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ABSTRACT
Hydrological drought forecasting is a key component in water resources modeling as it relates
directly to water availability. It is crucial in managing and operating dams, which are constructed
in rivers. In this study, multiple extreme learning machines (ELMs) are utilized to forecast hydrologi-
cal drought. For this purpose, the standardized hydrological drought index (SHDI) and standardized
precipitation index (SPI) are computed for 1 and3aggregatedmonths. Two scenarios are considered,
namely, using SHDI in previous months as the input, and using SHDI and SPI in previous months as
the input. Considering these scenarios and two timescales (1 and 3 months), 12 input–output com-
binations are generated. Then, five different ELMs and support vector machine models are used to
predict the SHDI on both timescales. For preprocessing of the data, the wavelet is hybridized with
themodels, leading to 144 differentmodels. The results indicate that ELMs are capable of forecasting
SHDI with high precision. The self-adaptive differential evolution ELMoutperforms the othermodels
and the wavelet has a highly positive effect on themodel performance, especially in error reduction.
In general, using ELMs in hydrological drought forecasting is promising and this model can feasibly
be used for this purpose.
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1. Introduction

Drought is defined as a period with below-normal avail-
ability of water (Tallaksen & Van Lanen, 2004). Drought
has widespread effects on the water resources, soci-
ety, economy and ecology of areas that are exposed to
it. As an example, the prolonged drought in the Mid-
dle East during 1999–2001 caused extensive livestock
deaths, land degradation and diseases (Barlow et al.,
2016). It especially affects reservoir operation in dammed
rivers. Based on the classification of Wilhite and Glantz
(1985), drought can be categorized into meteorologi-
cal, hydrological, agricultural and socio-economic types.
Drought starts with a considerable shortage of precip-
itation and extends to hydrological drought, in which
levels of water resources, including lakes, rivers and
reservoirs, decline to below-normal conditions. Hydro-
logical drought threatens water availability for humans
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and the environment (Nabipour et al., 2020). Climate
change can intensify the impacts of drought and cause
more frequent drought events. As such, drought pre-
diction plays a substantial role in water resources man-
agement, especially in arid and semi-arid regions of the
world, which suffer from limited freshwater availability.
For drought monitoring and forecasting, it is essential
to quantify the drought at the first stage. For this pur-
pose, several drought indices have proposed since the
1960s. Among these, the standardized precipitation index
(SPI), for meteorological drought, gained a high level
of popularity. Thereafter, most of the drought indices
developed for each drought type have followed the SPI
computational procedure. For hydrological drought, the
surface water supply index (SWSI), standardized stream-
flow index (SSI) and standardized hydrological drought
index (SHDI) are widely used.

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2022.2089732&domain=pdf&date_stamp=2022-06-30
http://orcid.org/0000-0001-6457-161X
http://orcid.org/0000-0002-6876-7182
http://orcid.org/0000-0003-4842-0613
mailto:20200420@wzu.edu.cn
mailto:shamshirbands@yuntech.edu.tw; amir mosavi amir.mosavi@kvk.uni-obuda.hu
http://creativecommons.org/licenses/by/4.0/


