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ABSTRACT
River streamflow is an essential hydrological parameters for optimal water resource manage-
ment. This study investigates models used to estimate monthly time-series river streamflow data
at two hydrological stations in the USA (Heise and Irwin on Snake River, Idaho). Five diverse
types of machine learning (ML) model were tested, support vector machine-radial basis func-
tion (SVM-RBF), SVM-Polynomial (SVM-Poly), decision tree (DT), gradient boosting (GB), random
forest (RF), and long short-term memory (LSTM). These were trained and tested alongside a con-
ventional multiple linear regression (MLR). To improve the estimation and model performance,
hybrid models were designed by coupling the models with wavelet theory (W). The models per-
formance was assessed using root mean square error (RMSE), mean absolute error (MAE), coef-
ficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and Willmott’s index (WI). A side-
by-side performance assessment of the stand-alone and hybrid models revealed that the cou-
pled models exhibit better estimates of monthly river streamflow relative to the stand-alone
ones. The statistical parameter values for the best model (W-LSTM4) during the test phase was
RMSE = 36.533m3/s, MAE = 26.912m3/s, R2 = 0.947, NSE = 0.946, WI = 0.986 (Heise station),
and RMSE = 33.378m3/s,MAE = 24.562m3/s, R2 = 0.952, NSE = 0.951,WI = 0.987 (Irwin station).
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1. Introduction

Precise estimation of streamflow time series data for
rivers is one of the most important issues for opti-
mal management of surface water resources; in partic-
ular, making appropriate decisions when dealing with
floods and droughts. The river streamflow phenomenon
appears complex, non-stationary, and non-linear (Adnan
et al., 2019; Bayazit, 2015; Meira Neto et al., 2018);
because the river streamflow time series data can be
influenced by a variety of parameters such as temper-
ature, rainfall, and evaporation, these render it nearly
impossible to estimate accurately. However, in the age
of multi-threaded parallel computing, it is now possible
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to deploy powerful mathematical and machine learning
approaches to the issue.

In general, two different are used, these are conceptual
(physical) models, and machine learning (data-driven).
These are both proposed, and used by hydrologists, for
estimating river streamflow (He et al., 2014; Reis et al.,
2021; Zhang et al., 2016). Conceptual paradigms are
usually complex models that require many hydrological
and climatological parameters as inputs, many of which
may be unavailable for certain locations. In addition,
the inherent complexity of streamflow processes make
it challenging to use physical models; accordingly, in
recent years, researchers have shown increasing interest
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in machine learning models to estimate these time series
solutions (Kalra et al., 2013; Mehdizadeh & Sales, 2018;
Qu et al., 2021; Rasouli et al., 2012; Sahour et al., 2021;
Wang et al., 2019; Xiang &Demir, 2020; Zhu et al., 2020).
The most important reason for using machine learn-
ing, is that these models can estimate target parameters
using relatively limited data series, without the need to for
additional data regarding the (potentially) complex rela-
tionships between inputs and outputs (Deng et al., 2021;
Deng et al., 2022; Singh et al., 2022).

More recently, hybrid models have received atten-
tion from researchers for river streamflow estimation.
For example, Kilinc and Haznedar (Kilinc & Haznedar,
2022) proposed a hybrid approach that integrated long
short-term memory (LSTM) and a genetic algorithm
(GA) for streamflow estimation of the Euphrates River,
Turkey. Particle swarm optimization (PSO) was coupled
with LSTM by Kilinc (Kilinc, 2022), to develop a hybrid
PSO-LSTM for forecasting the streamflow of the Orontes
River basin, Turkey. Feng et al. (2021) optimized the
parameters of an LSTM with a PSO algorithm for runoff
prediction in the Jiulong River Basin, China. Huang
et al. (2014) successfully predicted monthly streamflow
at three hydrometric stations in China, using a hybrid
empirical and decomposition-support vector machine
(EMD-SVM). Wang et al. (2015) increased the fore-
casting accuracy of a time series model using an auto-
regressive integrated moving average (ARIMA) variant
that also leveraged ensemble empirical mode decompo-
sition (EEMD). This was able to predict the runoff values
of three reservoirs, China. Wang et al. (2013) simulated
the rainfall-runoff process of a catchment in the Yellow
River, China, by coupling both a PSO and EEMD on the
stand-alone SVM. A modified form of EMD was used
by Meng et al. (2019), where they combined EMD and
SVM to predict streamflow in theWei River Basin, China.
The performance of his model was then compared with
the stand-alone SVM and ANN. Zhao and Chen (2015)
developed two hybrid models via coupling the EMD and
EEMD on an auto-regressive (AR) model, for forecasting
runoff of from the Fenhe River basin, China. Rezaie-Balf
et al. (2019) integrated EEMD into multivariate adaptive
regression splines (MARS) and M5Tree models, to fore-
cast the daily river streamflow’s of two river basins in
SouthKorea. Fu et al. (2020) tested the performance of an
LSTM for simulating the daily streamflowof theKelantan
River, Malaysia.

As alternative approach uses bio-inspired algorithms.
For example, Yaseen et al. (2020) used PSO, GA, and
differential evolution (DE) to form a hybrid adaptive
neuro-fuzzy inference system-based models to forecast
the streamflow of the Pahang River, Malaysia. Al-Sudani
et al. (2019) integrated the DE algorithm into a MARS

system to estimate the streamflow of the Tigris River,
Iraq. Liu et al. (2020) also proposed a hybrid model,
by coupling the EMD and Encoder Decoder LSTM to
complete a streamflow prediction of the Yangtze River,
China. A new model was proposed by Hadi et al. (2019)
using a combination of extreme gradient boosting (XGB)
and extreme learning machine (ELM); then compared
its capabilities with stand-alone models for streamflow
predictions of the Goksu-Himmeti basin, Turkey. Aside
from river streamflow estimation, other types of hybrid
model have been also used by scholars in various fields,
such as sediment yield estimation (Meshram et al., 2019),
shieldmovement prediction (Lin et al., 2022), and rainfall
simulation (Chen et al., 2022).

