
Received 21 May 2022, accepted 25 June 2022, date of publication 29 June 2022, date of current version 8 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3186998

Advance Genome Disorder Prediction Model
Empowered With Deep Learning
ATTA-UR-RAHMAN 1, MUHAMMAD UMAR NASIR 2, MOHAMMED GOLLAPALLI3,
MUHAMMAD ZUBAIR 4, (Senior Member, IEEE), MUHAMMAD AAMER SALEEM5,
SHAHID MEHMOOD 2, MUHAMMAD ADNAN KHAN 6, AND AMIR MOSAVI 7,8,9,10
1Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi
Arabia
2Faculty of Computing, Riphah School of Computing and Innovation, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
3Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam
31441, Saudi Arabia
4Faculty of Computing, Riphah International University, Islamabad 45000, Pakistan
5Hamdard Institute of Engineering and Technology, Hamdard University, Islamabad Campus, Islamabad 45000, Pakistan
6Pattern Recognition and Machine Learning Laboratory, Department of Software, Gachon University, Seongnam, Gyeonggido 13120, Republic of Korea
7Faculty of Civil Engineering, Technische Universität Dresden, 01067 Dresden, Germany
8John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
9Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, 811 07 Bratislava, Slovakia
10Institute of the Information Society, University of Public Service, 1083 Budapest, Hungary

Corresponding authors: Muhammad Adnan Khan (adnan@gachon.ac.kr) and Amir Mosavi (amir.mosavi@kvk.uni-obuda.hu)

ABSTRACT A major and essential issue in biomedical research is to predict genome disorder. Genome
disorders cause multivariate diseases like cancer, dementia, diabetes, cystic fibrosis, leigh syndrome, etc.
which are causes of high mortality rates around the world. In past, theoretical and explanatory-based
approaches were introduced to predict genome disorder. With the development of technology, genetic data
were improved to cover almost genome and protein then machine and deep learning-based approaches were
introduced to predict genome disorder. Parallel machine and deep learning approaches were introduced.
In past, many types of research were conducted on genome disorder prediction using supervised, unsu-
pervised, and semi-supervised learning techniques, most of the approaches using binary problem prediction
using genetic sequence data. The prediction results of these approaches were uncertain because of their lower
accuracy rate and binary class prediction techniques using genome sequence data but not genome disorder
patients’ data with his/her history. Most of the techniques used Ribonucleic acid (RNA) gene sequence
and were not often capable of handling bid data effectively. Consequently, in this study, the AlexNet as
an effective convolutional neural network architecture proposed to develop an advance genome disorder
prediction model (AGDPM) for predicting genome multi classes disorder using a large amount of data.
AGDPM tested and compare with the pre-trained AlexNet neural network model and AGDPM gives the best
results with 89.89%&81.25% accuracy of training and testing respectively. So, the advance genome disorder
prediction model shows the ability to efficiently predict genome disorder and can process a large amount of
patients’ genome disorder data with a multi-class prediction method. AGDPM has proved that it is capable
to predict single gene inheritance disorder, mitochondrial gene inheritance disorder, and multifactorial gene
inheritance disorder with respect to various statistical performance parameters. So, with the help of AGDPM
biomedical research will be improved in terms to predict genetic disorders and put control on high mortality
rates.

