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Abstract. In this paper, we introduce mixed coloured permutations, permutations with
certain coloured cycles, and study the enumerative properties of these combinatorial
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1. Introduction

Permutations play a unique role in combinatorics: basic objects that occur almost every-
where in different forms studied from different point of views revealing their properties in
the wealth of studies. A permutation of a set S with n elements can be viewed as a function
w : {1, 2, . . . , n} → S; w(i) = wi or as a bijection w : S → S. In this latter case,
for each element x ∈ S, there is a unique � such that x, w(x), . . . , w�−1(x) are different
and w�(x) = x . The sequence (x, w(x, ) . . . w�−1(x)) is called a cycle of length l. Any
permutation w is the unique product of distinct cycles. It is well-known that the number of
permutations of [n] = {1, 2, . . . , n} with exactly k cycles is the signless Stirling number
of the first kind,

[n
k

]
. Clearly, summing up for k we obtain all permutations with a total

number of n!. We introduce coloured permutations by colouring the cycles.

DEFINITION 1.1

We call a permutation π with cycle decomposition {C1,C2, . . . ,Cm} and an assignment of
colours from the set {1, 2, . . . , k} such that ti cycles obtain the colour i , a (t1, t2, . . . , tk)-
coloured permutation.
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We denote the number of (t1, t2, . . . , tk)-coloured permutations of [n] by
[

n

t1, t2, . . . , tk

]
.

Example 1.2. The following example is a (3, 1, 1)-coloured permutation of [9]:
(1 6 10)(2 4)(3 11 9)(5 7)(8) ⇐⇒ 6 4 11 2 7 10 5 8 3 1 9.

A permutation with k cycles can be coloured by k distinct colours in k! ways; hence, the
number of distinctly coloured permutations is

[
n

1, 1, . . . , 1

]
= k!

[
n

k

]
.

Though in this paper we focus on permutations, we can formulate the problem in a
more general form by considering permutations of multisets instead of sets. Let B =
(1b1 , 2b2 , . . . , nbn ) and C = (1c1 , 2c2 , . . . , kck ) be two multisets (bi , resp. ci denotes the
appearance of the element i in the set). Let

[B
C
]

denote the number of permutations of the
b1 + b2 + · · · + bn elements of the multiset B into exactly c1 + c2 + · · · + ck cycles such
that c j cycles are labeled by j . Further, let

[B
C
]

0 denote the number of such permutations
with at most c1, c2, . . ., ck cycles. Equivalently, with J = {1 j1 , 2 j2 , . . . , k jk }, we have

[B
C
]

0
=

∑

0≤i≤k,0≤ ji≤ci

[B
J

]
.

Clearly, for b1 = b2 = · · · = bn = 1 and c1 = m, c2 = c3 = · · · = ck = 0, we have

[B
C
]

=
[
n

m

]
.

As mentioned before, for b1 = b2 = · · · = bn = 1 and c1 = c2 = c3 = · · · = ck = 1, we
have

[B
C
] = k![nk

]
. In this case, the counting sequence

[B
C
]

0 is referred to in OEIS as A006252
[12]. Now we give a formula for the special case with b1 = b2 = · · · = bn = 1, but
arbitrary C. Since this special case b1 = b2 = · · · = bn = 1 corresponds to permutations,
we write simple n instead of B.

Theorem 1.3. Let n, t1, . . . , tk ∈ N. The number of (t1, . . . , tk)-coloured permutations is
given by the following formula:

[
n

t1, t2, . . . , tk

]
=

∑

�1+···+�k=n

(
n

�1, �2, . . . , �k

)[
�1

t1

][
�2

t2

]
· · ·

[
�k

tk

]
, (1.1)

where
( n
�1,...,�k

)
is the multinomial coefficient defined by n!

�1!...�k ! with �1 + · · · + �k = n.

Proof. We constitute (t1, t2, . . . , tk)-coloured permutations of the set [n] as follows. First,
choose �1 elements in

( n
�1

)
ways (label them by 1) and then order them into t1 cycles in

[
�1
t1

]

ways. Next, choose �2 out of the remaining n−�1 elements in
(n−�1

�2

)
ways and order these

elements into t2 cycles in
[
�1
t2

]
ways. By continuing the process, we obtain the theorem.