It is already well documented, that coupled mod-
els can demonstrate improved performance when com-
pared with stand-alone ones. This remains true for
many types of time series estimation, not just hydro-
logical parameters such as this study. One method of
data pre-processing is to use wavelet transforms. This is
an approach that has become widely used to generate
wavelet-based hybrid models. One of the main advan-
tages of this method is that wavelets offer simultaneous
localization in both the time and frequency domains. The
othermain advantage is that it applies a fast wavelet trans-
form, which is computationally quick. Wavelets are also
able to separate fine details within a signal in a manner
similar to an enhanced Fourier transform (Sifuzzaman
et al., 2009). Wavelet transforms are an efficient math-
ematical transformation for signal processing and data
pre-processing because they can transform a signal into
a set of basic signal functions. The mother wavelet func-
tions similarly and can be used for signal analysis, tech-
niques to achieve this include Daubechies, Symlet, Haar,
etc. Utilization of the wavelet theory depends on a num-
ber of basic principles, for example observational time
series must first be decomposed into several sub-series,
and then the generated sub-series need to be consid-
ered as new inputs for the machine learning model being
used.

With reference to river streamflow data, for the first
part of this study, the monthly river streamflow time
series for the Heise and Irwin hydrometric stations
located on the Snake River, USA, were estimated using
five machine learning-based models. These were sup-
port vector machine-radial basis function (SVM-RBF),
SVM-Polynomial (SVM-Poly), decision tree (DT), gra-
dient boosting (GB), random forest (RF), and long short-
term memory (LSTM). A conventional multiple linear
regression (MLR) is also commonly applied to most pre-
dictive models (Adnan et al., 2019; Kadam et al., 2019).
These models are foundational, but that also makes
them controversial. Various methods are still debated,
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such as SVM being used for non-stationary streamflow
prediction, (Adnan et al., 2021;Meng et al., 2019), RFwas
implemented in (Latif & Ahmed, 2021), GB was used in
(Ni et al., 2020), and LSTM being used in (Dong et al.,
2020) for streamflow prediction.

Wavelet theory is a valuable pre-processing technique,
especially when hybridized with the aforementioned
stand-alonemodels. Its primary role, is improvingmodel
performance. A survey of published literature on estimat-
ing river streamflow time series models, shows that there
are still few studies reporting or evaluating the perfor-
mance of thesemodels, particularly those that are hybrids
and using wavelet theory.

2. Materials andmethods

2.1. Case study and data used

Monthly river streamflow data from two gauging hydro-
metric stations at Heise and Irwin on Snake River, USA,
were used for this study. The data was obtained from
the United States Geological Survey (USGS) and is avail-
able at https://waterdata.usgs.gov/nwis/. Snake River is
one of the largest rivers in the Pacific Northwest region
of the USA. The drainage basin of Snake River covers
six states, however both selected stations for this study
are located in Idaho. Heise station (USGS 13037500) is
at latitude 43°36′45′′ and longitude 111°39′′36′′, with a
drainage area of 5,752 square miles; and Irwin station
(USGS 13032500) is at lat. 43°21′′03′′, long. 111°13′08′′,
and is 5,225 square miles. The map in Figure 1 shows the
relevant geographical locations.

The data used in this study utilized monthly river
streamflow values from Heise and Irwin stations for the
periodOct. 1960 to Sep. 2020 (i.e. 720 data). The data was
divided into training and testing datasets. In the appli-
cations, data from Oct. 1960 to Sep. 2005 (i.e. 540 data)
at both stations were utilized as a training set, while the
remaining data between Oct. 2005 and Sep. 2020 (i.e. 180
data) constituted the model. Table 1 is an overview of
some statistical information regarding the data for both
locations, during both the training and testing phases. In
general, similar statistics can be observed for the training
and testing stages. Monthly river streamflow data for the
sites are shown in Figure 2.

2.2. Methodology

Wavelet (W) theory was used as a noise removal system
for the data. This was implemented as a pre-processing
technique for the applied machine learning models. The
models used were multiple linear regression (MLR), sup-
port vector machine (SVM), decision tree (DT), random

forest (RF), gradient boosted decision trees or gradient
boosting (GB), and long short-term memory (LSTM).
Explanations of the applied methods follow.

2.2.1. Pre-processing-basedwavelet theory (W)
Wavelet (W) transformation is a powerful technique used
in signal processing (Starck & Murtagh, 2001), which
is often used to de-noise, compress or decompress data
(Daubechies, 2009). Some features of wavelet transfor-
mation and Fourier transformation are alike, and thus in
time and frequency domain, wavelet analysis can be con-
sidered as a type of multi-resolution analysis. In order to
decompose signals into different resolutions, both shift-
ing and scaling of a wavelet basis function is required
and this creates the mother wavelet (Ebrahimi & Rajaee,
2017).

Streamflow time series are accompanied by noise,
which comes in the form of signals with high-frequency.
Wavelet transformation is used to remove these and
extract high-frequency signals from raw signals, and
the process occurs in three main steps. First, by using
the selected mother wavelet and level of decomposition,
wavelet transformation of the input signals is performed.
Second, a threshold is determine and applied to find
the amount of high-frequency wavelet transformation.
Third, the denoised time series signals are obtained by
using low-frequency and high-frequency wavelet coeffi-
cients. In this study, the Daubechies wavelet (db4) model
was used to determining the optimum level for the
mother wavelet, and trial-and-error was used to find the
level of decomposition, respectively.

One of the main advantages of wavelets is that they
offer simultaneous localization in the time and frequency
domains. The second main advantage of wavelets is that,
using a fast wavelet transform, it is possible to make
calculations very quickly. Wavelets have the great advan-
tage of being able to separate the fine details in a sig-
nal. Wavelet transform is a highly efficient mathematical
transformation function in signal processing (data pre-
processing) and decomposes a signal into its basic signal
functions (Singh et al., 2020).

2.2.2. Multiple linear regression (MLR)
MLR is implemented to identify the possible existence of
relationships between independent and dependent vari-
ables. This method is often used as a tool to prove a
correlation between the inputs and outputs of a given
system (Clarke et al., 1959).

Linear regressions are a form of bivariate model used
to predict an independent variable (y) from a dependent
one (x). By extending themodel to includemore than one
explanatory variable (x1, x2, . . . , xp) such as in MLR, a

https://waterdata.usgs.gov/nwis/
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Figure 1. Geographical positions of the Heise and Irwin stations on Snake River, USA.

Table 1. Monthly time series streamflow statistical data at the Heise and Irwin stations.

