposed model,
that predicts a multinomial probability where the probabilities of
each value are proportional to the relative scale of each value in
the vector. In the softmax activation function, the outcome value
is between 0 and 1 which is defined as follows:

exp (3)
3 exp (x)
i=1

One of the most challenging issues in building an accurate deep
neural network is overfitting. It occurs when the model is over-
trained on the training data but has a negative impact on the
new data [46]. To avoid overfitting, we use the dropout layer before
the classification layer. In the “23-layers CNN” architecture, a drop-
out of 20% is used. Hence, only 80% of the features will be trained
on every iteration. Fig. 6 illustrates the dropout procedure.

softmax(z); =

3)

3.4. Fine-tuning for proposed CNN

A fine-tuning approach not only replaces the pre-trained mod-
el’s layers with a new set of layers to train a given dataset, it also
uses backpropagation to fine-tune all or part of the kernels in the
pre-trained convolutional layer. In this study, the Fine-tuned
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CNN pre-trained model is used to identify whether or not the
tumor is located inside the image. As our pre-trained model, we
use VGG16, which was first introduced in 2014 and became the
first runner-up in the ILSVRC competition [47]. When a model fits
the training set too well, then overfitting happens. The model thus
has a hard time generalizing to new data that are not in the train-
ing set. In the case of dataset 2, since the training dataset is small, it
is very likely to overfit complex models. To address this issue, we
combine the reflection of our proposed “23-Layers CNN” architec-
ture with the “transfer learning based VGG16 architecture”. The
VGG16 architecture was fine-tuned to be integrated with the
reflection of the proposed model with Harvard Medical dataset
(as presented in Fig. 8).

Here we use all 13 convolution layers from the VGG16 architec-
ture along with the reflection of the proposed architecture with
kernel size 3 * 3 and 5 total max-pooling layers with stride 2. In
all convolution layers, the ReLU activation function is used. In this
study, different filter sizes are used to fine-tune the fully connected
layers, including 1024, 1024, 512, and 2. A dropout layer which is
placed between two dense layers is also used for the fine-tuning
process to overcome the over-fitting problem. Finally, in the classi-
fication stage, we use a CNN model and tune its parameters. We
also investigate more about hyper-parameters such as padding,
zero-padding, strides, feature map, batch size, and learning rate
to build a best-suited model.

4. Experimental setup

The proposed models are implemented in TensorFlow, with
Keras in Python. The implementation was performed on Google

VGGI6 with
23 Layer
Proposed

Model
(without
Dense Layers)

Dense, 1024

Dense, 1024

Dense, 1024

Fig. 8. Fine-tuned Proposed architecture with the attachment of “transfer learning based VGG16 architecture”..
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Fig. 9. Training progress for study I: (a) accuracy value during training and validation process (preferred higher value), and (b) loss value during training and validation

process (preferred lower value).
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Colab which provides free online cloud service along with 15 GB of
free space in google drive.

4.1. Training and parameter optimization

For Study I (using dataset 1), Fig. 9 demonstrates both training
and validation steps for the “23-layers CNN” architecture. The
hyper-parameter optimization used for this training is presented
in Table 5. As our loss function, we select sparse categorical
cross-entropy. We also study different batch-sized optimizers to
train the model. Among them, the Adam optimizer with batch size
32 obtained the best performance. We observe that the optimal
convergence for the model depends on the initial learning rate of
alpha. We have to select alpha very carefully because CNN does
not converge well if alpha is very high. If alpha is very small, then
CNN will take more time to converge. Here we select the alpha as
0.0001 to avoid these issues.

