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Abstract: In the present study 12 water samples of five sampling sites (Tatabánya, Dandár, Szentendre,
Szent Flórián and Ciprián groundwaters) known as nutrient-depleted aquatic environments were
studied using amplicon sequencing (NGS) and cultivation techniques. Diversity indices and cell
counts were determined to assess the species richness in relation to the cell counts within the
samples, and the oligocarbophile growth capability of the isolated bacteria was tested in microtiter
plates. Altogether, 55 bacterial phyla were identified from the samples by amplicon sequencing. The
microbial communities of the different sampling times of the same sites did not differ significantly.
Patescibacteria and Proteobacteria were present in all samples. Ciprián sample was dominated by
Bacteroidetes, while in Dandár sample a high ratio of Chloroflexi was detected. Rokubacteria and WOR-1
dominated Szent Flórián sample and Tatabánya had a high number of Epsilonbacteraeota. Nine
archaeal phyla were also detected; the samples were characterized by the presence of unclassified
archaea and Nanoarchaeota, among them Woesearchaeia, as the most dominant. Crenarchaeota and
Altiarchaeota were detected in high ratios in Dandár water samples. Among Thaumarchaeota the family
Nitrosopumilaceae, and orders of Nitrosotaleales and Nitrososphaerales appeared in Szent Flórián and
Tatabánya samples. Key organisms of the different biogeochemical cycles were discovered in these
nutrient-depleted environments: methanogenic archaea, methanotrophic bacteria, ammonia oxidizer,
nitrate reducers, diazotrophs, sulfate reducers, and sulfur oxidizer. Diversity indices and cell counts
of the samples show negative correlation in case of bacteria and positive in case of archaea in Ciprián
sample. The high diversity indices in Szentendre samples are connected to low cell counts, most
probably due to the vulnerability of the groundwaters to the external environment factors which lead
to the infiltration of soil microbes and contaminants to the water. The isolated bacteria were affiliated
into four phyla, most of them belonging to Proteobacteria (59%) followed by Actinobacteria (21%),
Firmicutes (17%) and Verrucomicrobia (1%). The members of the facultative chemolithotrophic genera
of Sphingobium, Sphingomonas, Sphingopyxis were characterizing only Szentendre, Szent Flórián and
Tatabánya samples. Only 10% of the isolated species showed an obligate oligocarbophile character.
From the samples, a high number of novel bacterial taxa were cultivated. As a conclusion, our results
confirmed the predominance of unclassified and unknown taxa in subsurface water, pointing to the
importance and necessity of further studies to characterize these microbial populations.
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1. Introduction

Oligotrophic environments are characterized by low nutrient flux and low concentra-
tions of organic material [1]. According to the review of Kuznetsov [2], the total contents
of dissolved and suspended organic substances are the most important ecological fac-
tors for the development of oligotrophic microorganisms in fresh waters. The value of
suspended organic substance should be around 1.36 mg/L and the amount of dissolved
organic material 15.24 mg/L, respectively. In these environments the members of the mi-
crobial communities are strongly dependent on each other, most of them belonging to the
uncultivable diversity of microorganisms: they are often in a VBNC (Viable but Non Cul-
tivable) state e.g., due to starvation [3], and they can grow only on multiple substrates [4].
They grow in the presence of a mutualistic partner, e.g., iron reducers, sulfate reducers,
methanogens, or methanotrophs [5], or require special co-aggregations to multiply [6].
They can also compete with each other for substrates [7] etc. In order to survive the stress
of low-nutrient content, oligotrophic microorganisms possess different strategies to cope
with these conditions. Higher substrate affinity makes possible the uptake of inorganic
and organic nutrients presented in “nano” and “pico” molar concentrations. The efficient
transport systems are characterized by unique metabolic regulation [8]. Cells in nutrient-
depleted conditions often increase their surface-to-volume ratio to optimize the uptake
of the sparse nutrients [9]. A host-dependent lifestyle [10] also helps them to survive in
these environments. The cultivation of microorganisms inhabiting low-nutrient-content
environments under laboratory conditions is hard and many bacteria are classified as “yet
to be cultured bacteria” [11]. The challenge of cultivation still exists [12] though many
attempts have recently been made to cultivate previously uncultured microorganisms,
e.g., cultivation with a diffusion growth chamber [13], modified plating methods [14] or
high-throughput culturing (HTC) using dilution-to-extinction approaches [15]. In the last
decade high-throughput sequencing methods have been used to study microbial diver-
sity in groundwater, however, studies investigating the entire bacterial community in
groundwater and wells have rarely been conducted [16].

The aim of the present study was to 1: check the prokaryotic diversity of nutrient-
depleted aquatic environments located in Hungary: well waters of Tatabánya, Dandár,
Szentendre and Szent Flórián, and Ciprián groundwater (all are characterized as nutrient
depleted environments but differ in their chemical composition) based on cultivation and
cultivation-independent techniques (e.g., by NGS: New Generation Sequencing), 2: test
cultivated bacteria for oligocarbophile characters, and 3: estimate the ecological roles of
the detected prokaryotes based on literature data.

Knowing that these environments are used or considered as potential sources of
drinking water or bathing, the obtained results from this study can be useful for environ-
mental policymakers to formulate water management strategies (e.g. biomonitoring, water
distribution systems).