Stations Stage Minimum (m3/s) Maximum (m3/s) Mean (m3/s) Standard deviation (m3/s) Coefficient of variation

Heise Training 27.830 897.366 199.434 151.097 0.758
Testing 31.573 616.178 203.759 157.593 0.773

Irwin Training 17.180 836.767 182.457 144.450 0.792
Testing 22.651 590.693 185.724 151.315 0.815

multivariate model is produced. MLR can be used to dis-
cern a linear relationship between two or more indepen-
dent variables and a dependent variable. Since hydrologi-
cal variables such as river streamflow can depend heavily
on lagged data, river streamflow is generally considered
as a dependent variable, y, and lagged streamflow data is
considered the independent variable, x1, x2, . . . , xp. Thus,

the regression equation is expressed as:

y = b0 + b1x1 + b2x2 + . . . + bpxp (1)

where b0 is a constant, and b1, b2, . . . , bp are partial
regression coefficients that can be fitted using a least
squares approach (Uyanık & Güler, 2013).



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1837

Figure 2. Monthly time series river streamflow data at Heise and Irwin stations for the training and test periods.

2.2.3. Support vectormachine (SVM)
Machine learning algorithms such as classifiers, regres-
sions, and outlier detectors utilize SVMs as a set of super-
vised learning methods (Niu & Feng, 2021). Vapnik et al.
introduced this in 1995 to do classification and regression
on a set of data points (Cortes & Vapnik, 1995). Since the
cost function of a model is not sensitive to training data
point positions, models produced using SVM rely on a
subset of training data beyond the margin. The intuition
behind SVM, is to first obtain an optimized hyper-plan,
which is as far as possible from both classes’ actual sam-
ples. In other words, the learning method maximizes the
class margin, based on the choice of the type of margin,
which may be either soft or hard. The former SVM mis-
classifications would probably happen whereas it is not
accepted with hardmargin SVM (Hamasuna et al., 2008).
SVM uses a kernel function to build expert knowledge,
which can be considered one of the main advantages of
this method.

The most commonly used SVM kernel functions are
linear, polynomial, sigmoid, and Radial Basis Function
(RBF). This study adopts the RBF and polynomial ker-
nels to estimate the river streamflow, following a previous
study by (Adnan et al., 2020; Baesens et al., 2000; Leong
et al., 2021), where the efficiency and output quality of
the RBF and polynomial kernels were compared with
different data sets and yielded good results.

2.2.4. Decision tree (DT)
Decision trees are another important, and frequently
used, method for supervised learning. It can be used to
solve both regression and classification tasks, but the lat-
ter is more common. There are three types of nodes, (i) a
root node, which represents the entire sample and is the
initial node and may split into other nodes. The features
of the dataset contain branches that represent the various

decision rules, are these are determined using (ii) interior
nodes. The final output is delivered at the (iii) leaf nodes.

This algorithmic approach can also be implemented to
solve decision-related problems. To check an algorithm
with a particular data point, all nodes in the tree need
pass a conditional test (true/false) until the leaf node
is reached. The final prediction is taken as the average
value of the dependent variable in a specific leaf node. In
order to predict precise values for the given data points,
the algorithm runs for multiple iterations on the tree
(Safavian & Landgrebe, 1991).

2.2.5. Random forest (RF)
Random forest regressions are another supervised learn-
ing algorithm, however this one implements an ensemble
learning method to conduct the regression. Ensemble
learningmethods combine the predictions frommultiple
machine learning algorithms to make a precise predic-
tion from a single model (Bernard et al., 2009). A meta-
estimator, which fits a series of classifying decision trees
on different subsets of a given dataset, plays a key role in
this algorithm. This type of estimator benefits from aver-
aging techniques to increase its predictive accuracy, and
gain control of the over-fitting problem. The trees in a
random forests model run in parallel, there is no interac-
tion while they are being built. During training, multiple
trees are constructed and then the classification to deter-
mine the related class of the data points is performed.
After this the whole model can be regressed or particular
trees can be selected (Mosavi, et al., 2022). The follow-
ings are steps required to implement a random forest
algorithm:

(1) Choose kdata points randomly from the training set.
(2) Build the corresponding decision tree for the given

data.
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(3) Repeat steps 1 and 2 to build N trees.
(4) After building N trees, for any new data point, the

related prediction of the value of y as it corresponds
to the data point can be made. It is then possible to
assign the new data point an average value across all
the obtained y values.

2.2.6. Gradient boosting (GB)
In the field of machine learning, the gradient boosting
algorithm can be considered one of the most powerful
algorithms. The most common types of allocated errors
in machine learning algorithms are bias error and vari-
ance error (Islam & Amin, 2020). To decrease the bias
error of a model, the gradient boosting algorithm can
be used. Gradient boosting algorithm can also target a
continuous variable as a regressor, as well as a categor-
ical target variable (as a classifier) (Friedman, 2001). In
the former case, the mean square error (MSE) is the
cost function, while in the latter it appears as log loss.
For both regression and classification problems, GB can
show notable outcomes. Steps to implement GB are as
follows:

(1) Determine the average value of the target label.
1. Compute the residuals using ‘residual = actual

value−predicted value’.
2. Construct a decision tree.
3. Use all presented trees within the ensemble to

predict the target label.
4. Compute the new residuals, such that the num-

ber of iterations matches the number of estima-
tors by repeating steps 3 through 5.

5. Assign the value of the target variable using all
trees from the training step.

2.2.7. Long short-termmemory (LSTM)
A suitable performance for streamflow prediction has
also been demonstrated by deep learning models that
use an appropriate architecture (Ghimire et al., 2021;
Lin et al., 2021). Using dynamic system modeling in
diverse application areas such as speech recognition,
image processing, manufacturing, communication or
energy consumption and autonomous systems, recur-
rent neural network (RNN)-based deep learning models,
especially LSTM, play a vital role (Lipton et al., 2017).
The setup of prediction models according to time series
data can be used to predict non-linear, time variant sys-
tem outputs for many data types (Lindemann et al.,
2021).