�
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Note that
[ n
t1,t2,...,tk

]
0

denotes the number of coloured permutations such that there are at
most ti cycles coloured by the colour i .

Theorem 1.4. The number of (t1, t2, . . . , tk)-coloured permutations is given by

[
n

t1, t2, . . . , tk

]
=

∑

1�i�k,0� ji�ti

(−1)�( j1,..., jk )
[

n

j1, j2, . . . , jk

]

0
,

where �( j1, . . . , jk) is the number of i’s such that ji �= 0.

Proof. The theorem follows by the inclusion–exclusion principle from the definitions.
�

Theorem 1.5. For the number of (t1, t2, . . . , tk)-coloured permutations, the following
recurrence holds:

[
n

t1, t2, . . . , tk

]
= (n − 1)

[
n − 1

t1, t2, . . . , tk

]

+
k∑

j=1

[
n − 1

t1, . . . , t j−1, t j − 1, t j+1 . . . , tk

]
.

Proof. Consider the n-th element. If it is a singleton coloured by the colour j , the remaining
elements construct a (t1, . . . , t j−1, t j −1, t j+1, . . . , tk)-coloured permutation. If n is not a
singleton, we can insert it before any of the elements and join it to the cycle of this element
which gives (n − 1)

[ n−1
t1,t2,...,tk

]
possibilities. �

In the rest of the paper, we consider a special case.

DEFINITION 1.6

We call a (t, 1, . . . , 1)-coloured permutation (with k − 1 1’s; notice that k denotes the
number of different colours used in the permutation) mixed coloured permutation. We
denote the set of mixed coloured permutations with t + k − 1 cycles by MC(n, k, t) and
denote the size of this set by

[ n
t,1,...,1

] = [ n
k/t

]
. We call the number sequence

[ n
k/t

]
mixed

Stirling number of the first kind. We refer to the colour that is used for t cycles as the
special colour.

Table 1 lists the number of mixed coloured permutations for some small values of n, k
and t .

For the special case t = 1, when every cycle is distinctly coloured, we have the following
recurrence relation.

Theorem 1.7. For positive integers n, k with k ≤ n,
[ n
k/1

]
satisfies

[
n

k/1

]
= k

[
n − 1

k − 1/1

]
+ (n − 1)

[
n − 1

k/1

]
. (1.2)
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Table 1.
[ n
k/2

]
and

[ n
k/3

]
.

n/k 1 2 3 4 5 n/k 1 2 3 4 5

2 1 3 1

3 3 3 4 6 4

4 11 18 12 5 35 40 20

5 50 105 120 60 6 225 340 300 120

6 274 675 1020 900 360 7 1624 2940 3500 2520 840

Proof. Consider the n-th element. If it is a fixed point, then there are
[ n−1
k−1/1

]
ways to create

the mixed coloured permutation from the remaining elements. The cycle with n can be
coloured by any of the k colours. If it is not a fixed point, proceed as follows: write the
permutation in cycle notation (the elements in a cycle are arranged so that the least element
is written first). This can be done in

[n−1
k/1

]
ways. Insert now the element n before any of

the elements. If we insert n before an element which started a cycle, n will be included
into this cycle. This gives (n − 1)

[n−1
k/1

]
possibilities. �

Theorem 1.8. Let n, k and t be positive integers with t, k ≤ n. Then the number of mixed
coloured permutations is

[
n

k/t

]
=

n−k+1∑

�=t

(k − 1)!
(
n

�

)[
�

t

][
n − �

k − 1/1

]
.

Proof. Choose � � t elements in
(n
�

)
ways and order them into t cycles. These cycles are

coloured by the special colour. The remaining n−� elements have to be ordered into k−1
distinctly coloured cycles. This can be done in

[ n−�
k−1/1

]
ways. Note that we should have

k − 1 � n − �. �

COROLLARY 1.9

Let n, k and t be positive integers with k, t ≤ n. Then we have

(i)
[ n
k/0

] = [ n
k−1/1

]
,

(ii)
[ n

1/t

] = [n
t

]
,

(iii)
[ n

1/n−1

] = (n
2

) = [ n
n−1

]
,

(iv)
[ n

2/n−1

] = n,

(v)
[ n
n−t+1/t

] = n!
t ! .