2. Materials and Methods
2.1. Description of the Hydro-Geological Properties of the Sampling Sites

The Dandár well is located in the southern discharge zone of the thermal karst region
of Budapest. It is characterized as a confined region: all the springs in this zone are hot
springs, with a temperature range between 33 and 47 ◦C [17]. The seasonal discharge
variations are negligible [17]. Due to the long travel time of the water through the pores of
the host rock, the high temperature and the geological nature, the water is characterized
by high SO4

2− content and high conductivity. The Ciprián groundwater is located on the
northern shore of Lake Balaton on Tihany Peninsula. It is an unconfined aquifer: sands and
silts form the rocks above the groundwater with remarkable porosity and permeability [18];
therefore, the retention time of the water is short. Moreover, intensive agricultural activity
is observed in this region. The Szentendre spring is located within the Dunazug mountains
where the water comes from a confined aquifer formed by agglomerates of andesite. Szent
Flórián is an artesian well (semi-confined aquifer with siliciclastic cover) near the center
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of Nagytétény; its host rock is a Miocene carbonate [19,20]. Tatabánya well belongs to
the Komárom–Štúrovo reservoir, and this area is situated in the north-eastern part of the
Transdanubian Range in Hungary. Limestone and dolomite karst aquifer form the area
of outcrops of the Upper Triassic rocks [21]. At the time of sampling, gas bubbles were
observed in the water of the aquifer.

2.2. Collection of Water Sample

Water samples of Dandár (47.476453 N 19.070999 E) were collected from the under-
ground pipe alimenting the thermal bath, and Szentendre (47.698721 N 19.047149 E), Szent
Flórián (47.396307 N 18.985843 E) and Ciprián (46.921588 N 17.886032 E) water samples
were collected from the spring’s water outflow. Concerning the Tatabánya site (47.5692 N
18.4048 E), the water sample was collected from a former mine aquifer. Sampling was
repeated four times from the Dandár bath, three times from the Szentendre and Szent
Flórián springs, and once from the Ciprián spring and Tatabánya well during the period
from 2017 to 2019. The water samples (2-2 L) were aseptically collected into clean, sterile,
glass bottles according to ISO 19458:2006 standard, transferred at 4 ◦C (maximum 2 h) and
filtered for cell count determination and molecular studies immediately upon arrival at
the laboratory.

2.3. Determination of the Physical and Chemical Parameters

The pH and temperature were measured on site using a Hach HQ40D portable multi-
meter (Hach, Loveland, CO, USA). All other parameters were determined in the laboratory
according to standard methods [22]. Nitrate ion (ASTM 4500-NO3–B) was measured by
applying the UV-spectrophotometric screening method using a Perkin Elmer Lambda
35 UV/VIS spectrophotometer (Waltham, MA, USA). Sulfate ion was precipitated in an
acidic medium with barium chloride and the absorbance of the resulting barium sulfate
suspension (ASTM 4500-SO42–E) was measured with a Hach DR2000 spectrophotometer
(Loveland, CO, USA). Iron (3500-Fe-B) was brought into the ferrous state by boiling with
acid and hydroxylamine, then 1,10-phenantroline was added. The absorbance of the re-
sulting red complex was determined with the Hach DR2000 spectrophotometer (Loveland,
CO, USA). The amount of total organic carbon (TOC) was measured after the removal of
inorganic carbon by acidification and sparging applying the combustion-infrared method
(ASTM 5310-B). The samples were injected into a heated reaction chamber packed with
platinum group metals, where their organic carbon content was oxidized to carbon dioxide
and water. The amount of the carbon dioxide was measured by an infrared detector. The
type of TOC analyzer was a Multi N/C 2100S (Analytik Jena, Jena, Germany). Hardness
was measured using the EDTA titrimetric method applying a Eriochrome Blact T indicator
(ASTM 2340-C Hardness).

2.4. Determination of Total Cell Count

In order to determine the total cell counts of the samples, 200 mL from each wa-
ter sample were filtered on a polycarbonate membrane filter (0.2 µm GTTP, Millipore,
Burlington, MA, USA). Then, the filters were fixed in a solution of 2% paraformaldehyde
(Sigma-Aldrich, Darmstadt, Germany) dissolved in 0.1 M phosphate buffer (NaH2PO4
3.2 g, Na2HPO4 10.9 g in 1000 mL distilled water, pH 7.2) overnight. The obtained filters
were stored at −20 ◦C until further analysis. Microscopic cell counts were determined
using Nikon80i epifluorescent microscopy and NisElements program package according to
Kéki et al. [23].

2.5. Isolation of Bacterial Strains

To isolate bacterial strains, a new medium (named M5) was developed using 0.05 g/L
yeast extract, 0.05 g/L proteose peptone, 0.05 g/L casamino acids, 0.05 g/L glucose,
0.05 g/L soluble starch, 0.03 g/L sodium pyruvate, 0.03 g/L K2HPO4, and 0.005 g/L
MgSO4�7H2O, adding 15 mL/L of growth factor solution (composition: sodium acetate:
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0.5 g, sodium formiate: 0.5 g, sodium succinate: 0.5 g, L-D glucosamine: 0.5 g and glycerin:
0.5 mL dissolved in 100 mL of distillated water) and 15 mL/L of trace element solution
(FeSO4�7H2O: 2 g, H3BO3: 0.03 g, MnCl2�4H2O: 0.1 g, CoCl2�6H2O: 0.19 g, NiCl2�6H2O:
0.024 g, CaCl2�2H2O: 0.002 g, ZnSO4�7H2O: 0.144 g, Na2MoO4�2H2O: 0.036 g and EDTA:
5.2 g dissolved in 1 L of distilled water). pH was adjusted to 7.0–7.2 and tap water was
added to the medium until the final volume 1 L was reached, and then finally autoclaved
at 121 ◦C for 20 min. The media were solidified with either agar or gellan gum, respectively.
Isolation happened in a random manner after direct spreading of 100 µL water samples
and also after enrichment of 50 mL of water sample in 250 mL of R2A and M5 media for
2 weeks using polyurethane foam-based traps [24]. Plates were incubated (9 days at 25 ◦C).
Isolates from the different samples were purified and grouped based on their MALDI-TOF
profile [25], and the group representatives and ungrouped bacterial strains were subjected
to 16S rRNA gene sequencing.