LSTMs, which rely on memory blocks in their hidden
layers, and perform the same role as neurons in hidden
layers, are a class of RNN. There are input, output, and
forget gates in the memory blocks. These gates are used

for controlling and updating the information through
the memory blocks (Hochreiter & Schmidhuber, 1997;
Sainath et al., 2015). The equations for determining the
gates in an LSTM are:

it = σ(wi[ht−1, xt] + bi)

ft = σ(wf [ht−1, xt] + bf )

ot = σ(wo[ht−1, xt] + bo) (2)

where it , ft , and ot are the input, forget, and output
gates, respectively. σ denotes a sigmoid function (gates
in LSTM are the sigmoid activation functions). wx and
bx are weights and biases for the correspondence gate (x)
neurons. xt denotes the input at the current timestamp,
and ht−1 is used for the output of the previous LSTM
block at timestamp t-1.

The equations for the cell state, candidate cell state and
final output are as follows:

c̃t = tanh(wc[ht−1, xt] + bc)

ct = ft × ct−1 + it × c̃t

ht = ot × tanh(ct) (3)

where ct represents the cell state (memory) at times-
tamp t, and c̃t represents the candidate for all states at
timestamp t (Salem, 2018; Wang et al., 2020).

Overall, LSTMs are an efficient, gradient-basedmethod
to handle complex, artificial long-time-lag tasks. In addi-
tion, LSTMs are the RNN variant that is capable of learn-
ing long-term dependencies because their cells have the
ability to retain previous time step information.

2.3. Performance evaluation ofmodels

Five evaluation metrics are often used to determine
model performance: root mean square error (RMSE),
mean absolute error (MAE), coefficient of determina-
tion (R2), Nash-Sutcliffe efficiency (NSE), andWillmott’s
index (WI). Accordingly, these were employed in this
study to determine the relative performances of the
stand-alone, and coupled models. These determinants
are described in the equations below, and follow the form
described by (Kim et al., 2019; Willmott et al., 2012;
Yaseen et al., 2020):

RMSE =
√∑N

i=1 (Qo,i − Qe,i)
2

N
(4)

MAE =
∑N

i=1 |Qo,i − Qe,i|
N

(5)
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R2 =
⎡
⎣ ∑N

i=1(Qo,i − Qo) · (Qe,i − Qe)√∑N
i=1 (Qo,i − Qo)

2 · ∑N
i=1 (Qe,i − Qe)

2

⎤
⎦
2

(6)

NSE = 1 −

N∑
i=1

(Qo,i − Qe,i)
2

N∑
i=1

(Qo,i − Qo)
2

(7)

WI = 1 −

N∑
i=1

(Qo,i − Qe,i)
2

N∑
i=1

(|Qo,i − Qo|) + (|Qo,i − Qo|)2
(8)

where Qo,i and Qe,i describe the observed and estimated
daily river streamflow for the ith month, respectively. Qo
and Qe indicate the average values of the observed and
estimated daily river streamflow, respectively. N shows
the total number of observations. A better model should
present lower RMSE and MAE values, and a higher R2,
NSE, and WI.

3. Results and discussion

This study utilizes historical monthly streamflow data
from 1 to 4 months as input predictors for the models,
as shown in Table 2. Setting parameters for each model
accordingly will improve the performance of the mod-
els. Table 3 summarizes the parameter settings for all the
models used in this paper.

Determination of the optimum parameter values
changes the efficiency of the model design. To accom-
plish this, trial-and-error was used to select the optimum
value each parameter. For all experiments, the model
parameters were independently drawn from a 10-fold
cross-validation run on the training set. The parameter
ranges are shown in Table 3.

First, a standardMLR and stand-alonemachine learn-
ing models using SVM-RBF, SVM-Poly, DT, RF, GB, and
LSTM were established using the input configurations
shown in Table 2. RMSE, MAE, R2, NSE, and WI val-
ues for the Heise and Irwin hydrometric stations are
presented in Tables 4 and 5, respectively. These stand-
alonemodelswere able to estimate daily streamflowusing
streamflow data of previous daily periods. The tables
clearly show that the performance of themodels generally
improved as the number of inputs increased (from M1
to M4). As a result, the stand-alone models exhibited the
potential for estimating river streamflow in the current
month, using antecedent monthly streamflow data.

Table 2. Input patterns defined in the present study.

Models
abbreviations Models Inputs Output

M1 MLR1, SVM-RBF1,
SVM-Poly1, DT1,
RF1, GB1, LSTM1,
W-MLR1, W-SVM-
RBF1, W-SVM-Poly1,
W-DT1, W-RF1,
W-GB1, W-LSTM1

Qt−1 Qt

M2 MLR2, SVM-RBF2,
SVM-Poly2, DT2,
RF2, GB2, LSTM2,
W-MLR2, W-SVM-
RBF2, W-SVM-Poly2,
W-DT2, W-RF2,
W-GB2, W-LSTM2

Qt−1, Qt−2 Qt

M3 MLR3, SVM-RBF3,
SVM-Poly3, DT3,
RF3, GB3, LSTM3,
W-MLR3, W-SVM-
RBF3, W-SVM-Poly3,
W-DT3, W-RF3,
W-GB3, W-LSTM3

Qt−1, Qt−2, Qt−3 Qt

M4 MLR4, SVM-RBF4,
SVM-Poly4, DT4,
RF4, GB4, LSTM4,
W-MLR4, W-SVM-
RBF4, W-SVM-Poly4,
W-DT4, W-RF4,
W-GB4, W-LSTM4

Qt−1, Qt−2, Qt−3, Qt−4 Qt

Table 3. Parameter settings of the models used in this study.

Models Parameters Range

Support vector
machine (SVM)

kernel = RBF

C (Regularization
parameter) 40

epsilon = 0.1

[10−2, 102]
[10−2, 101]

Support vector
machine (SVM)

kernel = Poly

degree = 5
coef0 (independent term
in kernel function) 0.6
C (Regularization
parameter) 5

[1,2,3,4,5]
[0.1,0.9]
[10−2,102]

Decision Tree (DT) min_samples_split = 2
criterion = ‘mse’
splitter = ‘best’

[2,10]
[mse, mae]

Random Forest (RF) min_samples_split = 4
n_estimators = 100
criterion = ‘mse’
min_samples_leaf = 1,

[2,10]
[10:10:100]
[mse, mae]
[1,10]

Gradient Boosted
Decision Trees
(GBDT)

loss = ‘squared_error’
learning_rate = 0.1
max_iter = 100
max_leaf_nodes = 31
min_samples_leaf = 20
validation_fraction = 0.1

[squared_error,
absolute_error]

[0.01, 1]
[10, 100]
[1, 50]
[1, 100]
[0.1, 0.2]

LSTM Structures

Layer (type) Output Shape Param #

lstm (LSTM) (None, 1, 6) 264 LSTM inputs: [4, 50]
lstm_1 (LSTM) (None, 4) 176
dense (Dense) (None, 4) 20
dense_1 (Dense) (None, 1) 5
Total params: 465
Trainable params: 465
Non-trainable params: 0
epochs = 500 [50, 1000]
batch size = 4 [4,8,16,32]
validation split = 0.3
optimizer = adam
loss = mean square error
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Table 4. Values of evaluation metrics for the Heise station model.