We derive some formulas using combinatorial arguments. We use the notation of the falling
factorial (n)k = n(n − 1) · · · (n − k + 1).
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Theorem 1.10. For positive integers n, k and t with k, t ≤ n, the number ofmixed coloured
permutations is

[
n

k/t

]
= (t + k − 1)k−1

[
n

t + k − 1

]
. (1.3)

Proof. First, we arrange the n elements into t + k − 1 cycles, then we choose t cycles to
colour them with the special colour and colour the remaining k − 1 cycles with distinct
colours. �

We present a few more expressions to calculate the number of mixed coloured permutations.

Theorem 1.11. For positive integers n, k and t with k, t ≤ n, we have

[
n

k/t

]
=

n−k+1∑

j=t

(k − 1)!
(
n

j

)[
j

t

][
n − j

k − 1

]
. (1.4)

Proof. We first choose j elements and create from these elements t cycles in
(n
j

)[ j
t

]
ways.

The remaining n− j elements are included in the k−1 cycles and since these are distinctly
coloured, we have a factor (k − 1)![n− j

k−1

]
. �

Theorem 1.12. Let n, k and t be positive integers with k, t ≤ n. Then

[
n

k/t

]
=

[
n − 1

k/t − 1

]
+ (k − 1)

[
n − 1

k − 1/t

]
+ (n − 1)

[
n − 1

k/t

]
.

Proof. Consider the n-th element. If it is a singleton, it can be coloured by the special colour
or by any of the other (k − 1) colours. These are

[ n−1
k/t−1

] + (k − 1)
[ n−1
k−1/t

]
possibilities.

If it is not a singleton, it can be inserted before any element and added to the cycle of the
element before it was inserted, which can be done in (n − 1)

[n−1
k/t

]
ways. �

Theorem 1.13. For positive integers n, k and t with k, t ≥ n, we have

[
n

k/t

]
=

n∑

j=1

(
n

j

)
( j − 1)!

[
n − j

k − 1/t

]
. (1.5)

Proof. Mark one cycle that is not coloured by the special colour. This can be done in
(k − 1)

[ n
k/t

]
ways. Otherwise, we can build a cycle of length j in

(n
j

)
( j − 1)! ways which

we colour in any of the (k−1) non-special colours and arrange the remaining elements into
a mixed coloured permutation in

[ n− j
k−1/t

]
ways. After simplification by the factor (k − 1),

we obtain the theorem. �

Next, we derive the generating functions for the enumerations of the sets MC(n, k, t)
using the symbolic method [8]. The theory states that the generating function of a set of
combinatorial objects can be directly obtained according to a symbolic construction built
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up of classical basic constructions as sets (SET), sequences (SEQ), cycles (CYC), etc. We
recall briefly the results from [8] that we use here in order to facilitate to follow our proof
for readers less familiar with the symbolic method.

Let A and B be combinatorial classes with exponential generating functions

A(x) =
∑

α∈A

x |α|

|α|! =
∑

n≥0

an
xn

n! and B(x) =
∑

β∈B

x |β|

|β|! =
∑

n≥0

bn
xn

n! .

an (resp. bn) is the counting sequence for objects in the class A (resp. B) with size n. Let X
be the atomic class with generating function x . Here we need the following constructions
beyond the sum and the product:

• SEQk(A) stands for the class of k-sequences. A k-sequence is a sequence of length k
with parts inA. The translation rule is (A(x))k . SEQ(A) denotes the class of sequences
without taking the length of the sequence into account. The translation rule is 1

1−A(x) .
• SETk(A) denotes the class of k-sets formed from A, a k-sequence modulo the equiva-

lence relation that two sequences are equivalent when the components of one of them

is the permutation of the components of the other. The corresponding rule is (A(x))k

k! .
SET(A) is the class of sets with the translation rule exp(A(x)).