INDEX TERMS Genome disorder, AlexNet, deep learning, machine learning, artificial intelligence, data
science, information systems, convolutional neural network.
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I. INTRODUCTION
Approximately 2000 human diseases are caused by single
causal genes (monogenic syndromes). The distinct pheno-
typic features of each syndrome are the biological mani-
festations of its underlying genes, and each differs slightly
from the others. This makes establishing phenotype-gene
relationships a vital biological process that assists clinicians
and biologists in understanding the pathogenetic processes
in the syndromes. The ability to identify the genes respon-
sible for certain ailments simplifies patient diagnosis and
provides insight into the operational network of connections
and mutation. In the other words, a potential genetic ill-
ness can be detected through the disease gene identification
process where the causing mutant genotypes studied. Such
disease-causing genes may have single nucleotide variations,
single nucleotide additions or deletions, entire gene loss,
and other genetic diseases. Linkage analysis and positional
cloning, followed by mutation analysis, have traditionally
been used to identify disease genes. The susceptible chro-
mosomal interval, which is the approximate location of the
disease-associated candidate genes, is first identified using
linkage analysis on human pedigrees. Second, the use of
positional cloning to sequence a group of candidate genes
in the area is discussed. Physical and transcription map-
ping are both included in this process. A human genetic
ailment is a genetic condition caused by abnormalities in the
genes or chromosomes that emerges before birth. Single-gene
illnesses and complex disorders are the two types of genetic
disorders. A single gene disease is produced by a single
mutation in deoxyribonucleic acid structure, which results in
a single fundamental deficit with severe implications. These
illnesses are easily passed down through generations. As a
result, mendelian diseases are occasionally used to describe
these conditions.

Genetic disorders can also be multifactorial, i.e., com-
plex diseases that reflect the pathological consequences of
a mix of genetic abnormalities, lifestyle, and environmental
variables, with genetic factors accounting for just a portion
of the phenotypes associated with the disorders. A single
gene disorder is caused by a genetic mutation in just one
gene. Because this may happen in any gene, single-gene
disorders can influence all aspects of functioning and are
incredibly diverse [1]. Despite their clinical distinctions, all
single-gene illnesses have the same biological foundation, are
transmissible to offspring, and need the same critical genetic
and counseling services. Accurate diagnosis, risk assess-
ment, and information for impacted individuals and fami-
lies, as well as access to risk management alternatives and
help for sick adults and children. It is linked to non-nuclear
mitochondrial deoxyribonucleic acid alterations. Each mito-
chondrial genome contains five to ten circular deoxyribonu-
cleic acid segments. They retain their organelles as eggs
during fertilization. As a result, this disease is always passed
down from mother to the child. The hereditary mitochon-
drial condition causes mitochondrial encephalopathy, lactic

acidosis, stroke-like events, and ocular disorders. Several
causes of genetic illness mutations in multiple genes cause
these illnesses, which are typically the result of a complicated
interaction with environmental and nutritional factors. It’s
also known as polygenic or complicated disease [2]. Cancer,
diabetes, and Alzheimer’s are all caused by a multifactorial
genetic disease. Machine learning is a method of genetic pre-
diction that differs from old methods. Deep learning advance-
ments, as well as the increase of data sets and processing
capacity, have boosted its popularity in recent years. These
approaches are appealing in statistical genetics [3], where the
effects of a multitude of variables on a result are difficult to
predict due to their ability to work in wide dimensions and
identify interactions across loci without assuming additivity.