Training Testing

Models abbreviations Models RMSE (m3/s) MAE (m3/s) R2 NSE WI RMSE (m3/s) MAE (m3/s) R2 NSE WI

M1 MLR1 94.224 71.026 0.610 0.610 0.868 94.895 71.001 0.636 0.635 0.879
SVM-RBF1 97.534 62.256 0.621 0.583 0.865 96.823 61.111 0.650 0.620 0.883
SVM-Poly1 98.680 64.385 0.613 0.573 0.866 97.859 62.502 0.641 0.612 0.882
DT1 76.218 54.133 0.745 0.745 0.923 98.105 66.908 0.632 0.610 0.890
RF1 54.125 39.121 0.876 0.871 0.962 97.585 67.443 0.628 0.614 0.889
GB1 81.614 59.970 0.708 0.708 0.906 90.625 63.664 0.669 0.667 0.898
LSTM1 92.231 67.765 0.627 0.627 0.874 93.158 66.873 0.650 0.649 0.887
W-MLR1 85.963 66.626 0.676 0.676 0.896 88.079 66.630 0.686 0.686 0.900
W-SVM-RBF1 91.661 61.011 0.668 0.631 0.883 93.690 61.446 0.674 0.645 0.889
W-SVM-Poly1 91.699 61.422 0.669 0.631 0.886 94.134 61.405 0.671 0.641 0.890
W-DT1 67.639 46.091 0.799 0.799 0.942 96.210 69.202 0.640 0.625 0.892
W-RF1 49.099 35.442 0.897 0.894 0.970 97.377 70.746 0.630 0.616 0.888
W-GB1 76.054 56.296 0.747 0.746 0.921 92.409 68.576 0.656 0.654 0.892
W-LSTM1 85.306 66.274 0.681 0.681 0.896 88.065 66.385 0.686 0.686 0.900

M2 MLR2 80.064 58.394 0.719 0.719 0.913 78.456 55.756 0.752 0.751 0.923
SVM-RBF2 71.928 44.481 0.790 0.773 0.931 77.892 45.048 0.778 0.754 0.927
SVM-Poly2 84.628 52.512 0.712 0.686 0.904 88.758 53.179 0.707 0.681 0.903
DT2 52.251 34.082 0.880 0.880 0.967 74.458 47.755 0.780 0.776 0.939
RF2 32.012 20.751 0.956 0.955 0.988 68.101 43.069 0.814 0.812 0.948
GB2 44.941 29.875 0.912 0.911 0.976 65.396 40.975 0.828 0.827 0.952
LSTM2 61.152 42.186 0.836 0.836 0.953 63.428 41.731 0.838 0.837 0.953
W-MLR2 56.532 39.845 0.860 0.860 0.961 52.105 36.812 0.892 0.890 0.969
W-SVM-RBF2 49.367 31.872 0.902 0.893 0.969 46.166 30.617 0.923 0.914 0.976
W-SVM-Poly2 62.797 39.158 0.836 0.827 0.951 61.979 39.705 0.855 0.844 0.956
W-DT2 38.435 24.605 0.935 0.935 0.983 53.028 36.682 0.886 0.886 0.969
W-RF2 20.946 13.844 0.981 0.981 0.995 43.708 29.733 0.923 0.923 0.979
W-GB2 31.483 20.011 0.957 0.957 0.989 44.451 31.367 0.920 0.920 0.979
W-LSTM2 39.872 27.256 0.930 0.930 0.982 38.668 28.630 0.940 0.939 0.984

Training Testing

Models abbreviations Models RMSE (m3/s) MAE (m3/s) R2 NSE WI RMSE (m3/s) MAE (m3/s) R2 NSE WI

M3 MLR3 78.565 57.330 0.729 0.729 0.916 75.184 53.031 0.773 0.771 0.930
SVM-RBF3 72.096 43.634 0.792 0.772 0.929 77.832 44.347 0.790 0.755 0.925
SVM-Poly3 82.722 51.633 0.721 0.700 0.907 85.660 51.086 0.730 0.703 0.908
DT3 49.484 31.697 0.893 0.893 0.971 68.696 44.180 0.811 0.809 0.947
RF3 29.089 18.819 0.964 0.963 0.990 62.654 39.320 0.842 0.841 0.956
GB3 38.016 24.890 0.937 0.937 0.983 63.728 41.559 0.838 0.836 0.953
LSTM3 67.684 47.859 0.799 0.799 0.941 68.000 45.386 0.815 0.813 0.945
W-MLR3 55.913 39.163 0.863 0.863 0.962 51.112 37.280 0.897 0.894 0.970
W-SVM-RBF3 50.164 32.305 0.899 0.890 0.968 46.850 30.790 0.924 0.911 0.974
W-SVM-Poly3 56.261 35.872 0.865 0.861 0.962 60.144 39.104 0.861 0.854 0.958
W-DT3 37.582 24.171 0.938 0.938 0.984 53.092 36.719 0.886 0.886 0.969
W-RF3 19.831 12.655 0.983 0.983 0.996 41.234 27.981 0.932 0.931 0.981
W-GB3 26.882 16.464 0.968 0.968 0.992 43.289 30.161 0.924 0.924 0.980
W-LSTM3 40.191 28.152 0.930 0.929 0.981 38.682 28.297 0.940 0.939 0.984