• The notation CYCk(A) is used for k-cycles, k-sequences modulo the equivalence
relation identifying sequences whose elements are cyclic permutations of each other.

The rule is (A(x))k

k . CYC(A) is the class of all cycles and corresponds to log 1
1−A(x) .

Theorem 1.14. The exponential generating function of the mixed Stirling number of the
first kind is given by

∞∑

n=0

[
n

k/t

]
xn

n! = 1

t !
(

log
1

1 − x

)t+k−1

. (1.6)

Proof. We need to know how we can get a mixed coloured permutation using the basic
constructions listed before. A mixed coloured permutation is actually cycles with two extra
structures: a set with t elements and an arrangement with k − 1 elements. We could say it
is a pair of t-set of cycles and of (k − 1)-sequence of cycles. Hence, with little abuse of
notation, the construction for the mixed coloured permutations is the following:

MC(n, k, t) = SETt (CYC(X )) × SEQk−1(CYC(X )). (1.7)

The translation rule gives

(
log 1

1−x

)t

t ! ×
(

log
1

1 − x

)k−1

which implies (1.6) after simplification. �

2. S-restricted Stirling number of the first kind

In a series of papers about Stirling numbers [2–4], the authors studied the underlying
objects, partitions, permutations and lists, with the extra condition on the size of the sets,
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cycles and lists, respectively. For the sake of a comprehensive study of mixed Stirling
numbers of the first kind, we follow this idea and derive some results for the number of
mixed permutations such that each cycle has length s contained in a given set of integers S.
These general results include many interesting cases that can be easily obtained by special
settings of S, as for instance, S = {1, 2, . . . ,m} the restricted mixed Stirling number of
the first kind and S = {m,m + 1, . . .} the associated mixed Stirling number of the first
kind. Furthermore, we can set S as the set of even numbers or the set of odd numbers.
Moreover, by an appropriate choice of S, our results include results for mixed permutations
with forbidden cycle lengths.

DEFINITION 2.1

Given a set S of positive integers and n, k, t positive integers with k, t ≤ n, we let
MCS(n, k, t) denote the set of permutations of {1, 2, . . . , n} into k cycles such that

(a) each cycle has size given in S, and
(b) t cycles are coloured with the special colour and the remaining k − 1 with distinct

colours.

We let
[ n
k/t

]
S

denote the size of the set MCS(n, k, t).

First, we recall the definition, generating function and a recurrence of the S-restricted
Stirling numbers of the first kind on which we rely upon in this section. For a given
set of positive integers S and S-restricted Stirling numbers,

[n
k

]
S enumerates the set of

permutations of an n element set into k cycles such that each cycle has size contained in
S. In other words, we get permutations with cycle index (c1, c2, . . . , cn) such that ci �= 0
if and only if i ∈ S. This number array is a special case of the (S, r)-Stirling numbers of
the first kind

[n
k

]
r,S , defined in [3]. The generating function and the basic recursion are as

follows:

∞∑

n=k

[
n

k

]

S

xn

n! = 1

k!

⎛

⎝
∑

i≥1

xki

ki

⎞

⎠

k

,

[
n + 1

k

]

S
=

∑

s∈S
(s − 1)!

(
n

s − 1

)[
n − s + 1

k − 1

]

S
.

Theorem 2.2. Given a set of integers S and positive integers n, k and t with k, t < n, we
have

[
n

k/t

]

S
= (t + k − 1)k−1

[
n

t + k − 1

]

S
,

[
n

k/t

]

S
=

n−k+1∑

j=t

(k − 1)!
(
n

j

)[
j

t

]

S

[
n − j

k − 1

]

S
,

[
n

k/t

]

S
=

∑

s∈S

(
n

s

)
(s − 1)!

[
n − s

k − 1/t

]

S
.
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Proof. The identities are straightforward consequences of the equations (1.3), (1.4) and
(1.5). �

Theorem 2.3. For a given set of positive integers S, the exponential generating function
for

[ n
k/t

]
S
is given by the formula

∞∑

n=0

[
n

k/t

]

S

xn

n! = 1

t !