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1365

The next challenge is the selection of an appropriate
model (Nabipour et al., 2020). As physical and concep-
tual models are usually data intensive, most research has
been performed based on data-driven models (Belayneh
et al., 2014). In recent years, different data-driven mod-
els have been employed, including autoregressive (Faruk,
2010; Han et al., 2010; Tian et al., 2016; Zhang et al.,
2020), support vector regression (SVR) (Deo et al., 2017;
Ganguli & Reddy, 2014; Shamshirband et al., 2020; Tian
et al., 2016; Xu et al., 2018), adaptive neuro-fuzzy infer-
ence systems (ANFIS) (Ali et al., 2018; Başakın et al.,
2020; Rahmati et al., 2020), artificial neural network
(ANN) models (Khan et al., 2020; Nabipour et al., 2020;
Singh et al., 2020). All of these models have their own
advantages and disadvantages. The fast computational
time and simple structure of the model are the advan-
tages of autoregressive models, while they are dependent
on their own history and are not capable of forecasting
values that have not already happened. SVRmodels have
suitable generalization capability but do not performwell
when encountering noisy data. ANFIS has linguistic and
numerical knowledge, and hence is extensively used as a
prediction model. However, its application is limited in
cases with large inputs (Salleh et al., 2017). ANN models
can work with incomplete knowledge and have parallel
processing ability. On the other hand, the architecture of
an ANN is not constant and the best result in each prob-
lem is defined by an optimal architecture, which needs a
trial-and-error procedure. Jehanzaib et al. (2021) address
several issues and challenges in modeling drought with
machine learning. They present a comprehensive eval-
uation of machine learning techniques for hydrological
drought forecasting. Choubin and colleagues (Choubin
et al., 2014; Choubin, Malekian, et al., 2016; Choubin,
Khalighi-Sigaroodi, et al., 2016) consider modeling the
drought and further investigation on the SPI using sev-
eral advanced data-driven methods, including multiple
linear regression (MLR), multi-layer perceptron network
and ANFIS, while also considering large-scale climate
signals. Dikshit et al. (2021), alternatively, propose a
model for drought forecasting with a longer lead-time
using lagged climate variables and a stacked long–short-
term memory model. Most recently, Shahdad and Saber
(2022) show how ensemble-based models of a reduced
error pruning tree can be even more effective. Never-
theless, the application of extreme learning machines
(ELMs) andwavelets for drought forecasting has not been
fully explored.

Drought forecasting involves a complex modeling
system owing to the inherent nature of this nat-
ural phenomenon. The physical process of drought
and the spatiotemporal variability of its characteristics,
associated with non-stationary, nonlinear and complex

behaviors, render it a complicated case for forecasting.
Understanding of the drought propagation fromone type
to another can help to improve drought prediction. Basi-
cally, drought starts with a considerable shortage of pre-
cipitation, which means that a meteorological drought
happens. As a result of a lasting meteorological drought,
water deficit will occur, which is termed a hydrological
drought. Thus, it is possible to use the meteorological
drought as a driver of hydrological drought. Based on
previous research, as mentioned above, different models
have been utilized for drought forecasting, but there is no
unique model that can be fully relied upon for drought
forecasting. However, accurate and reliable drought fore-
casting is vital in water resources planning and man-
agement. Different models have been examined for this
purpose. In the twenty-first century, a new approach
using artificial intelligence, the ELM, was developed by
Huang et al. (2006). It needs less computational time
compared to ANN, SVR and ANFIS, and can automat-
ically generate the weights and biases for hidden layers
based on a probability distribution function (PDF) and
appropriate generalization skills (Deo et al., 2017; Yaseen
et al., 2019). ELMs have been used extensively in different
fields, including the environment, energy, climatology
andhealth (Mohammadi et al., 2015; Shamshirband et al.,
2020; Zhu et al., 2019). However, few studies have used
ELMs for drought forecasting. The first attempt at using
an ELM for drought forecasting was performed by Deo
and Şahin (2016). They used an ELM to forecast the effec-
tive drought index (EDI) and compared the results with
the conventional ANN, verifying the superiority of the
ELM.Deo et al. (2017) used a wavelet ELM for prediction
of a 1month lead-time EDI. Ali et al. (2018) compared
ELM, ANFIS and MLR models in the prediction of the
SPI in Pakistan. Finally,Mouatadid et al. (2018) evaluated
SVR, ANN, MLR and ELM in SPEI forecasting.

From this literature review, it is apparent that ELMs
have rarely been used for drought forecasting and the
application of ELMs in drought forecasting is still emerg-
ing. Based on the authors’ best knowledge, ELMs have
not previously been used for hydrological drought fore-
casting. This motivated the authors to investigate the
capability of the ELM in hydrological drought forecast-
ing. As different ELMmodels have been proposed during
the past decade, five different ELM models were selected
for this purpose. Besides, the wavelet as a preprocessing
tool has been tested in previous research, and coupled
with ANNs, ANFIS, etc., resulting in different perfor-
mance, mostly improving the applications(e.g. Choubin
et al., 2014; Choubin, Khalighi-Sigaroodi, et al., 2016;
Choubin, Malekian, et al., 2016). Therefore, in this study,
the wavelet is coupled with different ELM models to
examine its capability in drought forecasting. For this
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purpose, Dez basin in the south-west of Iran is selected
and the SHDI is computed on 1, 3 and 6month timescales
based on the measured stream flows upstream of Dez
dam. Twelve different input–output combinations are
considered for modeling.