II. RELATED WORK
A. PREVIOUS WORK WITH RESPECT TO MACHINE
LEARNING
Complex disorders containing a high number of genes,
such as Single gene inheritance disorder (SGID), Mitochon-
drial gene inheritance disorder (MGID), and Multifactorial
genome disorder (MGD), can have a wide range of symp-
toms. More precise genetic data collecting has come from
recent developments in genomic technology. Hundreds of
people with disorders have been detected in several large
genetic investigations, such as those for SGID and MGD [4],
[5]. Despite the large amount of data generated by this study,
identifying the exact genes that cause disease has proved
to be a difficult endeavor [6]. Genetic data have been pro-
posed to be particularly informative because different distur-
bances in a single disorder module frequently produce similar
phenotypes [7], and phenomena networks (where genes are
appended endpoints if they indicate associated phenotypic
states) are highly linked to proteins. Genome interactions and
transcription factor networks [8]. Furthermore, abnormalities
found in the interactome distant neighbors induce unique
phenotypes [6]. Several ways for predicting disease from
genes that incorporate these diverse types of data have been
published [9]. A set of algorithms is utilized to merge the
data into a single graph, which is then used for prediction.
According to the fundamental principles of scientific studies,
genetic variants implicated in intermediary variables will
cease to be meaningful when put in a dependent variable with
these intermediate components. When genetic variants are
engaged in previously unknown pathways or processes with
immeasurable intermediate components, they have the poten-
tial to enhance disease prediction beyond existing risk fac-
tors. Some disorders may be more susceptible to previously
unknown paths than others. A critical, but not improbable,
the point is that gene findings may lead to the identification of
new etiological networks and intermediate biomarkers, which
may be stronger predictors of disease than the genetic variant
that led to their discovery. A binary support vector machine
was utilized in this study to aggregate data from diverse
sources. Because the remaining collection may contain genes
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for unknown disorders, semi-supervised learning approaches
[10] and adaptive and maladaptive [11] binary learning algo-
rithms, have been suggested. In recent years, deep learning
and machine learning have been successfully employed in a
wide range of biological contexts. Deep learning andmachine
learning algorithms are powerful enough to handle large data
sets with significant degrees of noise, complexity, and/or
defects while generating only a few reasonable estimates
regarding probability distributions and data production pro-
cesses. Deep learning and machine learning approaches are
primarily concerned with prediction, as opposed to the infer-
ential approach of classic statistical methodology. In previous
studies, mostly researchers worked on genome sequencing
disorders using binary classes. Due to genome sequencing
and binary classes data put some limitations on the results.
Several researchers applied to machine and deep learning
algorithms to get accurate results on genome sequence disor-
ders, they used pre-trained algorithms and classificationmod-
els to predict the diseases. Furthermore, genome sequencing
results using machine and deep learning algorithms were not
accurate as per the prediction requirements.

B. PREVIOUS WORK WITH RESPECT TO DEEP LEARNING
GCN-MF is a framework introduced byXinGao et al. [13] for
disease-gene association task that combines Graph Convolu-
tional Network (GCN) and matrix factorization. They were
able to quantify non-linearities and leverage measured simi-
larities thanks to the GCN. In Zeng et al. [14], a new relevance
metric called HeteSim was utilized to priorities potential dis-
ease genes. Three heterogeneous networks were investigated
in this article, based on gene-phenotype connections, protein-
protein interactions, and phenotype-phenotype similarity.
IN a study by Zhou [15], knowledge-based methodologies
were used to predict gene-disease associations. The genes that
co-occur within known gene-disease association data are used
to derive gene-gene mutual information. By embedding the
heterogeneous network made of genes and diseases, as well
as their individual features, Li et al. [16] formulated a new
method of disease gene prioritization based on graph con-
volutional networks, PGCN. A novel deep neural network
model based on the features of phenotypes and genotypes
has been developed by Yang et al. [17]. To optimise the
parameters of a deep neural network and produce deep vector
characteristics of diseases and genes, the model combined
multi-view features of diseases and genes with feedback
information from training samples. SmuDGE, a method that
leverages feature learning to produce vector-based represen-
tations of phenotypes linked with an entity, was developed
by Alshahrani and Hoehndorf [18]. SmuDGE can be used
to compare two collections of phenotypes using a train-
able semantic similarity score. For disease gene prediction,
Yang et al. [19] created a heterogeneous disease-gene-related
network (HDGN) embedding representation framework.
A low-dimensional vector representation (LVR) of the nodes
in the HDGN can be obtained using this approach. A het-
erogeneous network embedding representation algorithmwas