(
∑

s∈S

xs

s

)t+k−1

. (2.1)

Proof. The proof is analogous to the proof of (1.6). We only need to ensure the condition
on the length of the cycles. We use the symbols CYCS for cycles such that the length of
the cycle is included in a given fixed set S. Hence, in this case the construction (1.7) has
to be modified to

MCS(n, k, t) = SETt (CYCS(X )) × SEQk−1(CYCS(X )),

which translates to

1

t !

(
∑

s∈S

xs

s

)t

×
(

∑

s∈S

xs

s

)k−1

.

�

Next, we derive some formulas for specific S sets.

Theorem 2.4. For a given set of positive integers S with 1 ∈ S, we have

[
n

k/t

]

S
=

t∑

i=0

k−1∑

j=0

(
n

i, j

)
(k − 1) j

[
n − i − j

k − j/t − i

]

S−{1}
.

Proof. Let i be the number of fixed points coloured with the special colour and j the
number of fixed points coloured with any of the other colours. Choose the i elements out
of n elements. Choose j elements out of n − i elements and colour them with one of the
(k − 1) colours in (k − 1)(k − 2) · · · (k − j + 1) ways. The remaining n − i − j elements
are ordered into a mixed coloured permutations without fixed points. �

Let
[ n
k/t

]
>1

denote the mixed coloured derangements, i.e., permutations without fixed
points.

COROLLARY 2.5

For positive integers n, k and t with k, t < n, we have

[
n

k/t

]
=

t∑

i=0

k−1∑

j=0

(
n

i, j

)
(k − 1) j

[
n − i − j

k − j/t − i

]

>1
.
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This theorem can be formulated in a more general form, not only for fixed points, i.e.,
cycles for length 1, but for any cycles with fixed length u. S − {u} denotes the set S
excluded from the element u.

Theorem 2.6. If u ∈ S, the following identity holds:

[
n

k/t

]

S
=

t∑

i=0

k−1∑

j=0

(
n

u(i + j)

)
(ui + u j)!
ui+ j i ! j ! (k − 1) j

[
n − u(i + j)

k − j/t − i

]

S−{u}
.

Proof. Let i be the number of cycles of length u coloured by the special colour and j the
number of cycles of length u coloured by any other colour. We choose u(i + j) elements
and order them into cycles of length u according to the following procedure: we arrange
the elements and take the first u elements as a cycle, then the next u elements as a next
cycle and so on. Clearly, some double counts occur: any of the elements in a cycle could be
the starting element and the order of the cycles are not important. Only the fact is crucial
that the first i will be coloured by the special colour. Taking these aspects into account,
we find that there are

( n
u(i+ j)

) (u(i+ j))!
ui+ j i ! j ! possibilities. We need to choose the colours for the

non-special coloured cycles in (k − 1) j ways. The remaining n − u(i + j) elements build
a mixed permutation without any cycle of length u. �

3. Mixed r-Stirling numbers of the first kind

Recently, the r -Stirling numbers have received a lot of attention. The r -Stirling numbers
of the first kind counts the number of permutations that can be decomposed into exactly k
cycles such that the first r elements {1, 2, . . . , r} are in distinct cycles. In this section, we
introduce r -mixed Stirling numbers of the first kind following the original concept.

DEFINITION 3.1

We call a mixed coloured permutation r -mixed coloured permutation if the elements
{1, 2, . . . , r} are in distinct cycles. We let MCr (n, k, t) denote the set of all r -mixed
(t, 1, . . . , 1)-coloured permutations of the set {1, 2, . . . , n} coloured by exactly k colours.
We let

[ n
k/t

]
r

denote the size of the set MCr (n, k, t).

Theorem 3.2. Let n, k, t and r be positive integers. The number of r-mixed coloured
permutations is

[
n

k/t

]

r
= (t + k − 1)k−1

[
n

t + k − 1

]

r
.