2.6. Molecular Analysis
2.6.1. DNA Isolation and Identification of the Isolated Bacterial Strains

DNA was extracted from the isolated bacterial strains as described by Szuróczki et al. [24].
PCR amplification was done on the 16S rRNA gene using the primers 27F (5′-AGA GTT
TGA TCM TGG CTC AG-3′) and 1492R (5′-TAC GGY TAC CTT GTT ACG ACT T-3′)
following the protocol of Kalwasińska et al. [26]. The 16S rRNA gene sequencing was
carried out at LGC (Berlin, Germany). The identification of the sequenced strains was
performed using EzBioCloud’s online identification system as described by Yoon et al. [27].
The sequences of the bacterial strains were deposited in the NCBI GenBank database and
are available under the accession numbers from MN684211 to MN684320.

2.6.2. DNA Extraction from the Water Samples and Amplicon Sequencing

The total DNA was extracted from 250 mL of water sample after filtration using a
0.22 µm pore size sterile mixed cellulose filter (MF-Millipore GSWP04700, Billerica, MA,
USA) using a DNeasy® PowerSoil® DNA Isolation Kit (QIAGEN, Hilden, Germany) ac-
cording to the manufacturer’s instructions. The mechanical cell disruption was performed
by shaking at 30 Hz for 2 min using a Retsch Mixer Mill MM400 (Retsch, Haan, Germany).
For PCR reactions, a 3 µL quantity of the template DNA was used. The PCR reaction to
amplify the 16S V4 region was done based on the following protocol: 98 ◦C for 3 min;
25 cycles: 95 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for 30 s; and 72 ◦C for 5 min for bacteria
and 98 ◦C for 3 min; 25 cycles: 95 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s; and 72 ◦C for
10 min for archaea using the following primers: CS1-TS-B341F and CS2-TS-805NR [28] for
bacteria and CS2-TS-Arch-855R and CS1-F-A519F [29] for archaea. Before sequencing, DNA
concentration of the PCR products was determined using a Qubit meter (Invitrogen Life
Technologies, CA, USA) and a minimal concentration of 4 ng/µL and 50 µL of PCR product
was respected. Sequencing was performed on an Illumina MiSeq platform using MiSeq
standard v2 chemistry by the Genomics Core Facility RTSF, Michigan State University. The
forward and reverse fastq files obtained from the Illumina sequencer were processed and
analysed using the Mothur v1.40.5 software [30]. The contigs were obtained using the
make.contigs with a deltaq value of 10, in order to keep the sequences with high quality
scores. To keep only the sequences fulfilling the expected length and number of polymers
and ambiguous bases, the screen.seqs command was used. The sequences were aligned to
the Silva database (silva.nr_v132.align) [31], and the non-aligned sequences and columns
containing only “.” were removed by using the screen.seqs and filter.seqs, based on the
position of the archaeal and bacterial primers within the 16s rRNA gene. To remove the
sequences that were likely due to Illumina sequencing errors, the pre.cluster command
was used. The chimeric sequences were removed by using the UCHIME algorithm [32].
Only the abundant sequences were kept using the command split.abund which split the
sequences into two groups, with a cutoff value equal to 1. The taxonomic classification of
the sequences was done using the Silva database silva.nr_v132.tax, and the non-archaeal



Water 2021, 13, 1533 5 of 19

and non-bacterial sequences were removed from the analyses based on the taxonomic
classification output. The OTUs (Operational Taxonomic Units) were calculated using a
distance matrix with distances larger than 0.15 obtained by using the dist.seqs and later
the cluster commands to assign sequences to OTUs (Operational Taxonomic Units), and
eventually the consensus taxa were determined using the classify.otu. At the end, the
data were normalized using the sub.sample, and rarefaction.single and summary.single
were used to calculate the rarefaction curve data and the values of the diversity indices.
Sequence reads were deposited in the NCBI SRA database and are accessible through
the BioProject ID: PRJNA628507 and BioSample ID: SAMN14732952, SAMN14732953,
SAMN14732954 and SAMN14732970 for Dandár, SAMN14732956, SAMN14732978 and
SAMN14732967 for Szentendre, SAMN14732979, SAMN14732955 and SAMN14732969 for
Szent Flórián, SAMN14732951 for Tatabánya and SAMN14732957 for Ciprián samples,
respectively. Shannon-Weaver and inverse Simpson (1/D) diversity indices and Chao-1
and ACE richness metrics were calculated using Mothur [29].

2.7. Study of the Bacterial Growth in Different Media

In order to determine the growing capability of the sequenced 100 bacterial strains,
96-well microtiter plates were applied using different concentrations of nutrients, per-
formed in three replicates in the following order: 100%, 10% and 1% R2A [33]; 100% and
10% M5; 100%, 10% and 1% glucose added to minimal medium, and 100%, 10%, 1% and
0.1% yeast extract added to minimal medium). The minimal medium was composed of:
1 g/L K2PO4, 0.5 g/L MgSO4, 0.5 g/L KCl, 0.01 g/L FeSO4 and 2 g/L of NaNO3. The
yeast extract and glucose media contained 30 g/mL yeast extract or glucose respectively.
The microtiter plates were incubated at 25 ◦C for 7 days, and the optical density was mea-
sured every day using an Elisa reader (SUNRISE Tecan, Grödig, Austria) at a wavelength
of 620 nm.