introduced by the researchers in [20], which constructed a
network that integrated symptom-related associations and
applied an embedding representation algorithm to derive low-
dimensional node representations. It is possible to obtain
candidate genes for given symptoms by comparing the sim-
ilarity of their vectors. Machine learning was employed
to reduce gene/non-coding RNA features in the study by
Liu et al. [21]. Data from the Common Mind consortium
was used to generate RNA-seq sequences for the dorsolat-
eral prefrontal cortex (dlpfc). Liu et al. [22], researched eight
common mental disorders, including ADHD, depression,
anxiety, autism, intellectual disabilities, speech/language
disorders, developmental delays, and oppositional defiant
disorder in African Americans. 4179 samples of whole
genome sequencing were obtained from blood, including
1384 of those who were diagnosed with at least one mental
disorder. Table 1 shows the limitations of previous studies,
and it shows that Liu et al. [22] applied deep learning mod-
els to center of applied genomics (CAG) biobank patients
ncRNA and achieved 65 percent genetic disease prediction
accuracy, and that this study has handcrafted features and
data imbalance drawbacks. This work has handcrafted char-
acteristics and unbalanced sequence drawbacks, according to
Liu et al. [21], who used machine learning models on
IncRNAs patients’ data and achieved 67 percent genetic
illness prediction accuracy. Yang et al. [20] used the
LSGER deep learning model on gene sequence patients and
achieved a prediction accuracy of 66.80% for genetic disease,
using features such as selection approaches and imbalance
sequence disadvantages. Liu et al. [22] used the PDGNet deep
learning model on patients’ genetic characteristics and were
able to predict genetic disease with 73.8 percent accuracy, and
this study had unbalance predict classes. The following are
the study’s significant contributions:
•This study presents a new deep learning model for pre-

dicting diseases caused by many genetic disorders.
•To examine the performance of the predicted class, the

suggested model used a number of statistical factors.
•This research depicts the proposed model in its entirety,

including its spatial and computational complexity.

III. PROPOSED MODEL
Early detection of genetic diseases is extremely beneficial
to doctors and the biomedical sector in terms of prescribing
medications for treatment. We propose AGDPM for the early
detection of multi-class genomic abnormalities in this study.
The flow of this investigation employing AGDPM and the
pre-trained model of neural network AlexNet is depicted
in Fig. 1. The first phase of the proposed methodology is
to take the input of data and send it to the preprocessing
phase. In preprocessing, phase data is processed using sev-
eral pre-processing techniques to clean the outliers and fill
the all-missing values. After removing the outliers of data,
regression techniques were applied to pre-processed data to
get top rank features to predict the genome disorder. After
the best features extraction data is split into training and
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TABLE 1. Limitations of previous studies.

testing blocks. Training block of data sent towards AGDPM
and pre-trained AlexNet to train models, at the termination
of the training phase data was stored in the cloud for easy
access anytime to testing block. Testing block access, the pre-
processed data from pre-processed phase, and trained model
from cloud to predict the genome disorder. So, both models
AGDPM and AlexNet predict the disorders and we compare
the results of both the newly proposed AGDPM and pre-
trained AlexNet model with the help of several performance
parameters. Malign patients from different genome disorders
can contact doctors for treatment.

AGDPM consists of 22 layers, 7 fully connected layers,
6 batch normalization layers, 6 ReLU layers, Softmax, and a
classification layer. AGDPMgets input features from genome
disorder data. The first six fully connected layers consist of
100 neurons each and the last fully connected layer contains
3 neurons because prediction output contains single-gene
inheritance disorder, mitochondrial gene inheritance disorder,
and multifactorial gene inheritance disorder [23].

gin = L + O+ S (1)

gout = ReLU (gin) (2)

where L represents the input of features as matrix form with
batch input, O is the number of neurons and S is for biases.

Neural networks are very sensitive to train. There are a
lot of tricks and paths to overcome the limitation of data
distribution. So, for data normalization AGDPM used a batch
normalization layer for the normal distribution of data using
zero mean and variance. Batch normalization layer to over-
come the limitation of covariate shift problem [24].

My =
1
N

k∑
p=1

g(p)D (3)

Vriancex =
(

N
N − 1

)
1
N

k∑
p=1

Q2(p)
D (4)

z =
γ

√
Variancex + e

x +
(
ϑ +

γMy
√
Variancex + e

)
(5)

Equations 3, 4, and 5 represents batch inference mean,
batch inference variance, and batch inference shifting
respectively [24].

Softmax layers are used to calculate the prediction prob-
abilities with the help of the transformation of values

between 0 and 1. So, equation 6 represents the working of the
Softmax layer [25].