Proof. First, order the n elements into t +k−1 cycles such that the elements {1, 2, . . . , r}
are in distinct cycles. Next, colour the cycles to obtain a mixed coloured permutations,
choose k − 1 cycles for the k − 1 colours. �

The next formula contains the Lah numbers,
⌊n
k

⌋
, which count the number of partitions

of an n element set into k linearly ordered subsets and is given by the closed formula [9].
One of the known closed formula for Lah numbers is [9]
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⌊
n

k

⌋
=

(
n − 1

k − 1

)
n!
k! .

Theorem 3.3. Let n, k, t and r be positive integers. The r-mixed Stirling numbers of the
first kind is given by

[
n

k/t

]

r
=

n−r∑

�=k+t−r−1

min(t,r)∑

i=0

r !
(
r

i

)(
k − 1

r − i

)(
n − r

�

)

⌊
n − r − �

r

⌋[
�

k − r + i/t − i

]
.

Proof. First, put the r elements {1, 2, . . . , r} into distinct cycles and colour these cycles.
Let i be the number of cycles that contain one of the r elements from the set {1, 2, . . . , r}
and are coloured by the special colour (0 ≤ i ≤ min(t, r)). There are

∑
i

(r
i

)(k−1
r−i

)
(r − i)!

possibilities to do so by choosing the i elements for the special colour, choosing the colours,
and order the colours for the remaining r − i cycles. Next, we construct a mixed coloured
permutation without any elements of the set {1, 2, . . . , r}. Choose � elements for this out of
the set {r+1, r+2, . . . , n} in

[
�

k−(r−i)/t−i

]
ways. Finally, construct the r cycles containing

the elements {1, 2, . . . , r} with the remaining n− r − � elements by partitioning them into
r linearly ordered sets and assigning to each list a number between 1 and r . �

4. Partial Bell polynomials and mixed permutations

We modify partial Bell polynomials so that the obtained polynomials gives at certain values
mixed Stirling numbers of the first kind. Further, we will see that these polynomials connect
the theory of mixed coloured permutations and mixed partitions [1,13]. So this variation
of Bell polynomials is an unified approach to both the theory and could be easily extended,
for instance, to the theory of mixed coloured lists or mixed Lah numbers generalizing the
well-known Lah numbers in the same vein.

Bell polynomials, Bn,k(x1, x2, . . .) = Bn,k(x j ) j≥1 were introduced by Bell as a math-
ematical tool for representing the n-th derivative of composite functions and were inten-
sively studied since then by many authors [7,10]. The exponential partial Bell polynomial
is defined by the generating function

∑

n≥k

Bn,k(x j )
tn

n! = 1

k!

⎛

⎝
∑

m≥1

xm
tm

m!

⎞

⎠

k

(4.1)

and is given explicitly by

Bn,k(x1, x2, . . .) =
∑

π(n,k)

n!
k1! · · · kn !

( x1

1!
)k1

( x2

2!
)k2 · · ·

( xn
n!

)kn
, (4.2)

where π(n, k) = {(k1, . . . , kn) ∈ Nn : k1 + k2 + · · · + kn = k, k1 + 2k2 + · · · nkn = n}.
For instance, B6,2(x2, x3, x4) = 15x2x4 + 10x3 since {1, 2, . . . , 6} can be partitioned into
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two blocks with size 2/4 and 3/3 in 15 and 10 ways, respectively. It is well-known [7] that
for particular settings of the variables x j , the exponential partial Bell polynomials reduce
to the following sequences:

Bn,k(1, 1, 1, . . .) =
{
n

k

}
,

Bn,k(0!, 1!, 2!, . . .) =
[
n

k

]
,

Bn,k(1!, 2!, 3!, . . .) =
⌊
n

k

⌋
.

So Bell polynomials can be viewed as a unified approach to all three problems: partitions,
cycles and lists of sets.

Mihoubi et al. [10] generalized this type of Bell polynomials for a general sequence
(a j ) j≥1 and presented the following combinatorial interpretation: For a given (a j ) j≥1
sequence, Bn,k(a j ) counts the number of partitions of an n element set into k blocks
such that the blocks of size j can be coloured by a j colours, Bn,k(( j − 1)!a j ) counts the
number of permutations of an n element set into k cycles such that the cycles of size j can
be coloured by a j colours, and Bn,k( j !a j ) counts the number of partitions of an n element
set into k lists such that the lists of size j can be coloured by a j colours.