The aims of this study are four-fold: (1) to evaluate
of the capability of ELM models in hydrological drought
forecasting and to select the best model; (2) to use mete-
orological drought as a driver of hydrological drought
and evaluate the impact of the SPI as a meteorological
drought index on SHDI forecasting; (3) to evaluate the
impact of the wavelet as a preprocessing procedure on
the capability of different ELM models for hydrological
drought forecasting; and (4) to compare five different
ELMmodels in drought forecasting.

The rest of the paper is organized as follows. Section 2
presents the study area and methodology, including the
SPI and SHDI calculation procedure, ELM architecture
and evaluation criteria. Section 3 includes the results of
the study. Finally, Section 4 presents the conclusions of
this study.

2. Material andmethods

2.1. Study area

Dez dam was constructed in 1963 on the Dez River in
the south-west of Iran. It is a double-curvature arch dam

with a height of 203m. The primary reservoir volume
was 3340× 106 m3, which was reduced to 2600× 106 m3

during the operation period as a result of sedimentation
(Boroujeni, 2012). This is a multi-purpose dam, which
supplies water for domestic and industrial purposes and
for the irrigation of 125,000 ha of farmland downstream
of the dam. It also controls floods, which regularly occur
in the Dez basin. A 520MW hydropower plant has been
installed downstream of the dam. As it is the only reser-
voir on this river, the drought andwet periods, which lead
to a respective increase and decrease in precipitation, and
finally the water storage, must be given special attention
in this basin.

Dez basin ranges from 32°35′ to 34°07′ N and from
48° 20′ to 50°20′ E (Figure 1). It is bordered by Karun
basin to the east and south, GharehChay to the north and
Karkheh to the west (Valipour et al., 2013). The inflow
to the dam is measured at Tale-Zang station, upstream
of the dam. There are four meteorological stations for
measuring precipitation in the basin and 10 others out-
side and around the basin. The measured data in these
14 stations are used for the estimation of the average
precipitation over the basin using an inverse distance
weight method. Both precipitation and discharge time
series range from 1963 to 2017. The data are gathered
from IranMeteorological Organization (IMO) and Iran’s
Water Resources Management Company.

Figure 1. Location of the Dez dam and the precipitation stations in Iran.
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2.2. SHDI and SPI calculation procedure

McKee et al. (1993) proposed the SPI as a standardized
drought index, and it is widely used in several coun-
tries across the world. The SPI computation procedure
includes two main steps. First, a PDF is fitted to the pre-
cipitation records in each timescale, in which gamma is
used as the default PDF, although it is not limited to this
PDF. Second, the probabilities of the best fit are trans-
formed to the standardized normal probability with an
equi-probability transformation and, finally, the z-scores
relative to these probabilities are found. These z-scores
are the SPI values. Positive and negative values repre-
sent the drought and wet periods, respectively. Dehghani
et al. (2014) used this procedure to develop the SHDI as
a hydrological drought index, by replacing the precip-
itation with discharge. As the computation procedures
for these two drought indices are the same, it is possible
to use them jointly for meteorological and hydrological
drought analysis. The classification of the SPI and SHDI is
presented in Table 1. For detailed descriptions of SPI and
SHDI computation, one may refer to Hayes et al. (1999),
Lana et al. (2001) and Wu et al. (2005, 2007).

2.3. Extreme learningmachine

The ELM, which was developed by Huang et al. (2006), is
widely used in different aspects of environmental mod-
eling (Yaseen et al., 2019). It is a novel approach using
a single-layer feedforward neural network (SLFN). The
main idea behind this model is that there is no need
to tune the internal parameters of the model, including
the hidden neurons. In fact, this is an improved ANN

Table 1. Different input–output combinations used for
modeling.