2.8. Statistical Analyses

The relationship between the environmental variables (physical and chemical param-
eters) diversity indices, cell counts and the obtained OTUs (archaea and bacteria) were
revealed by principal components analysis ordination (PCA) combined with vector-fitting.
The “envfit” function from the vegan package was used in order to fit the variables as
vectors [34] onto the ordination of OTUs, and the significance of fittings was tested with ran-
dom permutations in program R (R Core Team 2016; http://www.r-project.org/, accessed
on 4 April 2020).

Shannon diversity index was calculated in order to describe the population diversity
in the analyzed samples based on operational taxonomic units (OTUs). It is calculated with
the following formula:

H = −
S

∑
i=1

(Pi ln Pi)

where P is the proportion (n/N) of individuals of one particular species found (n) divided
by the total number of individuals found (N), ln is the natural log, Σ is the sum of the
calculations, and s is the number of species [35].

3. Results
3.1. Physical and Chemical Parameters of the Water Samples

Physical and chemical parameters of the different sampling sites are given in Table 1.
Based on TOC values, all sites are dedicated as nutrient-depleted environments, while their
other physical and chemical parameters differ.

3.2. Microscopic Cell Counts and Diversity Indices of the Samples

The microscopic cell counts of the Ciprián sample were the highest followed by the
Dandár and Szent Flórián samples. The latter ones were characterized with high standard
deviation values indicating the variability of the cell counts. The cell count values are given

http://www.r-project.org/
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in Table 2. Although the Szentendre water sample was characterized by the lowest cell
count values based on amplicon sequencing, it had the highest values of diversity indices
for both archaea and bacteria. This observation is similar to the Tatabánya sample for
the archaea (Table 2). The values of the same samples did not differ significantly in the
tested time period. Values of archaeal and bacterial species richness and other diversity
indices calculated from 16S rRNA gene amplicon sequencing are given in Supplementary
Tables S1 and S2.

Table 1. Physical and chemical parameters of the sampling sites.

Dandár Szentendre Szent Flórián Tatabánya Ciprián

T (◦C) 46 8.6 11 8 12.5

pH 6.70 8.09 7.89 7.01 8.10

conductivity (µS/cm) 1710 454 388 712 1205

TOC 1 (mg/L) 1.75 1.97 1.81 2.40 3.40

NO3
− (mg/L) <1.5 6.3 7.0 <0.5 160

SO4
2− (mg/L) 600 71 83 44 156

Fe (mg/L) <0.03 <0.01 <0.01 0.29 33

Hardness CaO (mg/L) 360 5.6 11.2 234 187
1 Total Organic Carbon.

Table 2. Shanon diversity indices and the cell counts of the water samples based on amplicon
sequencing data.