ξ (En)j=
lnj

M∑
j=1

lnj
(6)

where En represent input values to the Softmax function, nj
are the values which the Softmax function takes as input like
positive values, negative values, and zerowhich are not a valid
distribution for probability. Exponential function lnjconverts
all input values from zero to one for better probability
distribution and M is the number of classes for a multi-
classification purpose. Table 2, Table 3, and Table 4 elaborate
the details of the feature input layer, fully connected layer, and
Softmax layer respectively.

IV. DATA SET
Genome disorders dataset get from Kaggle which has open
access for everyone [12]. Genome disorder data contains
22083 patients’ history of single-gene inheritance disorder,
mitochondrial gene inheritance disorder, and multifactorial
gene inheritance disorder. This data consists of three classes,
43 independent variables and 1 is the dependent variable.
So, we applied several outliers, regression, and normalization
techniques to get the best features. Table 5 describes the
best 24 extracted features for genome disorder prediction.
So, AGDPM uses this feature-based dataset for training and
testing the model.

V. PROPOSED MODEL SAPCE AND COMPUTATIONAL
COMPLEXITY
In this section, we calculate the space and computational
complexity of the proposed model for genome disorder pre-
diction. From equation 7 to 18 used to calculate the space
complexity of model and equation 19 to 22 used to check the
computational complexity of the proposed model.

Fully connected layer:

|w| = n ∗ m+ k = (n+ 1) ∗ m (7)

|w| =

(
700∑
n=1

+1

)
∗

21∑
m=1

. (8)

where w represents no. of total elements in weight matrix,
n represents total input neurons, m represents total output
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FIGURE 1. Proposed methodology for multiclass genome disorder Prediction.

TABLE 2. Feature input layer.

TABLE 3. Fully connected layer.

neurons and k represents total bias.

|w| = (n+ 1) ∗m ∗ p bytes (9)

|w| =

(
700∑
n=1

+1

)
∗

21∑
m=1

∗p bytes (10)

where p represents total number of bytes per element

Model space complexity

100→ (fc) ∗ 3 (11)

where 100 are total neurons per fully connected layer and
3 output neurons.

|w| = (100+ 1) ∗3 = 303 (12)
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FIGURE 2. Proposed Advance genome disorder prediction model.

TABLE 4. Softmax layer.

From equation 4 the proposed model gets total number of
elements representing matrix.

Size of weighted matrix in bytes using double precision
floating point number:

p = 64bits
/
number= 8bytes/number (13)

|w| = (100+ 1) ∗3 ∗ 8 = 2424bytes (14)

where the proposed model achieved 2424 bytes model space
complexity per fully connected layer using double precision
floating point layer and all fully connected layers takes 16Kb
to save model operations..

Single precision floating point number:

p = 32bits
/
number= 4bytes/number (15)

|w| = (100+ 1) ∗3 ∗ 4 = 1212bytes (16)

where the proposed model achieved 1212 bytes model space
complexity per fully connected layer using double precision
floating point layer and all fully connected layers takes 8Kb
to save model operations.

Integer fixed point:

p = 8bits
/
number = 1bytes/number (17)

|w| = (100+ 1) ∗3 ∗ 1 = 303bytes (18)

where the proposed model achieved 303 bytes model
space complexity per fully connected layer using dou-
ble precision floating point layer and all fully con-
nected layers takes 2Kb to save model operations. So, the
proposed model occupied lesser space using integer fixed
point.
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TABLE 5. Dataset description [12].

Model Computational Complexity:

#multiply = n (19)

#add = n (20)

where equation 21 represents total no of operations per output
neurons. So,

Operation = 2∗n ∗ k (21)

Operation = 2∗
700∑
n=1

∗

21∑
k=1

. (22)

The proposed model achieved 6000 operations per second
to compute the problems per fully connected layer and col-
lectively all fully connected layers operate 42000 operations
per second which is much better and faster to predict the
problems.