Moreover, the authors extend this point of view for the cases of r -Stirling and r -Lah
numbers by defining the r -partial Bell polynomials B(r)

n,k(xi , yi ). Then

B(r)
n,k(xi , yi ) =

∑

p(n,k,r)

[
n!

k1!k2! · · ·
( x1

1!
)k1

( x2

2!
)k2 · · ·

]

[
r !

r0!r1! · · ·
( y1

1!
)k1

( y2

2!
)k2 · · ·

]
, (4.3)

where p(n, k, r) is the set of all nonnegative integer sequences (ki )i≥1 and (ri )i≥0 such
that

∑
i≥1 ki = k,

∑
i≥0 ri = r and

∑
i≥1 i(ki + ri ) = n.

Clearly, B(0)
n,k(xi , yi ) = Bn,k(xi ). Further, the special cases reduce to the well-known

sequences:

B(r)
n,k(1, 1, 1 . . .) =

{
n

k

}

r
(r -Stirling numbers of the second kind [5]),

B(r)
n,k(0!, 1!, 2!, . . .) =

[
n

k

]

r
(r -Stirling numbers of the first kind [5]),

B(r)
n,k(1!, 2!, 3!, . . .) =

⌊
n

k

⌋

r
(r -Lah numbers [11]),

B(r)
n,k(1,m,m2, . . . ; 1, 1, . . .) = Wm,r (n, k) (r -Whitney numbers [6]).

In order to derive a similar unified approach to the mixed Stirling numbers (and mixed Lah
numbers, though these numbers are not introduced yet), we modify the above definition
slightly.
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DEFINITION 4.1

Let n, k and t be integers and let (x�)�≥1 and (y�)�≥1 be the sequences of the integers

B∗
n,k,t (x�; y�) =

∑

p∗(n,k,t)

n!
t1!t2! · · · tn !

( x1

1!
)t1 ( x2

2!
)t2 · · ·

( xn
n!

)tn

(k − 1)!
k1!k2! · · · kn !

( y1

1!
)k1! ( y2

2!
)k2 · · ·

( yn
n!

)kn
,

where the sum runs over all sequences p∗(n, k, t) = {(ti )i≥1; (ki )i≥1 : ki , ti ∈
N ,

∑
i≥1 ti = t,

∑
i≥1 ki = k − 1,

∑
i≥1 i(ti + ki ) = n}.

It is well-known that the number of partitions of [n] into k blocks is given by the
following formula, where ki denotes the number of blocks with cardinality i :

∑

π(n,k)

n!
k1!(1!)k1k2!(2!)k2 · · · kn !(n!)kn ,

where π(n, k) = {(k1, . . . , kn) ∈ Nn : k1 + k2 + · · · + kn = k, k1 + 2k2 + · · · nkn = n}.
From this fact and the previous results, we recall that the partial and r -partial Bell

polynomials of the following combinatorial interpretation should be straightforward.

Theorem 4.2. B∗
n,k,t (x1, x2, . . . ; y1, y2, . . .) counts the number of partitions of n into t

blocks such that the blocks of length i can be coloured with xi colours and k − 1 ordered
blocks such that a block of length i can be coloured with yi colours.

We consider explicitly the case when xi = yi , the case when we do not have to distinguish
between the two types of sequences. First, we define Bell polynomials associated to such
a sequence combinatorially and then we present some formulas for this case.

DEFINITION 4.3

Let (an; n ≥ 1) be a sequence of non-negative integers. The number B∗
n,k,t (a j ) (xi = yi =

ai ) counts the number of mixed partitions of an n element set into k blocks such that t
blocks are labeled by 1 and the other blocks by 2, . . . , k such that any block of size j can
be coloured with a j colours.