Sample Diversity Index of
Archaea

Diversity Index of
Bacteria Cell Counts·mL−1

Ciprián 4.56 1.95 1.33 × 106

Dandár_1 1.47 3.55 7.51 × 105

Dandár_2 1.48 3.69 3.65 × 105

Dandár_3 1.59 4.59 1.74 × 104

Dandár_4 1.67 4.01 4.75 × 104

Szentendre 6.18 8.11 1.98 × 104

Szentendre 5.94 7.88 5.82 × 104

Szentendre 5.66 7.57 1.08 × 105

Szent Flórián_1 4.20 5.34 3.01 × 104

Szent Flórián_2 4.07 5.71 4.59 × 105

Szent Flórián_3 4.01 4.92 3.67 × 105

Tatabánya 5.52 3.55 1.33 × 105

3.3. Bacterial Community Composition of the Different Samples Based on Amplicon Sequencing

Altogether, 55 bacterial phyla were identified by amplicon sequencing. Rarefaction
curves of the samples (Supplementary Figure S1) showed that the sequencing depth was
sufficient to recover the majority of the bacterial taxa. Patescibacteria and Proteobacteria were
present in all the samples. Proteobacteria present in the Ciprián sample showed a high ratio
of Malikia (22.29%), Pseudorhodobacter (19.5%), Limnohabitans (12.17%), and unclassified gen-
era of the families Burkholderiaceae (5.13%) and Rhodobacteracea (2.08%). The most abundant
sequences in the Dandár water sample belonged to Stenotrophomonas, Pseudomonas, Desul-
fobacca, Desulfomonile, unclassified Myxococcales and Sphingomonadaceae. In the Szentendre
sample within the Proteobacteria phylum sequences of Pseudomonas, Legionella, Aquicella,
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Cellvibrio, Methylotenera, Rhizobacter, unclassified Burkholderiaceae, Oligoflexus, Haliangium,
Bdellovibrio, Peredibacter, Bacteriovorax, Sphingomonas, unclassified Rickettsiales, Amphipli-
catus, Brevundimonas and Caulobacter were detected. The Szent Flórián sample was char-
acterized by the presence of unclassified Bacteriovoracaceae, Myxococcales, Sandaracinaceae,
Acidiferrobacteraceae, Sulfurifustis and Ferritrophicum. The Tatabánya sample showed a high
presence of Desulfocapsa, Desulfurivibrio, Sulfuricella, Sideroxydans, and also the families
Gallionellaceae, Hydrogenophilaceae, Methylophilaceae, Rhodocyclaceae, Methylococcaceae and
Methylomonaceae. The Ciprián sample was dominated by the phylum Bacteroidetes, being
one order of magnitude higher as compared to the Szentendre and Tatabánya samples and
approximately 2 orders of magnitude higher as compared to the Szent Flórián and Szenten-
dre samples. Most bacteria belonged to the genus Flavobacterium. In The Dandár sample a
high ratio of Chloroflexi was detected, and most of them belonged to Anaerolineae, while also
Desantisbacteria, Firestonebacteria, Firmicutes appeared. The most abundant genera within
this phylum are Desulfotomaculum and Thermodesulfitimonas, in addition to the presence
of Kiritimatiellaeota and Spirochaetes. The Candidate phylum Dependentiae and the phylum
Verrucomicrobia characterized the Szentendre sample, and most of the latter belonged to
genus Lacunisphaera and the genera of the family Pedosphaeraceae. Rokubacteria and WOR-1
dominated the Szent Flórián samples. Tatabánya had a high number of Epsilonbacteraeota,
while this phylum was nearly absent in the other samples; the identified members of
this phylum are Arcobacter, unclassified Campylobacterales, Sulfurovum, Sulfuricurvum and
Sulfurimonas (Figure 1).
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Figure 1. Distribution of the most abundant bacterial phyla based on 16S rRNA gene amplicon sequencing in the water
samples. Phyla contributing to less than 5% of each sample are not described.

3.4. Archaeal Community Composition of the Different Samples Based on Amplicon Sequencing

Nine archaeal phyla were detected in the water samples. The rarefaction curves of the
samples (Supplementary Figure S2) showed that the sequencing depth was sufficient to
recover the majority of the archaeal taxa. The samples were characterized by the presence
of unclassified archaea and the predominance of Nanoarchaeota, among them Woesearchaeia
being the most characteristic. The family Nitrosopumilaceae, (member of Thaumarchaeota) and
orders of Nitrosotaleales and Nitrososphaerales appeared in the samples (except Tatabánya);
moreover, Marine_Benthic_Group_A was detected in the Szent Flórián and Tatabánya sam-
ples. Hydrothermarchaeota phylum was present only in the Szentendre and Tatabánya water
samples. Within the Phylum of Euryarchaeota, methanogenic Archaea, e.g., Methanobac-
terium, Methanoregulaceae were present in both the Ciprián and Tatabánya water samples.
Methanospirillaceae and Methanoperedenaceae were present only in the Tatabánya water sam-
ple, and Methanomethylophilaceae and Methanosarcinaceae in the Ciprián sample. Thermoplas-
mata was present in all samples, among them Marine_Benthic_Group_D_and_DHVEG-1
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in the case of Tatabánya and Szent Flórián. The order Methanomassiliicoccales was present
in the Ciprián, Szent Flórián and Tatabánya samples. Within the Diapherotrites phylum,
members of Micrarchaeia were present in all samples together with Iainarchaeia (except in
the Dandár water sample). Both Crenarchaeota and Altiarchaeota were characteristic in the
Dandár water samples (Figure 2).
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3.5. Results of Cultivation

It is worth mentioning that before isolation, in the media of the Tatabánya water
sample, many bubbles were observed (Figure 3), indicating strong gas production of the
cultivated bacteria.
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Figure 3. Bubbles observed after spreading the Tatabánya water sample.

In order to reveal the cultivable diversity, 314 bacterial strains were isolated from the
samples (their taxonomic position are given in Supplementary Table S3). Based on their
16S rRNA gene sequence similarities most bacterial strains showed between 98 and 100%
similarity values to the reference sequences of the type strains of the given species. Nine
bacterial strains had lower than 98% similarity to their closest relative, presenting them as
novel taxa among the isolated bacteria.

The isolated bacteria were affiliated into four phyla, with most of them being Proteobac-
teria (59%) followed by Actinobacteria (21%), Firmicutes (17%) and Verrucomicrobia (1%). In
the case of amplicon sequencing, the Proteobacteria phylum was dominant, Firmicutes were
present in high numbers in the Dandár water sample, and Actinobacteria were represented
by less than 5%. The cultivable microbial communities showed similarities between the
different samples, e.g., Micrococcus, Pseudomonas, Bacillus and Pseudoxanthomas genera were
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present in the majority of the samples. The members of the facultative chemolitothrophic
genera of Sphingobium, Sphingomonas, Sphingopyxis and the heterotrophic Microbacterium
were characteristic only of the Szentendre, Szent Flórián and Tatabánya samples. Many
detected taxa known to thrive under nutrient-depleted circumstances, e.g., Acinetobac-
ter, Novosphingobium and Nevskia, were also detected. The distribution of the different
cultivated genera is given in Figure 4.
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3.6. Results of Bacterial Growth in Different Concentrations of Media

The number of bacterial strains that were able to grow at the different nutrient concen-
trations was calculated, and results are shown in Figure 5.
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24 of the 100 cultivated strains could thrive under all the used media, while the rest
of them were absent in one or more media. Only 10 of the tested bacteria were able to
grow in one or more oligotrophic media and unable to survive in the 100% yeast extract
media (Supplementary Figure S3). The list of these bacteria is given in Table 3, and four of
them belong to novel bacterial taxa, as their 16S rRNA gene sequence homology is below
98.8% [36].