Model Input Output

M1 SHDI1 (t− 1) SHDI1 (t)
M2 SHDI1 (t− 1), SHDI1 (t− 2) SHDI1 (t)
M3 SHDI1 (t− 1), SHDI1 (t− 2),

SHDI1 (t− 3)
SHDI1 (t)

M4 SHDI3 (t− 3) SHDI3 (t)
M5 SHDI3 (t− 3), SHDI3 (t− 2) SHDI3 (t)
M6 SHDI3 (t− 3), SHDI3 (t− 2),

SHDI3 (t− 1)
SHDI3 (t)

M7 SPI1 (t− 1), SHDI1 (t− 1) SHDI1 (t)
M8 SPI1 (t− 1), SPI1 (t− 2), SHDI1

(t− 1), SHDI1 (t− 2)
SHDI1 (t)

M9 SPI1 (t− 1), SPI1 (t− 2), SPI1
(t− 3), SHDI1 (t− 1), SHDI1
(t− 2), SHDI1 (t− 3)

SHDI1 (t)

M10 SPI3 (t− 3), SHDI3 (t− 3) SHDI3 (t)
M11 SPI3 (t− 3), SPI3 (t− 2), SHDI3

(t− 3), SHDI3 (t− 2)
SHDI3 (t)

M12 SPI3 (t− 3), SPI3 (t− 2), SPI3
(t− 1), SHDI3 (t− 3), SHDI3
(t− 2), SHDI3 (t− 1)

SHDI3 (t)

Note: SPI = standardized precipitation index; SHDI = standardized hydro-
logical drought index.

model, which reduces the execution time. In this way, the
weights and biases are randomly generated and the out-
put weights have a unique least squares solution (Yaseen
et al., 2019). Based on the randomly initiated hidden neu-
rons, the ELM is capable of attaining a global optimum
solution (Huang &Chen, 2007). The general architecture
of the ELM is presented in Figure 2.

In recent years, different alternative versions of the
ELM have been proposed. Qin et al. (2009) proposed
the self-adaptive differential evolution extreme learning
machine (SaDE-ELM). Differential evolution was pro-
posed by Storn and Price (1997) as an efficient stochas-
tic search algorithm. However, the vector generation
strategies and the associated parameterswere determined
through a trial-and-error procedure, which was com-
putationally time consuming (Qin et al., 2009). Thus,
Qin et al. (2009) developed the SaDE algorithm, in
which the trial vector generation and associated parame-
ters were determined through a gradual self-adaptation.
Zong et al. (2013) suggested the weighted extreme learn-
ing machine (W-ELM) for regression or classification
tasks with imbalanced class distribution. This new alter-
native was developed for easy and fast implementa-
tion. The online sequential extreme learning machine
(OS-ELM) was proposed by Liang et al. (2006). The
bidirectional extreme learning machine (B-ELM) was
proposed by Yang et al. (2012) for regression prob-
lems. These five ELM models, namely, ordinary ELM,
W-ELM, B-ELM, SaDE-ELM and OS-ELM, are utilized
in the present research. Detailed descriptions of the com-
putational procedure and mathematical formulation of
ELMs have been presented elsewhere (Huang et al., 2006;
Liang et al., 2006; Mohammadi et al., 2015; Sajjadi et al.,
2016; Yang et al., 2012; Yaseen et al., 2019; Zong et al.,
2013).

2.4. Input–output combinations

One of themain challenges in any prediction is the deter-
mination of input–output combinations. It is necessary
to find the drivers of each phenomenon and arrange the
input(s) for it. Drought is a complicated phenomenon
and accurate forecasting of drought needs a high pre-
cision in input selection. As different types of drought
are successive, and meteorological, hydrological, agricul-
tural and socio-economic droughts occur successively, it
is feasible to use meteorological drought as a predictor
of hydrological drought. Besides, the status of hydro-
logical drought in previous months can be a suitable
predictor. Therefore, in this research, for monthly and
seasonal hydrological drought (depicted by the SHDI)
forecasting, the SHDI in previous months and meteo-
rological drought (depicted by the SPI) are selected as



1368 G. C. WANG ET AL.

Figure 2. General architecture of extreme learning machine (ELM) used in this study. SPI = standardized precipitation index;
SHDI = standardized hydrological drought index.

predictors. Based on this, 12 input–output combinations
are considered for modeling, as presented in Table 1.