M4 MLR4 77.151 57.226 0.739 0.739 0.920 71.737 50.569 0.793 0.792 0.937
SVM-RBF4 69.957 42.731 0.803 0.785 0.933 74.559 42.905 0.808 0.775 0.930
SVM-Poly4 81.422 50.617 0.729 0.709 0.910 84.384 50.863 0.745 0.712 0.909
DT4 43.156 28.406 0.918 0.918 0.978 69.364 42.013 0.810 0.805 0.946
RF4 28.742 18.109 0.966 0.964 0.990 57.935 34.238 0.866 0.864 0.963
GB4 33.640 21.253 0.951 0.950 0.987 62.208 38.401 0.849 0.843 0.955
LSTM4 67.532 47.235 0.800 0.800 0.942 62.934 42.862 0.842 0.840 0.954
W-MLR4 51.079 33.680 0.886 0.886 0.969 42.856 30.439 0.927 0.926 0.980
W-SVM-RBF4 50.932 32.556 0.900 0.886 0.966 49.867 33.118 0.922 0.899 0.970
W-SVM-Poly4 56.087 34.670 0.867 0.862 0.962 59.020 36.011 0.870 0.859 0.960
W-DT4 36.541 22.910 0.941 0.941 0.985 53.851 36.600 0.883 0.883 0.968
W-RF4 19.203 12.038 0.985 0.984 0.996 41.294 28.036 0.932 0.931 0.981
W-GB4 24.522 14.680 0.974 0.974 0.993 43.894 31.224 0.923 0.922 0.979
W-LSTM4 37.995 26.387 0.937 0.937 0.983 36.533 26.912 0.947 0.946 0.986

N.B. Values in boldface indicate the statistical parameters of the best model during testing.

In addition to the stand-alone models, the models can
be fine-tuned to increase accuracy. To achieve this pur-
pose, wavelet theory (W) was included. The hybrid W-
MLR,W-SVM-RBF, W-SVM-Poly, W-DT,W-RF,W-GB,
and W-LSTM details are established in this section.

Daubechies (db4) is used in this study as the
mother wavelet, and values of RMSE, MAE, R2, NSE
and WI are used to measure the product of the
model. The results are shown in Tables 4 and 5, for
Heise and Irwin stations, respectively. Comparing the
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Table 5. Values of evaluation metrics for the Irwin station model.

Training Testing

Models abbreviations Models RMSE (m3/s) MAE (m3/s) R2 NSE WI RMSE (m3/s) MAE (m3/s) R2 NSE WI

M1 MLR1 90.849 68.819 0.604 0.604 0.865 91.877 69.071 0.630 0.629 0.876
SVM-RBF1 93.433 60.298 0.615 0.581 0.867 93.058 59.425 0.646 0.620 0.884
SVM-Poly1 95.143 62.579 0.608 0.565 0.865 94.647 61.002 0.638 0.607 0.880
DT1 71.780 49.896 0.753 0.753 0.925 92.976 63.932 0.629 0.620 0.886
RF1 50.802 37.240 0.881 0.876 0.964 97.686 66.099 0.594 0.581 0.875
GB1 78.396 57.535 0.706 0.705 0.904 92.664 63.985 0.625 0.623 0.881
LSTM1 88.721 65.727 0.622 0.622 0.873 89.854 65.125 0.646 0.645 0.886
W-MLR1 82.264 64.079 0.675 0.675 0.896 84.461 64.514 0.687 0.687 0.900
W-SVM-RBF1 88.264 59.389 0.670 0.626 0.878 90.447 60.378 0.678 0.641 0.884
W-SVM-Poly1 87.558 59.535 0.668 0.632 0.887 90.178 59.965 0.671 0.643 0.891
W-DT1 64.836 46.004 0.798 0.798 0.941 103.050 74.156 0.564 0.534 0.865
W-RF1 45.844 33.886 0.902 0.899 0.971 102.724 74.405 0.562 0.537 0.863
W-GB1 71.893 54.206 0.752 0.752 0.923 91.140 69.175 0.638 0.635 0.886
W-LSTM1 81.647 64.493 0.680 0.680 0.896 84.527 64.985 0.686 0.686 0.900

M2 MLR2 78.244 57.159 0.706 0.706 0.908 77.725 55.233 0.736 0.735 0.917
SVM-RBF2 70.165 43.332 0.780 0.764 0.929 76.242 43.725 0.768 0.745 0.924
SVM-Poly2 81.250 50.953 0.707 0.683 0.903 85.920 51.833 0.699 0.676 0.900
DT2 52.417 34.414 0.868 0.868 0.964 74.547 48.374 0.758 0.756 0.930
RF2 31.025 20.761 0.956 0.954 0.988 65.864 41.919 0.810 0.809 0.947
GB2 44.150 29.818 0.907 0.906 0.974 67.710 43.624 0.799 0.799 0.942
LSTM2 63.281 44.568 0.808 0.808 0.945 67.501 45.882 0.801 0.800 0.941
W-MLR2 52.810 37.089 0.866 0.866 0.963 49.732 35.216 0.893 0.891 0.970
W-SVM-RBF2 45.919 30.353 0.905 0.899 0.971 44.512 29.676 0.920 0.913 0.976
W-SVM-Poly2 58.020 36.559 0.846 0.838 0.955 57.802 37.650 0.861 0.853 0.959
W-DT2 35.864 23.452 0.938 0.938 0.984 49.795 34.474 0.892 0.891 0.971
W-RF2 19.906 13.165 0.981 0.981 0.995 39.403 28.186 0.933 0.932 0.982
W-GB2 29.021 18.566 0.960 0.960 0.989 43.657 31.012 0.916 0.916 0.978
W-LSTM2 46.431 31.519 0.897 0.896 0.972 43.839 31.243 0.916 0.916 0.978

Training Testing

Models abbreviations Models RMSE (m3/s) MAE (m3/s) R2 NSE WI RMSE (m3/s) MAE (m3/s) R2 NSE WI