VI. SIMULATION RESULTS
In this research MATLAB, 2021 was used for simulation
and prediction purposes. AGDPM and pre-trained AlexNet
model is used to train and test the dataset. At the begin-
ning of the simulation process, the dataset total attributes
split into training (70%) 15,458 attributes and testing (30%)
6661 attributes. So, we applied both AGDPM and AlexNet
models on training and testing data, and choose the best-
performed model to predict the single-gene inheritance
disorder, mitochondrial inheritance disorder, and multifac-
torial inheritance disorder. Before the selection of the best-
predicted model, we applied several statistical performance
parameters [26]–[31] like Miss classification rate (MCR),
sensitivity, specificity, Positive predicted value (PPV), Clas-
sification accuracy (CA), Negative predicted value (NPV),
False-negative ratio (FNR), f1-score, Likelihood positive

ratio (LPR), False positive ratio (FPR), Likelihood negative
ratio (LNR) and Fowlkes-Mallows index (FMI) on predicted
results. Statistical performance parameters are described
below in the form of mathematical equations with respect to
the confusion matrix and in these equations ∂ , Ø, µ & � rep-
resents the true-positive, false-positive, true-negative results
and false-negative results respectively.

∂i = i
/
3i

(23)

∴ is for predicted class and 3 for true class, (24)–(38), as
shown at the bottom of the next page.

Fig. 3 shows the training progress of the advance genome
disorder prediction model on 100 epochs. AGDPM tested
its training progress on 20, 30, 50, 60, 80, and 100 epochs
and AGDPM achieved its best training progress results on
100 epochs of 89.67% accuracy with smooth convergence
and 10.33% training loss rate. Table 6 shows the descriptive
results of AGDPM training progress on each tested epoch.
It clearly observed that at 100 epoch’s model achieved the
89.67% & 10.33% accuracy and loss rate respectively.

Table 7 elaborates the predicted results of single-gene
inheritance disorder, mitochondrial gene inheritance disorder,
and multifactorial gene inheritance disorder using the confu-
sion matrix.

Table 8 shows the AGDPM predicted simulation results
of single-gene inheritance disorder with the help of sev-
eral statistical performance parameters in which single-
gene inheritance disorder achieved 83.55%, 87.83%, 74.92%,
16.45%, 75.12%, 75.33%, 87.59%, 12.17%, 25.08%, 6.15%,
0.29% and 75.13% of CA, specificity, sensitivity, CMR,
f1-score, PPV, NPV, FPR, FNR, LPR, LNR, & FMI
respectively. Table 9 demonstrates the AGDPM predicted
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simulation results of mitochondrial gene inheritance disorder
utilizing numerous statistical parameters where single-gene

inheritance disorder obtained 84.28%, 86.99%, 80.58%,
15.72%, 81.23%, 81.89%, 85.98%, 13.01%, 19.42%, 6.19%,

µi =
∑3

j=1

(
i
/
3j6=i

)
(24)

Øi =
∑3

j=1

(
j6=i
/
3i

)
(25)

�i =
∑3

j=1

(
j6=i
/
3j6=i

)
(26)

CA =
i
/
3i
+
∑3

j=1

(
i
/
3j6=i

)
i
/
3i
+
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3i

)
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100 (27)

CMR = 100−

 i
/
3i
+
∑3

j=1

(
i
/
3j6=i

)
i
/
3i
+
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3i

)
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100
 (28)

Sensitivity =
i
/
3i

i
/
3i
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100 (29)

Specifity =

∑3
j=1

(
i
/
3j6=i

)
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3i

) ∗ 100 (30)

F1-Score =
2 i
/
3i

2 i
/
3i
+
∑3

j=1

(
j6=i
/
3i

)
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100 (31)

PPV =
i
/
3i

i
/
3i
+
∑3

j=1

(
j6=i
/
3i

) ∗ 100 (32)

NPV =

∑3
j=1

(
i
/
3j6=i

)
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100 (33)

FPR = 100−

 ∑3
j=1

(
i
/
3j6=i

)
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3i

) ∗ 100
 (34)

FNR = 100−

 i
/
3i

i
/
3i
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100
 (35)

LPR =

i/3i
i/3i
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100

100−

 ∑3
j=1

(
i
/
3j6=i

)
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3i

) ∗ 100
 (36)