2.5. Evaluationmetrics

Evaluation of the recommended framework efficiencies
is carried out using statistical evaluation criteria, such as
the rootmean squared error (RMSE), coefficient of deter-
mination (R2) and mean absolute error (MAE). Several
visualization approaches are also used to assess themodel
predictions.

RMSE is a commonmean error indicator that clarifies
how close the data points are to a best fit line (Equation 1)
(Amr et al., 2011; El-Shafie et al., 2012).

R2 is computed by the squared value of the correla-
tion coefficient following Bravais–Pearson (Artusi et al.,
2002). It clarifies the amount of the observed dispersion
described by the estimation. The range of R2 is from
0 to 1. A value of 0 indicates no correlation between
the observed and predicted data, whereas an R2 equal
to 1 shows that the scattering of the estimation data is
the same as that of the observation (Krause et al., 2005)
(Equation 2).

MAE is a measure of errors between paired observa-
tions expressing the same phenomenon (Fan et al., 2013)
(Equation 3).

These parameters are computed using following for-
mulations:

0 ≤ RMSE < ∞ (1)

R2 =

⎛
⎜⎜⎝

∑N
i=1 (Oi − O)(Pi − P)√∑N

i=1 (Oi − O)
2
√∑N

i=1 (Pi − P)
2

⎞
⎟⎟⎠

2

0 ≤ R2 ≤ 1 (2)

0 ≤ MAE < ∞ (3)

in which Oi is the observation value, Pi is the predicted
model output, Ō is the average of observations, P̄ is the
average of model outputs, and N is the number of data.
Besides, the scatterplot, Sina plot and the plot of error in
each model are used for the evaluation of model results.

3. Results

In this study, for SPI and SHDI computations, different
PDFs, including gamma, log-normal (3P), log-logistic,
Johnson SB, Weibull, Pearson type III and Burr, are fitted
to the precipitation and streamflow time series to find the
best fit. Based on Vicente-Serrano et al. (2012), it is rec-
ommended to use the best fit for each month rather than
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Table 2. Statistical criteria related to the extreme learning machine (ELM) and support vector machine (SVM) models and different input–output combinations.

M1 M2 M3

Model
RMSE
Train

RMSE
Test

R2

Train
R2

Test
MAE
Train

MAE
Test

RMSE
Train

RMSE
Test

R2

Train
R2

Test
MAE
Train

MAE
Test

RMSE
Train

RMSE
Test

R2

Train
R2

Test
MAE
Train

MAE
Test

SaDE-ELM 0.7 0.63 0.49 0.26 0.51 0.51 0.65 0.65 0.57 0.22 0.47 0.5 0.68 0.62 0.52 0.29 0.5 0.51
Wavelet SaDE-ELM 0.49 0.42 0.75 0.67 0.36 0.32 0.3 0.24 0.91 0.89 0.23 0.19 0.35 0.3 0.87 0.83 0.27 0.23
W-ELM 0.71 0.65 0.48 0.23 0.52 0.53 0.71 0.63 0.48 0.26 0.52 0.51 0.7 0.63 0.49 0.26 0.51 0.52
Wavelet W-ELM 0.56 0.48 0.68 0.57 0.42 0.39 0.55 0.47 0.69 0.6 0.41 0.38 0.55 0.48 0.69 0.57 0.41 0.39
OS-ELM 0.72 0.63 0.46 0.26 0.53 0.51 0.69 0.63 0.5 0.26 0.51 0.51 0.68 0.64 0.52 0.25 0.51 0.51
Wavelet OS-ELM 0.49 0.41 0.75 0.68 0.37 0.3 0.31 0.26 0.9 0.88 0.23 0.2 0.31 0.31 0.9 0.82 0.24 0.24
B-ELM 0.19 1.01 0.96 0.37 0.19 0.88 0.15 0.99 0.98 0.02 0.15 0.86 0.19 0.97 0.96 0.04 0.19 0.85
Wavelet B-ELM 0.2 0.47 0.96 0.59 0.2 0.35 0.08 0.29 0.99 0.85 0.08 0.23 0.17 0.35 0.97 0.78 0.17 0.25
ELM 0.7 0.63 0.49 0.26 0.51 0.51 0.64 0.69 0.57 0.11 0.47 0.53 0.65 0.66 0.56 0.19 0.47 0.52
Wavelet ELM 0.49 0.45 0.75 0.62 0.37 0.36 0.27 0.33 0.93 0.79 0.21 0.25 0.33 0.31 0.89 0.82 0.25 0.23
SVM 0.71 0.62 0.47 0.29 0.51 0.47 0.71 0.62 0.47 0.3 0.5 0.48 0.71 0.61 0.47 0.31 0.5 0.47
Wavelet SVM 0.49 0.44 0.75 0.64 0.35 0.33 0.33 0.34 0.89 0.79 0.23 0.26 0.32 0.39 0.9 0.73 0.22 0.29