M3 MLR3 76.313 55.851 0.720 0.720 0.913 73.830 52.272 0.762 0.761 0.926
SVM-RBF3 70.184 42.370 0.781 0.763 0.928 75.386 42.451 0.781 0.750 0.924
SVM-Poly3 79.894 49.519 0.717 0.694 0.904 84.115 49.783 0.714 0.689 0.903
DT3 47.743 29.328 0.891 0.891 0.970 73.174 44.720 0.770 0.765 0.935
RF3 28.738 18.794 0.962 0.960 0.989 61.999 38.701 0.832 0.831 0.953
GB3 38.462 25.525 0.930 0.929 0.981 61.320 39.838 0.836 0.835 0.953
LSTM3 66.287 46.693 0.789 0.789 0.938 67.877 45.252 0.800 0.798 0.940
W-MLR3 52.315 36.495 0.869 0.869 0.964 48.989 35.484 0.896 0.895 0.970
W-SVM-RBF3 46.971 30.457 0.902 0.894 0.970 45.237 29.666 0.922 0.910 0.974
W-SVM-Poly3 53.227 33.857 0.868 0.864 0.963 56.395 36.165 0.866 0.860 0.961
W-DT3 37.627 24.818 0.932 0.932 0.982 48.072 33.848 0.899 0.899 0.972
W-RF3 19.295 12.603 0.983 0.982 0.995 39.500 27.564 0.932 0.931 0.982
W-GB3 24.957 15.678 0.970 0.970 0.992 41.096 29.054 0.926 0.926 0.980
W-LSTM3 36.499 26.348 0.937 0.936 0.983 39.345 29.489 0.934 0.932 0.982

M4 MLR4 74.803 55.522 0.731 0.731 0.917 70.203 49.800 0.785 0.784 0.934
SVM-RBF4 68.418 41.232 0.792 0.775 0.931 72.660 41.235 0.800 0.768 0.929
SVM-Poly4 79.401 49.445 0.721 0.697 0.904 83.035 50.099 0.728 0.697 0.904
DT4 50.252 30.013 0.879 0.879 0.967 65.130 40.460 0.817 0.814 0.948
RF4 27.368 18.138 0.966 0.964 0.990 59.657 35.047 0.846 0.844 0.956
GB4 33.306 21.685 0.948 0.947 0.986 56.944 34.709 0.863 0.858 0.960
LSTM4 65.103 45.719 0.797 0.797 0.940 61.534 42.051 0.836 0.834 0.951
W-MLR4 48.168 31.876 0.889 0.889 0.970 41.830 29.692 0.924 0.923 0.979
W-SVM-RBF4 47.602 30.645 0.901 0.891 0.968 47.180 31.255 0.919 0.902 0.971
W-SVM-Poly4 53.683 33.151 0.868 0.862 0.962 56.458 34.107 0.872 0.860 0.961
W-DT4 36.743 23.623 0.935 0.935 0.983 48.889 33.729 0.895 0.895 0.972
W-RF4 18.938 12.072 0.984 0.983 0.996 38.451 26.742 0.937 0.935 0.982
W-GB4 22.561 13.712 0.976 0.976 0.994 40.805 29.284 0.928 0.927 0.980
W-LSTM4 35.604 24.953 0.940 0.939 0.984 33.378 24.562 0.952 0.951 0.987

N.B. Values in boldface indicate the statistical parameters of the best model during testing.

estimation accuracy of stand-alone and hybrid mod-
els in Tables 4(a) and Table 5(a) (i.e. using only the
streamflow data of the preceding month), it can be
observed that wavelet theory shows relatively little ability

to improve the performance of the single models,
and in very few cases, it even slightly reduces esti-
mation accuracy. However, wavelets can enhance the
accuracy of stand-alone models using monthly data
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Figure 3. Scatter and time series plots of the observed and estimated river streamflow data for Heise station, using the best-performing
hybrid model during testing (W-LSTM4) and the corresponding stand-alone LSTM4.

inputs with two to four lags. Examining Table 4, it
can be seen that RMSE = 61.152 m3/s, MAE = 42.186
m3/s, R2 = 0.836, NSE = 0.836, WI = 0.953 (training
phase) and RMSE = 63.428 m3/s, MAE = 41.731 m3/s,
R2 = 0.838, NSE = 0.837, WI = 0.953 (testing phase),
for the stand-alone LSTM2 model at Heise station,
this improves to RMSE = 39.872 m3/s, MAE = 27.256
m3/s, R2 = 0.930, NSE = 0.930, WI = 0.982 (training
phase) and RMSE = 38.668 m3/s, MAE = 28.630 m3/s,
R2 = 0.940,NSE = 0.939,WI = 0.984 (testing phase) in
the hybrid W-LSTM2 model.

This shows a dependable potential for W theory to
capture the monthly streamflow time series. This result
is also observed for the other hybrid models. The most
important reason for the improved performance is that
the wavelet removes unwanted high-frequency signals
from the raw signal, improving output overall. The same
results are observed for stand-alone and hybrid mod-
els. The coupled methods perform the best for both
locations, when utilizing longer streamflow data, this is

particularly evident in the M4 models which draw on
4-months of streamflow data.

It is possible to visualize the performance of these
models using scatter, time series and Taylor diagrams.
These comparison diagrams are shown in Figures 3 and
4, respectively. In this regard, the superior coupled mod-
els during the test phase for both locations (i.e. W-
LSTM4) and the stand-alone models (i.e. LSTM4) were
considered. Dashed lines in the scatter graphs denote the
perfect line. It can be seen in the scatter plots that there is
a lower dispersion in the hybridW-LSTM4models com-
pared to the stand-alone LSTM4. This indicates that the
hybrid models offer reliability and compatibility with the
data for estimating monthly river streamflow time series.
The time series plots also illustrate that peak-points of
streamflow data can be estimated accurately using hybrid
W-LSTM4 models, this is true for both stations and is
an improvement over the LSTM4 models. Figure 5 also
shows the Taylor diagrams for the observed and esti-
mated streamflow data using the best hybrid models and
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Figure 4. Scatter and time series plots of the observed and estimated river streamflow data for Irwin station using the best-performing
hybrid model during testing (W-LSTM4) and the corresponding stand-alone LSTM4.

Figure 5. Taylor diagrams of the observed and estimated river streamflow data using the best-performing hybrid model during testing
(W-LSTM4) and the corresponding stand-alone LSTM4, at Heise and Irwin stations.
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Table 6. Accuracy rankings of the applied models using Heise station data.