LNR =

100−

 i/3i
i/3i
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100


∑3
j=1

(
i
/
3j6=i

)
∑3

j=1

(
i
/
3j6=i

)
+
∑3

j=1

(
j6=i
/
3i

) ∗ 100
(37)

FMI =

√√√√√
 i

/
3i

i
/
3i
+
∑3

j=1

(
j6=i
/
3j6=i

) ∗ 100
 ∗

 i
/
3i

i
/
3i
+
∑3

j=1

(
j6=i
/
3i

) ∗ 100
 (38)
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FIGURE 3. Proposed Advance genome disorder prediction model training progress.

TABLE 6. Training progress of proposed AGDPM.

TABLE 7. Testing confusion matrix of proposed AGDPM.

0.22% and 81.23% of CA, specificity, sensitivity, CMR,
f1-score, PPV, NPV, FPR, FNR, LPR, LNR, & FMI respec-
tively. Table 10 illustrates the AGDPM predicted simula-
tion results of multifactorial gene inheritance disorder using
several statistical performance parameters, in which single-
gene inheritance disorder reached 94.67%, 95.90%,90.92%,
5.33%, 89.37%, 87.87%, 97.00%, 4.10%, 9.08%, 22.16%,

0.09%, and 89.38% of CA, specificity, sensitivity, CMR,
f1-score, PPV, NPV, FPR, FNR, LPR, LNR, & FMI respec-
tively. Table 11 elaborates the comparative testing results of
AGDPM and respectively. As mentioned in table 9, AlexNet
attained 58.68% classification accuracy and 41.32% loss rate
and AGDPM accomplished 81.25% classification accuracy
and 18.75% loss rate. So, AGDPM performed better as
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TABLE 8. Testing simulation results of proposed single-gene inheritance disorder using AGDPM.

TABLE 9. Testing simulation results of proposed mitochondrial gene inheritance disorder using AGDPM.

TABLE 10. Testing simulation results of proposed multifactorial gene inheritance disorder using AGDPM.

TABLE 11. Testing comparative results of AlexNet vs proposed AGDPM.

TABLE 12. Comparative analysis with previous studies.

compared with the pre-trained AlexNet model for the predic-
tion of genome disorder. Table 12 illustrates the comparative
analysis of the proposed model with previous studies and
it depicts, Liu et al. [22] applied deep learning models on
center of applied genomics (CAG) biobank patients’ ncRNA
and achieved 65% prediction genetic disease accuracy and
35% miss-classification rate, Yichuan Liu. et al [21] applied

machine learning models on IncRNAs patients’ data and
achieved 67% prediction genetic disease accuracy and 32%
miss-classification rate, Yang et al. [20] applied LSGER
deep learning model on gene sequence patients and achieved
66.80% prediction genetic disease accuracy and 33.2% miss-
classification rate, Liu et al. [22] applied PDGNet deep
learning model on patients’ genetic features and achieved
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73.8% prediction genetic disease accuracy and 26.2% miss-
classification rate and at the end the proposedmodel AGDPM
uses patients clinical features base data and achieved 81.25%
prediction accuracy and 18.75% miss-classification which is
far better than all previous studies because of the proposed
model used perfect architecture of fully connected and con-
volutional layers for the prediction of this disease and also
having a perfect space and computational complexity.

VII. CONCLUSION
In the field of biomedical research, artificial intelligence
development has had a massive impact. In this research,
we created a new model, AGDPM, and used the pre-trained
AlexNet model as well. AGDPM and AlexNet were trained
and tested on genome disorder data obtained from an online
repository, and the performance of both models was evalu-
ated using various statistical performance parameters. With
81.25 percent prediction accuracy, AGDPM outperforms
AlexNet in the prediction of single-gene inheritance disorder,
mitochondrial gene inheritance disorder, and multifactorial
gene inheritance disorder. The AGDPM will significantly
contribute to biomedical research to help predict genetic
diseases. To get more accurate and enhanced prediction
results, this research can be expanded to include more
genetic disorders and more than one prediction model in the
future.
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