For each epoch, Fig. 9(a) shows both training and validation
progress. After the 29th epoch, the CNN model achieves 100% pre-
diction accuracy with overall validation accuracy of 97.0%. Consid-
ering the consistency of the results (as shown in this figure), we
can conclude that the “23-layers CNN” architecture successfully
avoids the overfitting problem. Fig. 9(b) shows that the loss value

Table 5
Optimization of Hyper-Parameters for Study I and Study II.
Model Hyper- setting
parameters
CNN Loss function sparse_categorical
_crossentropy
Optimizer adam
function
Metrics accuracy
Epochs 80
Batch_size 32
Learning_rate 0.0001
CNN- Pretrained Loss function categorical _crossentropy
Model Optimizer adam
function
Metrics accuracy
Epochs 40
Batch_size 10
Learning_rate 0.0001
Confusion Matrix
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Fig. 10. CNN model’s performance a) confusion matrix,
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decreases, and right after the 29th epoch, it hits zero for the train-
ing phase. Due to the limited batch size, some fluctuations
occurred in the curve for the validation process. However the insta-
bility vanished after the 43rd epoch, and the loss curve approaches
to zero.

5. Performance metrics

To evaluate the performance of “23-layers CNN” and “Fine-
tuned VGG16” architectures and compare our results with previ-
ous studies, we use different evaluation metrics including, accu-
racy, precision, recall, false-positive rate (FPR), true negative rate
(TNR), and F1-score. These metrics are calculate as follows:

TP + TN

AccUracy = 15 TN T FP 1+ FN @
Precision = TPTifFP (5)
Recall = TPZ% (6)
FPR = TNF—EFP (7)
TNR = TNTifFP (8)
F1 — score — 2 x recall x precision ()

recall + prcision

Where TP stands for true positive, FP stands for false positive,
TN stands for true negative, and FN stands for false negative.

6. Results

The confusion matrix and the ROC curve for the Figshare dataset
are given in Fig. 10. In the Figshare dataset, a “23-layers CNN”
architecture was used for the prediction purpose. It can be
observed from Fig. 10 that a total of 140, 270, and 180 MRI slices
are correctly classified for meningioma, glioma, and pituitary
tumors, respectively. While only 20 MRI slices are misclassified

Receiver Operating Characteristic Curve
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False Positive Rate
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by the proposed architecture. The other performance metrics,
including accuracy, precision, recall, FPR, TNR, and F1-score, are
presented in Table 6. As shown in Table 6, the prediction accuracy
of 96.7%, 97.2%, and 99.5% are achieved for meningioma, glioma,
and pituitary tumors, respectively. Finally, the overall prediction
accuracy achieved on the Figshare dataset is 97.8%. For the other
performance metrics, we achieve an average precision of 96.5%, a
recall of 96.4%, and an Fl-score of 96.4%. The false-positive rate
is approximately 0, and the true negative rate appears to be close
to 1, which demonstrates that the “23-layers CNN” architecture
can achieve excellent efficiency on the Figshare dataset.

From the ROC curve, we can observe that the area value is 0.989,
which indicates the consistency and generality of our model.

6.1. System validation

We also apply our proposed “23 layers CNN” architecture to the
Harvard Medical dataset. Here we achieved more than 85% training
and validation accuracy on this dataset. However, the testing accu-
racy is less than 55%, indicating an overfitting issue occurred while
training the model. Hence, to validate the system’s performance
and for solving the overfitting issue, the generalization technique
was applied. As it was discussed earlier, to build this model, we
combine VGG-16 model with some reflection of our proposed
“23 layers CNN” architecture as shown in Fig. 8. In this way, we
address the overfitting issue for the small dataset.

Fig. 14 demonstrates both training and validation process for
the “Fine-tuned VGG16” architecture. The hyper-parameter opti-
mization used for the training process is presented in Table 5. At
first, we have selected a minimal batch size of 10 since dataset 1
consists of only 152 MRI images. Additionally, we used categorical
cross-entropy as a loss function, which is used in both single label
and multi-class classification problems. We can observe from
Fig. 14(a) that, right after the 33rd epoch, 100% training accuracy
is achieved. As shown in Fig. 14(b), the loss value starts decreasing
and after the 33rd epoch, it approaches to zero for both training
and validation sets.