Table 3. The list of bacteria able to grow only in nutrient-depleted conditions.

Sign of the Bacterial Strain Closest Relative Based on
16S rRNA Gene Sequencing Similarity Values (%)

SG_E_30_P1 Salinibacterium hongtaonis 96.33

CG_13_I Malikia spinosa 99.81

SA_6_I Streptomyces umbrinus 99.04

SA_E_31_P2 Prosthecobacter algae 99.62

CG_19_I Curvibacter delicatus 99.53

CG_E_13 Dyadobacter sediminis 97.23

CG_14_I Rheinheimera aquatica 97.97

CG_9_I_P1 Aquabacterium citratiphilum 99.53

CA_10_I Aquabacterium commune 97.19

SA_E_40 Ferrovibrio soli 99.15

4. Discussion
4.1. Influence of the Environmental Factors to the Diversity of Archaeal and Bacterial Communities

The value of the Shannon diversity index of bacteria in the Ciprián water sample was
low. However, its cell count value was the highest as compared to all samples. To the
contrary, the Szentendre water sample was characterized with the highest diversity index
among the samples but its cell count value was low (Figure 6).
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The Ciprián sample is characterized by high cell counts, most probably due to the
intensive agriculture activity at the top of its catchment area. The nitrate content and TOC
value of this sample was also high, indicating the human influence within this region.
The negative correlation in cell counts and diversity indices in case of the Szentendre
sample can be explained by the location area: In fact, the Stravoda region is located within
the Visegrád mountains with many forests; therefore, many soil bacteria with the ability
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to tolerate low nutrient content could infiltrate into the groundwater and thus increase
the diversity within the sample. This assumption is in accordance with the results of
Herrmann et al. [37]. The Dandár and Szent Flórián water samples had similar Shanon
diversity index values showing low external influence on the waters. These are confined
and semi-confined aquifers that protect their groundwaters from external influence. More-
over, previous reports indicated that a high concentration of SO4

2− in the Dandár water
sample significantly influenced the microbial diversity due to the negative interaction of
several sulfate-reducing bacteria with other microorganisms [35]. The Tatabánya water
sample had a relatively high diversity index in case of archaea, and this can be explained
by the high abundance of methanogenic prokaryotes, and they can be connected also
to dolomite formation [38] or precipitation in shallow groundwater [39], such as in the
case of the Tatabánya well which belongs to a dolomite karst aquifer. To test the effect of
environmental factors on the prokaryotic communities, PCA ordination was performed
(Figure 6). The calculated PCA components explained 94.1% of the variation in case of ar-
chaea and explained 87.4% in case of bacteria. The analysis revealed the impact of chemical
characteristics (p < 0.1) on archaea and bacteria OTUs distribution.

It is known that hydrogeological factors influence the microbial processes; at the same
time, the metabolism of microorganisms can affect the water quality of hydrogeological
systems. In case of the Dandár groundwater, the uptake of ions by the water flow from
the host rock results in high conductivity. The PCA ordination of the results show that
it moves together with the higher presence of many unclassified archaea and Altiarchaeia
(Figure 7). Previous studies did not determine yet the exact electron donor and acceptors
for this archaeon; however, it is assumed to be an autotrophic organism [40]. This finding
highlights the importance of the ions existing in the water as potential electron donors for
the many existing unclassified archaea.
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Many OTUs related to the nitrogen cycle characterized the Ciprián water sample
and methanogens in the case of the Tatabánya sample, but no significant impact was
detected. In case of bacteria, NO3

− and the TOC level had an important impact on the
bacterial community structure, and these two parameters separated the Ciprián water
sample from the others. The most abundant genera in this sample were Flavobacterium and
Pseudorhodobacter (Figure 8); among their members some species are able to use nitrate as
an electron acceptor (e.g., Pseudomonas denitrificans, Brevundimonas denitrificans).
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4.2. Microbial Communities of the Different Samples Based on Amplicon Sequencing

A high percentage of unclassified and uncultured OTUs are commonly seen in nutrient-
depleted aquatic environments [41], and this is endorsed by the presence of unclassified
Parcubacteria in all samples. The predominance of Patescibacteria is general in groundwaters,
often caused by their mobilization from soils and their good survival under oligotrophic
conditions [37]. The predominance of Woesearcheota in all the samples can be explained
by a syntrophic metabolic model [42], which removes the thermodynamic bottlenecks
and enables several metabolic reactions under nutrient-depleted conditions [43]. These
results were confirmed by a co-occurrence network analysis [44], and indeed a short
distance was shown between many Woesearcheota OTU and both Methanomicrobia and
Nitrososphaeria. These results suggest that Woesearchaeota might form a common consortium
with methanogens in anaerobic environments. Moreover, Woesearchaeota may have a role
in the processes of denitrification, nitrogen fixation, or even dissimilatory nitrite reduction.
These findings are in accordance with Liu et al. [45].

The widespread presence of Omnitrophicaeota in the samples is in accordance with
previous studies showing their presence in groundwaters and drinking water treatment
plants [46].