Theorem 4.4. For n, k and t positive integers with k, t ≤ n and a given vector of positive
integers (a1, a2, . . .), the following statements hold:

B∗
n,k,t (a1, a2, . . .) = 1

t !
∑

∑n+k−t
i=1 ni=n

(
n

n1, n2, . . . , nk+t−1

)
an1an2 · · · ank+t−1,

(4.4)

B∗
n,k,t (a j ) = n!

t !
∑

∑k+r−1
i=1 ni=n

an1an2 · · · ank+t−1

n1!n2! · · · nk+t−1! , (4.5)
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∞∑

n=k

B∗
n,k,t (a j )

zn

n! = 1

t !

⎛

⎝
∑

m≥1

am
zm

m!

⎞

⎠

t+k−1

. (4.6)

Proof. There are 1
t !
( n
n1,n2,...,nt

)
an1an2 · · · ant possibilities to partition elements out of the

set {1, 2, . . . , n} into t blocks of sizes n1, n2,. . ., nt , and colour them by an1 , an2 , . . ., ant
colours. The remaining elements n − (n1 + n2 . . . + nt ) can be arranged into an ordered
partition with blocks of sizes nt+1, nt+2, . . ., nt+k−1 and can be coloured with ant+1 ,
ant+2 ,. . ., ant+k−1 colours in

( n−(n1+n2...+nt )
nt+1,nt+2,...,nt+k−1

)
ways. This implies (4.4). We get (4.5) from

(4.4) by simplification. We present the derivation of equation (4.6) explicitly:

∑

n≥max k,t

B∗
n,k,t (a1, a2, . . .)

zn

n! =
∑

n≥max k,t

1

t !
∑

n1+···+nt+k−1=n

a1a2 · · · at+k−1

n1!n2! · · · nt+k−1!
zn

= 1

t !
∑

ni≥1

an1 · · · ant+k−1

n1! · · · nt+k−1! z
n1+···nt+k−1

= 1

t !

⎛

⎝
∑

j≥1

a j
z j

j !

⎞

⎠

t+k−1

,

and hence (4.6) follows. �

We are now ready to connect the theory of our newly introduced numbers, the mixed
Stirling numbers of the first kind to the theory of Bell polynomials. Clearly, we have as
follows.

Theorem 4.5. For positive integers n, k and t with t, k ≤ n, we have

[
n

k/t

]
= B∗

n,k,t (0!, 1!, 2!, . . .).

Further, it is also easy to give a formula using B∗(n, k, t)(ai ) for the S-restricted case
[ n
k/t

]
S
.

In order to keep the form of the statement nice, we introduce the following notation.
Let cS be the characteristic sequence of a given set S of positive integers, i.e., cS =

{ci |i = 1, 2, . . . , ci = 1 if i ∈ S and ci = 0 if i /∈ S}.

Theorem 4.6. Given n, k, t positive integers with k, t ≤ n and a set of positive integers
S, we have

[
n

k/t

]

S
= B∗

n,k,t ((i − 1)!cS).

Furthermore, based on Mihoubi [10], we can interpret the general expression B∗
n,k,t ((i −

1)!ai ) combinatorially.
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Theorem 4.7. Given n, k, t positive integers with k, t ≤ n and a sequence of integers
(ai )i ≥ 1, B∗

n,k,t ((i − 1)!ai ) is the number of permutations of [n] into k + t − 1 double
labeled cycles: the first label of t cycles is 1, while the first labels of the other cycles are
different out of the set {2, 3, . . . , k}. The second label depends on the size of the cycle,
each cycle of length i receives a label out of the set {1, 2, . . . , ai }.

The detailed study of the Bell polynomials B∗
n,k,t (xi , yi ) is beyond the goal of this paper,

but it is important to mention the connections to mixed partitions and to mixed Stirling
numbers of the second kind whose objects were studied by Barati et al. [1] and Yaqubi et
al. [13].

In particular, B∗
n,k,t (1, 1, . . .) counts the number of mixed partitions defined and stud-

ied in [1,13]. Further, B∗
n,k,t (cS) gives the number of mixed partitions with block sizes

contained in a given set of positive integers.
Similar statements could be formulated about mixed lists and mixed Lah numbers.
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