The confusion matrix and the ROC curves for dataset 1 are given
in Fig. 13. In this dataset, a “Fine-tuned VGG16” architecture is
tested on 30 images. Among them, 14 images contain no tumor,
and 16 images include tumors. Interestingly, no MRI slices are mis-
classified by our proposed architecture. As shown in Fig. 13 all 14
and 16 MRI slices are correctly classified for normal and abnormal
brain images, respectively. The other performance metrics are
shown in Table 7. As shown in this table, we achieve an average
accuracy of 100%, 100% precision, recall of 100%, and F1-score of
100%. The FNR is 0, and the TNR is 1 for dataset 2. From the ROC
curve, we can also observe that the area under the curve value is
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1, which indicates the model’s consistency and generality. The per-
formance of the proposed framework on both datasets are given in
Fig. 11 and 12. We have also tested our proposed method using dif-
ferent configurations. Table 9 shows the performance of various
activation functions and loss functions when combined with the
proposed 23-layers CNN architecture. Among the loss functions,
sparse categorical cross entropy performed well compared to the
other two loss functions. Binary cross entropy, however, performed
poorly. It is understandable that binary cross entropy will perform
poorly when categorizing multiclass brain tumor grades because it

Dataset-1 results
100

97
96
95
94
93
92
b
90

Meningioma Tumor Class Glioma Tumor Class Pituitary Tumor Class

mAccuracy mPrecision mRecall

Fig. 11. Performance of the proposed method on Dataset-1.
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Fig. 12. Performance of the proposed method on Dataset-2.

Table 6
The results obtained using the CNN model on dataset1.
Metrics Tumor class TP TN FP FN Accuracy Precision Recall FPR TNR F1-score
Figshare Dataset Meningioma 140 450 10 10 96.7% 93.3% 93.3% 0.021 0.978 0.933
Glioma 270 323 97.2% 96.8% 97.1% 0.027 0.972 0.969
Pituitary 180 427 1 2 99.5% 99.4% 98.9% 0.002 0.998 0.991
Average Score 97.8% 96.5% 96.4% 0.016 0.983 0.964
Table 7
The results obtained using the reflection of the proposed CNN model on dataset2.
Metrics Tumor class TP TN FP Accuracy Precision Recall FPR TNR F1-score
Harvard Medical Dataset No Tumor 14 16 0 100% 100% 100% 0 1 100%
Tumor 16 14 0 100% 100% 100% 0 1 100%
Average Score 100% 100% 100% 0 1 100%




Md. Saikat Islam Khan, A. Rahman, T. Debnath et al.

Confusion Matrix

Computational and Structural Biotechnology Journal 20 (2022) 4733-4745

Receiver Operating Characteristic Curve

-16 10
AUC=1.00
-14
08
27 g
& e
K% c P 06
g2 2
2 @
Py )
8 £ os
3
4
75: 02
2
00 baseline
' T T T T
Abnormal Normal 00 02 04 06 08 10
Predicted labels False Positive Rate
(a) (b)
Fig. 13. Fine-tuned model’s performance a) confusion matrix, b) ROC curve.
10 P e Y vou | +— train loss
P, Voo 7V, \
FNAL \(7”\;/ .\/ 12 +— val loss
09 A \( 4 ‘
ﬂ ﬁ/ \ / 10 11
-~ J \
4 \ W
¢ 08 f ’,/ i v \\
= \
® G AV g 08 -,
> \/ Y ® \ / \
S | * > \v" \ r
3 07 \ v 06 \ A
o | S A \‘ 4
| |
< 06 ‘ 04 % X
/ ’# 4 \‘ / ¥ '\ /
| -
05 { 02 S "/ A\ "\ \/
FN +— train acc ) INTA *’\ / \\’-_ \
04 ¢ —*— val acc 00 ; ¥ I Nt aass
0 S 10 15 20 P 30 35 40 0 S 10 15 20 by 30 33 40
Epochs Epochs

(b)

Fig. 14. Training progress for study I I: (a) accuracy value during training and validation process (preferred higher value), and (b) loss value during training and validation

process (preferred lower value).

worked well for the binary class data. The categorical cross entropy
produced notable outcomes by obtaining greater than 90% accu-
racy. However, its performance was still inadequate to that of cat-
egorical cross-entropy. Additionally, we have employed three
activation functions in this study where the softmax activation
function and the sparse categorical cross-entropy loss function
achieved more than 97% accuracy, outperforming all the other
configurations.