The dominance of Altiarchaeia within the archaeal community of the Dandár water
samples can be explained also by their adaptation to this environment. Based on literature
data, Altiarchaeia have evolved specific structural and metabolic features, e.g., developing
nanograppling hooks. This anchor allows it to stay stationary on the top of the water despite
the water current [47]. Moreover, their presence is common in anaerobic groundwaters;
in addition, relatives of Altiarchaeia were found to be widespread in sulfide springs in
Europe [48]. Their role is important, often being a carbon dioxide sink [47]. The presence
of Sphingomonadaceae and Rhodocyclaceae families in the Dandár water sample can be
explained by their capability to degrade many substrates. They can possess a variety of
metabolic pathways catalyzing various organic compounds, which is an important feature
in oligotrophic environments [49,50]. Unclassified members of Thermodesulfovibrio were
isolated earlier from terrestrial hot springs and deep aquifers. They are able to reduce
sulfate, thiosulfate or sulfite [51]. The families Pseudomonadaceae, Burkholderiaceae and both
the phyla Omnitrophicaeota and Desantisbacteria were described from different aquifers in
previous studies [52].
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Potential metabolic capabilities of the microbial community of Szentendre and Ciprián
water samples:

In the Szentendre and Ciprián samples, an important fraction of ammonia-oxidizing
archaea was detected (Nitrosopumilaceae, Nitrosotaleaceae and Nitrososphaeraceae). Compared
to ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) have the ability
to inhabit a wide range of extreme environments [53]. This can explain their dominance
in nutrient-depleted environments. The sequences assigned to the genus Flavobacterium
are shown to be widespread in nature including groundwaters, rivers and oligotrophic
lakes [54]. Moreover, many of the Flavobacterium species are able to reduce nitrate to
nitrite [55]. This can explain their predominance in the Ciprián water sample, which is
characterized by a high NO3

− content. Rhodobacteraceae and Rhodocyclaceae can overcome
oligotrophic conditions by photoheterotrophic metabolism. Methanoregulaceae, Methanobac-
teriaceae and Methanosarcinaceae are methanogenic bacteria, and by their metabolism they
are able to thrive in nutrient-poor, low ionic-strength environments [56].

Potential metabolic capabilities of the microbial community of Szent Flórián wa-
ter sample:

The Szent Flórián sample was characterized by distinctive families, the most abundant
among them being Candidatus Kaiserbacteria, Candidatus Magasanikbacteria, Candidatus
Uhrbacteria, Candidatus Azambacteria and the family Brocadiaceae. Many members of the
family Brocardiaceae can be responsible for anaerobic oxidation of ammonium (anammox
bacteria). This can suggest that in this environment some ammonia-oxidizing bacteria
(AOB) and ammonia-oxidizing archaea (AOA) are present, oxidizing the ammonium to
nitrite, while anammox bacteria such as Brocadia would convert what remains from the
ammonium. In addition, nitrite reducer bacteria such as Kaiserbacteria [57] would convert
what remains from the nitrite to dinitrogen gas [58]. The action of these organisms is very
important in these environments where the nitrogen is often in limited concentrations.
Members of the taxa Brocadiaceae, Parcubacteria, Peribacteria and Saccharimonadales are char-
acterized by small genomes and a high degree of specialization. These features are often
associated with microorganisms performing a limited range of metabolic activities [59–61].
The reduced genome size is often related to strong dependent conditions (e.g., interactions
between various microbial populations).

Potential metabolic capabilities of the microbial community of Tatabánya water sample:
The Tatabánya sample is characterized by many hydrogenotrophic methanogens,

among them Methanobacteriaceae and Methanoperedenaceae. The latter is often found at
oxic-anoxic interfaces where they are involved in nitrate-dependent anaerobic oxidation of
methane. This reaction links carbon and nitrogen cycles [62]. The presence of Micrarchaeia
is reported in several oxygen-poor aquatic environments e.g., shallow groundwater [63],
oxygen-minimum zones of Arabian Sea, Bay of Bengal [64], or estuarine water [65]. The
group of Marine Benthic Group D and A were found previously in oxygen-depleted
water columns [66]. They have the ability to play important roles in the sedimentary
carbon cycle [67]. The Deep Sea Euryarchaeotic Group is reported to occur together with
anaerobic methanotrophic archaea, and many of them were present in the Tatabánya
water sample [68]. Methylorubrum pseudosasae, a methylotrophic bacterium, was even
cultivated. The presence of Arcobacteraceae in the Tatabánya sample can be explained by
having high survival rate in nutrient-limited groundwater [69]. Some species are capable
of autotrophic carbon dioxide fixation via the reverse tricarboxylic acid cycle [70]. In
accordance with the archaeal community, the bacterial community is characterized by the
presence of members able to metabolize molecular hydrogen as a source of energy (among
them Hydrogenophilaceae [71,72] and Sulfurimonas (belonging to Thiovulaceae family [73,74]).
Therefore, the experienced gas bubbles are most probably the result of microbial actions,
by H2 production of bacteria, or by methane production of archaea. To prove this, further
studies would be essential. To reveal precisely the source of gas production at the sampling
site, further analysis would also be needed.
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4.3. Cultivable Bacterial Communities of the Samples