Model M4 M5 M6

Model
RMSE
Train

RMSE
Test

R2

Train
R2

Test
MAE
Train

MAE
Test

RMSE
Train

RMSE
Test

R2

Train
R2

Test
MAE
Train

MAE
Test

RMSE
Train

RMSE
Test

R2

Train
R2

Test
MAE
Train

MAE
Test

SaDE-ELM 0.83 1.45 0.27 0.03 0.65 1.0 0.68 1.31 0.5 0.01 0.51 0.86 0.52 0.59 0.71 0.49 0.38 0.47
Wavelet SaDE-ELM 0.6 0.6 0.61 0.42 0.46 0.46 0.4 0.37 0.83 0.79 0.3 0.29 0.18 0.20 0.97 0.94 0.14 0.15
W-ELM 0.87 0.97 0.2 0.12 0.68 0.85 0.77 0.84 0.38 0.27 0.59 0.73 0.62 0.67 0.59 0.34 0.48 0.58
Wavelet W-ELM 0.68 0.65 0.51 0.33 0.52 0.55 0.59 0.58 0.63 0.47 0.45 0.47 0.45 0.46 0.79 0.69 0.33 0.38
OS-ELM 141.47 248.32 0.01 0.10 87.27 135.94 1101.54 1597.09 0.01 0.12 647.68 885.68 0.54 0.57 0.69 0.52 0.37 0.4
Wavelet OS-ELM 0.56 0.62 0.66 0.39 0.44 0.46 0.35 0.45 0.87 0.68 0.26 0.36 0.22 0.22 0.95 0.93 0.17 0.17
B-ELM 0.44 0.88 0.79 0.12 0.38 0.76 0.24 1.03 0.94 0.02 0.24 0.87 0.27 1.02 0.92 0.06 0.27 0.86
Wavelet B-ELM 0.01 0.6 1 0.43 0.01 0.45 0.25 0.44 0.93 0.7 0.25 0.33 0.27 0.4 0.92 0.77 0.27 0.34
ELM 0.83 1.43 0.27 0.03 0.65 0.99 0.66 1.41 0.54 0.01 0.49 0.94 0.52 0.56 0.71 0.54 0.38 0.44
Wavelet ELM 0.61 0.64 0.61 0.35 0.46 0.47 0.34 0.43 0.88 0.71 0.25 0.33 0.16 0.25 0.97 0.91 0.12 0.19
SVM 0.86 0.86 0.22 0.11 0.66 0.73 0.73 0.73 0.44 0.16 0.53 0.58 0.55 0.56 0.68 0.54 0.38 0.41
Wavelet SVM 0.60 0.61 0.62 0.42 0.44 0.43 0.39 0.47 0.83 0.66 0.27 0.35 0.25 0.39 0.93 0.78 0.17 0.3
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SaDE-ELM 0.66 0.62 0.55 0.29 0.48 0.53 0.61 0.62 0.62 0.3 0.44 0.5 0.57 0.6 0.66 0.34 0.41 0.49
Wavelet SaDE-ELM 0.43 0.38 0.81 0.74 0.33 0.28 0.3 0.27 0.91 0.87 0.22 0.21 0.3 0.36 0.91 0.76 0.23 0.28
W-ELM 0.67 0.62 0.53 0.28 0.5 0.53 0.69 0.68 0.5 0.14 0.53 0.6 0.7 0.67 0.49 0.17 0.53 0.59
Wavelet W-ELM 0.55 0.49 0.68 0.55 0.42 0.42 0.52 0.49 0.72 0.55 0.39 0.41 0.51 0.49 0.73 0.55 0.39 0.42
OS-ELM 0.67 0.62 0.53 0.29 0.5 0.53 0.67 0.58 0.54 0.38 0.49 0.49 0.68 0.58 0.52 0.39 0.5 0.47
Wavelet OS-ELM 0.35 0.57 0.87 0.39 0.27 0.45 0.26 0.5 0.93 0.53 0.2 0.36 0.26 0.5 0.93 0.54 0.19 0.38
B-ELM 0.19 0.93 0.96 0.01 0.19 0.8 0.17 0.87 0.97 0.02 0.17 0.73 0.19 0.83 0.96 0.04 0.19 0.70
Wavelet B-ELM 0.15 0.41 0.98 0.69 0.15 0.32 0.11 0.29 0.99 0.85 0.09 0.23 0.18 0.36 0.97 0.76 0.18 0.29
ELM 0.66 0.63 0.55 0.28 0.48 0.53 0.66 0.59 0.55 0.36 0.49 0.51 0.63 0.63 0.59 0.27 0.46 0.52
Wavelet ELM 0.49 0.44 0.75 0.64 0.37 0.34 0.3 0.34 0.91 0.79 0.23 0.26 0.4 0.4 0.83 0.71 0.32 0.31
SVM 0.68 0.6 0.51 0.34 0.49 0.49 0.67 0.58 0.53 0.37 0.48 0.48 0.67 0.58 0.54 0.38 0.48 0.48
Wavelet SVM 0.43 0.46 0.81 0.6 0.3 0.38 0.29 0.58 0.91 0.37 0.19 0.46 0.26 0.62 0.93 0.29 0.16 0.48