M1 M2 M3 M4 Total

Models Training Testing Training Testing Training Testing Training Testing Training Testing

MLR 12 8 13 13 13 12 13 12 51 45
SVM-RBF 13 10 12 12 12 13 12 13 49 48
SVM-Poly 14 13 14 14 14 14 14 14 56 55
DT 5 14 8 11 7 11 7 11 27 47
RF 2 12 3 10 3 8 3 7 11 37
GB 6 3 6 9 5 9 4 9 21 30
LSTM 11 5 10 8 11 10 11 10 43 33
W-MLR 8 2 9 5 9 5 9 3 35 15
W-SVM-RBF 9 6 7 4 8 4 8 5 32 19
W-SVM-Poly 10 7 11 7 10 7 10 8 41 29
W-DT 3 9 4 6 4 6 5 6 16 27
W-RF 1 11 1 2 1 2 1 2 4 17
W-GB 4 4 2 3 2 3 2 4 10 14
W-LSTM 7 1 5 1 6 1 6 1 24 4

Table 7. Accuracy rankings of the applied models using Irwin station data.

M1 M2 M3 M4 Total

Models Training Testing Training Testing Training Testing Training Testing Training Testing

MLR 12 7 13 13 13 12 13 12 51 44
SVM-RBF 13 10 12 12 12 13 12 13 49 48
SVM-Poly 14 11 14 14 14 14 14 14 56 53
DT 4 9 8 11 8 11 9 11 29 42
RF 2 12 3 8 3 9 3 9 11 38
GB 6 8 5 10 6 8 4 8 21 34
LSTM 11 3 11 9 11 10 11 10 44 32
W-MLR 8 1 9 5 9 6 8 4 34 16
W-SVM-RBF 10 5 6 4 7 4 7 5 30 18
W-SVM-Poly 9 4 10 7 10 7 10 7 39 25
W-DT 3 14 4 6 5 5 6 6 18 31
W-RF 1 13 1 1 1 2 1 2 4 18
W-GB 5 6 2 2 2 3 2 3 11 14
W-LSTM 7 2 7 3 4 1 5 1 23 7

most relevant stand-alone methods. A Taylor diagram
consists of three error measures, standard deviation, cor-
relation, and centred RMSE. The short distance between
the point of the hybrid W-LSTM4 models at both sta-
tions (marked in red) and the observational data (black)
indicates the superior performance of the hybrids.

To better understand the estimation accuracy of the
variousmodels, all were ranked using their RMSE values.
Tables 6 and 7 show the rankings for all models used
to analyse data from Heise and Irwin stations, respec-
tively. In this case, lower rankedmodels denote a superior
model performance for estimating streamflow. Here, the
total ranking for all input combinations is obtained (i.e.
M1-M4) for each region. Examining the total ranking
for models concerning Heise station, in Table 6, it can
be seen that W-RF, followed byW-GB, outperformed the
other standalone and coupledmodels during the training
period. Meanwhile, W-LSTM models showed superior
performance during the testing phase of all M1-M4 input
patterns; this had the lowest total ranking of 4. After that,
W-GB,W-MLR, andW-RFwere lower ranked, indicating
their better performance.

The same result was observed at Irwin station, and the
rankings are shown in Table 7. In this context, the W-RF
and W-GB methods (training), as well as W-LSTM, and
W-GB, and W-MLR (testing) showed lower rankings,
showing their superior performance.

It can be seen that the coupled W-GB model was
one of the superior models during both training and
testing of the hydrometric station data. Therefore, this
is the recommended process for precisely estimating
river streamflow data. Conversely, the stand-alone SVM-
Poly illustrates the highest total ranking, showing that
it offered the poorest performance. Examining Tables 6
and 7 in more detail, the stand-alone SVM-RBF and
hybrid W-SVM-RBF models were superior to the SVM-
Poly and W-SVM-Poly ones for both locations. Fur-
thermore, of the tree-based models, the stand-alone
RF, GB and their hybridized forms with the wavelets
(W-RF and W-GB) were superior to the DT and W-
DT models in training and testing. It is possible to
conclude that the hybrid models exhibit better river
streamflow estimations than stand-alone methods. It
was also shown several papers that coupled techniques
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frequently outperformed single models. For example,
pre-processing with EMD or EEMD will improve the
performance of machine learning models for estima-
tion of river streamflow (Huang et al., 2014; Liu et al.,
2020; Meng et al., 2019; Rezaie-Balf et al., 2019; Wang
et al., 2013). Different optimization algorithms have
been also been proposed to develop new hybrids (Feng
et al., 2021; Kilinc & Haznedar, 2022; Yaseen et al.,
2019).

The potential of wavelet theory to improve the per-
formance of stand-alone machine learning techniques
has been widely reported for river streamflow estimation
(Hadi & Tombul, 2018; Ravansalar et al., 2017; Sun et al.,
2019). The superiority of wavelet and hybrid models is
not limited to riverflow, as other authors have shown
it can estimate other time series hydro-climatological
parameters such as precipitation (Kumar et al., 2021; Paul
et al., 2020), groundwater levels (Band et al., 2021; Yose-
fvand & Shabanlou, 2020) evapotranspiration (Kisi &
Alizamir, 2018), and soil temperature (Mehdizadeh et al.,
2020; Samadianfard et al., 2018).

4. Conclusion

Monthly river streamflow time series for two hydromet-
ric stations on Snake River, USA were estimated. Stand-
alone machine learning (ML) models, SVM-RBF, SVM-
Poly, DT, RF, GB, LSTM, and a traditional MLR were
used. It was found that the river streamflow for each
month could be estimated using lagged monthly data
as inputs, using lags of 1 to 4 months. Wavelet theory
was incorporated into the stand-alonemodels to establish
a wavelet-based hybrid model. The study results indi-
cate that the coupled models generally performed bet-
ter than their corresponding stand-alone counterparts.
[when measured by . . . ] In general, input patterns of the
models benefitted from a larger number of inputs, espe-
cially the M4 models. These exhibited better estimates
than other input combinations. The final performance
rankings of models showed that W-RF and then W-GB
were the best-performing methods in the training phase.
Conversely, the W-LSTM and W-GB models exhibited
the lowest rankings during testing, indicating that they
were highly dependable. The db4 was used in this study
to produce the mother wavelet, when hybridizing the
stand-alone models. Future studies could test the effi-
ciency of other mother wavelets when estimating hydro-
logical parameters. Seeing the successful application of
wavelets here, many possibilities for complex estimations
open up.Wavelet theory can be combined effectively with
other ML-based models and determining which places
they can be used would be beneficial for researchers.
Also, differentML techniques, in combination with other

pre-processingmethods, such as empirical mode decom-
position, ensemble empirical mode decomposition, may
also be used to produce bio-inspired optimization algo-
rithms.
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