7. Discussion

In this study, we proposed two individual models to diagnose
binary (normal and abnormal) and multiclass (meningioma,
glioma, and pituitary) brain tumors (see Fig. 1). The proposed mod-
els are compared to the existing state-of-the-art models found in
the literature, which is illustrated in Table 8. Those models used
the same datasets and tumor types with different architectures.
It is evident from Table 8 that our proposed “23-layers CNN” and
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“Fine-tuned CNN with the attachment of transfer learning based
VGG16” architectures demonstrate the best prediction perfor-
mance for the identification of both binary and multiclass brain
tumors compared to other methods found in the literature.

For the Harvard Medical Dataset (dataset 2) and Figshare data-
set (dataset 1), we have obtained 100% and 97.8% prediction accu-
racies, respectively. However, there are other advantages to our
proposed model over the existing models found in the literature.
For example, most of the methods require handcrafted feature
extractor methods [9][27][28] [51], which may not be very effec-
tive when dealing with a large number of images. While the “23-
layers CNN” and “Fine-tuned CNN with VGG16” architectures are
segmentation-free and do not require handcrafted features.

Previously, Anaraki et al., introduced GA with CNN to predict
brain tumors [33]. GA, however, does not always demonstrate good
precision when working with CNN. GA is also a computationally
expensive model. In another research, Afshar et al., used CapsNets
architecture to focus on both the tumor and its surrounding
region [48]. However, defining two objects at the same time can
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Table 8
Comparison of the proposed framework with the other state of art models
Method Number of images Classifier Classification type Accuracy
Shanaka et al. [52] 3064 Deep Learning + Active Contouring Multi class 92
Momina et al. [53] 3064 Mask RCNN + ResNet-50 Multi class 95.9
Francisco et al. [54] 3064 CNN Multi class 97
Emrah et al. [55] 3064 CNN Multi class 92.6
Abiwinanda et al. [58] 700 CNN Multi Class 84.1
Gudigar et al. [9] 612 PSO + SVM Binary Class 97.4
El-Dahshan et al. [28] 70 KNN Binary Class 98.6
Sultan et al. [30] 3064 CNN Multi Class 96.1
Anaraki et al. [33] 3064 CNN + GA Multi Class 94.2
Afshar et al. [48] 3064 CapsNets Multi Class 90.8
Chaplot et al. [27] 52 SVM Binary Class 98.0
Swati et al. [37] 3064 VGG19 Multi Class 94.8
Sajjad et al. [39] 3064 VGG19 Multi Class 94.5
Cheng et al. [51] 3064 SVM and KNN Multi Class 91.2
Proposed Method 152 Fine-tuned VGG16 Binary Class 100
Proposed Method 3064 CNN Multi Class 97.8
Table 9 To classify the binary class, previous studies used an imbalance
Performance of different configurations on the Figshare dataset. dataset [9][27][28]. We addressed this issue by using almost the
Method Loss Function Activation  Accuracy same number of normal and .abnormal brain MRI images. Be§1des,
Function  on Figshare using the CNN model in the Figshare dataset, Sultan et al., achieved
Dataset very promising results. However, there was still room for improve-
23-Layer CNN  Binary Cross Entropy sigmoid 8% ment by adding more layers into the network. A comparison
23-Layer CNN  Binary Cross Entropy Tanh 80% between the proposed framework and all the previous studies
23-Layer CNN  Binary Cross Entropy Softmax  84% found in the literature mentioned above are shown in Fig. 15.
23-Layer CNN  Categorical Cross Entropy Sigmoid 89%
23-Layer CNN  Categorical Cross Entropy Tanh 91% oL
23-Layer CNN  Categorical Cross Entropy Softmax  92% 7.1. Limitations and future work
23-Layer CNN  Sparse Categorical Cross Entropy  Sigmoid 94%
23-Layer CNN  Sparse Categorical Cross Entropy ~ Tanh 95% Although our proposed models achieved promising classifica-
23-Layer CNN  Sparse Categorical Cross Entropy  Softmax 97.8%

compromise the results for each individual problem despite their
similarities. Swati and Sajjad et al., both applied the pre-trained
VGG19 model to the Figshare dataset and obtained nearly the same
performance [37][39]. However, they did not implement any drop-
out or regularization strategy to solve the issue of overfitting.