Genera of Micrococcus, Pseudomonas, Bacillus and Pseudoxanthomas are widespread in
different aquatic environments and they are shown to survive also in nutrient-depleted
conditions using different strategies; e.g., most of these bacteria have the ability to form
biofilms [75]. Previous literature data showed that many of them have been isolated from
an oligotrophic aquifer in West Bengal, and they were characterized by high metabolic
flexibility, such as the ability to utilize multiple hydrocarbons and using different elec-
tron acceptors [76]. Though Bacillus species are widespread in nature, they are able to
produce endospores but often can show extremely slow growth as alternative strategy to
survive starvation [77]. Sphingomonas and Brevundimonas species also have the ability to
survive in low concentrations of nutrients, as well as to metabolize a wide variety of carbon
sources [78,79]. Microbacterium species demonstrated the ability to convert ammonium
to nitrogen under aerobic conditions [80]. From the Szentendre water sample, potential
nitrogen-fixing bacteria could be isolated, e.g., Herbiconiux [81], Rhizobium [82], Ensifer [83]
and also ammonia-oxidizing bacteria, e.g., Prosthecobacter [84]. In oligotrophic environ-
ments, nitrogen fixation can be an important feature due to limited nitrogen sources. In
addition, some archaeal OTUs were found, which can be responsible for ammonia oxidiza-
tion (e.g., Nitrosopumilaceae, Nitrosotaleaceae and Nitrososphaeraceae). Rhodobacter azotoformans
in the Ciprián water sample is a denitrifying phototrophic bacterium [85], and Fictibacillus
is able to perform ammonification and also iron reduction [86]. The Dandár water sam-
ple contained members of Acinetobacter. Many species of this genus are able to mobilize
inorganic phosphate, and so have a key function for nutrient acquisition in these starved
ecosystems [79]. Many of the cultivated species from the Szent Flórián and Tatabánya
water samples were isolated previously from groundwaters, suggesting their adaptation
to nutrient-depleted environments. The genus Sphingopyxis was represented by different
species (S. fribergensis, S. chilensis and S. solisilvae), and it is commonly isolated also from
freshwater and marine habitats—many of them are facultatively chemolithotrophs, often
producing H2 during their metabolic processes. These bacteria could also be responsible
for the observed gas production.

4.4. Growth of the Bacterial Strains in Different Concentrations of Media

It is known that bacteria from low nutrient content environments often lose their
ability to grow in rich nutrient content circumstances [87]. In our case, 10 species were
not able to grow in the presence of higher nutrient content (Table 3). Flardh et al. [88]
suggested that this is the result of the development of high substrate affinities during
nutrient limitations. Based on this, our findings contradict the assumption stating that
the limiting factor in the bacterial growth is always the nutrient availability. In fact, the
limiting factor is the ability of the cell itself to grow. Previous literature’s data show that a
sudden addition of high quantities of nutrient to an organism can lead to rapid death via
osmotic swelling [89].

Hodgson [90] described Streptomyces as a facultative oligotrophic microorganism, and
some species could grow under oligocarbophile conditions. Semenov [91] discovered
that members of Prosthecobacteria have an extremely high affinity for different substrates.
Curvibacter delicatus, which was characteristic in the Ciprián water sample, was among the
bacterial communities that have fouled polyvinylidene fluoride microfiltration membranes,
which are used for drinking water treatment [92]. Rheinheimera aquatica was isolated from
hot springs from the Jazan region in Saudi Arabia, which is considered as an oligotrophic
environment [93]. Both Aquabacterium citratiphilum and Aquabacterium commune were
isolated from biofilms of the Berlin drinking water system, where they could resist a
severe limitation of low nutrient contents [94]. Different species belonging to the genus
Ferrovibrio were isolated from a thermal bath in Budapest, where the water contains only
limited organic carbon source [24]. Ferrovibrio species are often related to corrosion in
different pipelines, while F. denitrificans can be responsible also for nitrate reduction [95].
No previous studies reported the existence of Malikia spinosa and Salinibacterium hongtaonis
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in similar environments. All these findings show that some of the cultivated taxa are true
oligocarbophile microorganisms, and most probably they all contribute to the survival of
the community in the tested aquatic habitats.

5. Conclusions

In conclusion, we can state that our findings confirm the fact that nutrient-depleted
aquatic environments are highly colonized by microorganisms which are able to participate
actively in different biogeochemical cycles.

This study could reveal the existence of bacteria and archaea involved in the nitro-
gen cycle, e.g., ammonia-oxidizing bacteria (AOB), e.g., Prosthecobacter—and ammonia-
oxidizing archaea (AOA), e.g., Nitrosopumilaceae, nitrate-respiring organisms as well as
nitrogen-fixing prokaryotes, e.g., Herbiconiux. Others are involved in the biogeochemical
cycle of sulfur such as sulfide/sulfur oxidizers, e.g., Sulfurimonas—which is able to reduce
nitrate, and oxidize both sulfur and hydrogen. The members of the family Thiovulaceae
and Acidithiobacillus sp. can be involved in sulfur as well as iron cycles, and the detected
sulfate-reducing bacteria, e.g., Thermodesulfovibrio, are also key organisms of the sulfur
cycle. These bacteria were detected with one or more of the applied methods.

In the tested nutrient-depleted aquatic environments, the existing microorganisms were
characterized with different metabolic types: a wide range of chemotrophic (even faculta-
tive chemolithotrophic) and facultative phototrophic organisms were found; methanogenic,
e.g., Methanobacteriaceae—as well as methanotrophic bacteria, e.g., Methylorubrum—were
observed, and also phosphate mobilizer microbes e.g., Bacillus circulans.

The majority of the cultivated bacteria were able to thrive in nutrient-rich conditions;
however, an important fraction was unable to survive. This indicates that nutrient availabil-
ity is not the only factor which influences microbial growth, and that the hydrogeological
processes and physical conditions (e.g., temperature) also have a high impact. On the other
hand, the amount of substrates (TOC) and their availability are also a crucial point for
microbial growth in these nutrient-depleted environments.
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calculated from 16S rRNA gene amplicon sequencing data, Table S2: Bacterial species richness and
diversity indices calculated from 16S rRNA gene amplicon sequencing, Table S3: Results of taxonomic
identification of group representative bacterial strains using 16S rRNA gene sequencing.
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