In another study, Shanaka et al. segmented the tumor region
using the active contour approach [52]. Active contour uses energy
forces and limitations to extract the crucial pixels from an image
for additional processing and interpretation. However, there are
drawbacks that could occur while using active contouring in seg-
mentation, such as getting stuck in local minima states while train-
ing or overlooking tiny details while minimizing the energy
throughout the whole path of their contours. Momina et al. applied
Mask RCNN along with the ResNet-50 model to locate the tumor
region [53]. They have achieved 95% classification accuracy. How-
ever, more sophisticated object detection algorithms, such as the
Yolo model and the Faster RCNN model, perform much better than
the Mask RCNN. For instance, Eko et al. outperformed Mask RCNN
by employing the Yolo model, which has a mAP rate of 80.12%,
when segmenting the head and tail of fish [57].

Later on, Francisco et al., and Emrah et al. both used CNN model
to obtain detection accuracy of more than 90% [54] [55]. However,
both models are computationally expensive and do not offer a
method for system validation. Since a specific model may work
well on one dataset while having detrimental effects on another,
it is crucial to apply system validation techniques. In a similar
study, Abiwinanda et al. proposed a CNN model to categorize
tumor classes using only 700 MRI images from the Figshare dataset
[58]. They also did not employ any data augmentation techniques
in order to increase the amount of MRI images. As a result, they
only achieved a classification accuracy of 84%, which is quite low
compared to similar studies.

4743

tion outcomes, there are still a number of issues that can be
resolved in the future work. For example, one of the key difficulties
in using the deep learning-based automated detection of brain
tumor is the requirement for a substantial amount of annotated
images collected by a qualified physician or radiologist. In order
to make a robust deep learning model, we would require a large
dataset. To the best of our knowledge, the majority of contempo-
rary machine learning tools for medical imaging have this con-
straint. Although the majority of earlier studies are currently
making their datasets available to the public in an effort to address
this problem. Sill, the amount of properly and accurately annotated
data is still very limited.

Adopting zero-shot, few-shot, and deep reinforcement learning
(DRL) techniques could help us to tackle this problem in the future.
Zero-shot learning has the capacity to build a recognition model for
unseen test samples that are not labeled for training. Zero-shot
learning can thereby address the issue of the tumor classes’ lack
of training data. Additionally, a deep learning model can learn
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Fig. 15. Performance of the proposed method compared to the latest research..
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information from a small number of labeled instances per class
using few-shot learning technique. On the other hand, DRL can
reduce the need for precise annotations and high-quality images.

Another drawback of this study is that although the proposed
method achieved a significant performance on two publicly avail-
able datasets, the work is not validated on actual clinical study. It
is the case for almost all of the models reviewed in this study as
well. Our aim is to test our model on actual clinical data when
thy become available. In this way, we can directly compare the per-
formance of our proposed models with experimental approaches.
Another future direction is to use more layers or other regulariza-
tion techniques to work with a small image dataset using CNN
model.

8. Conclusion

This research introduces two deep learning models for identify-
ing brain abnormalities as well as classifying different tumor
grades, including meningioma, glioma, and pituitary. The “pro-
posed 23-layer CNN” architecture is designed to work with a rela-
tively large volume of image data, whereas the “Fine-tuned CNN
with VGG16” architecture is designed for a limited amount of
image data. A comprehensive data augmentation technique is also
conducted to enhance the “Fine-tuned CNN with VGG16” model’s
performance. Our experimental results demonstrated that both
models enhance the prediction performance of diagnosis of brain
tumors. We achieved 97.8% and 100% prediction accuracy for data-
set 1 and dataset 2, respectively outperforming previous studies
found in the literature. Therefore, we believe that our proposed
methods are outstanding candidates for brain tumor detection.
Our proposed models, employed datasets, and all the source codes
are publicly available at: https://github.com/saikat15010/Brain-
Tumor-Detection.
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