Model M10 M11 M12

Model
RMSE
Train
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SaDE-ELM 0.78 1.43 0.36 0.01 0.6 1.00 0.67 0.68 0.53 0.27 0.5 0.57 0.46 0.5 0.77 0.63 0.34 0.4
Wavelet SaDE-ELM 0.5 0.44 0.74 0.7 0.38 0.33 0.35 0.38 0.87 0.77 0.26 0.3 0.22 0.24 0.95 0.91 0.17 0.19
W-ELM 0.83 0.95 0.26 0.25 0.65 0.84 0.71 0.77 0.46 0.08 0.54 0.67 0.6 0.65 0.61 0.38 0.45 0.57
Wavelet W-ELM 0.6 0.58 0.62 0.46 0.46 0.51 0.53 0.5 0.71 0.61 0.39 0.42 0.45 0.45 0.78 0.71 0.34 0.37
OS-ELM 12.65 39.57 0.01 0.13 8.05 15.67 0.68 0.71 0.51 0.2 0.51 0.59 0.53 0.53 0.7 0.59 0.38 0.4
Wavelet OS-ELM 0.64 0.53 0.57 0.56 0.49 0.41 0.34 0.52 0.88 0.57 0.26 0.39 0.19 0.36 0.96 0.81 0.15 0.26
B-ELM 0.24 1.04 0.94 0.20 0.24 0.89 0.25 0.98 0.93 0.01 0.25 0.82 0.22 0.84 0.95 0.13 0.22 0.69
Wavelet B-ELM 0.22 0.5 0.95 0.6 0.22 0.35 0.25 0.42 0.93 0.72 0.25 0.31 0.04 0.33 1.00 0.84 0.03 0.27
ELM 0.8 0.94 0.33 0.18 0.62 0.80 0.67 0.69 0.52 0.26 0.51 0.57 0.51 0.5 0.73 0.63 0.36 0.38
Wavelet ELM 0.53 0.45 0.70 0.67 0.41 0.35 0.3 0.43 0.91 0.71 0.23 0.34 0.18 0.31 0.96 0.86 0.15 0.25
SVM 0.82 0.83 0.28 0.22 0.63 0.71 0.69 0.69 0.49 0.25 0.51 0.57 0.52 0.53 0.71 0.58 0.37 0.4
Wavelet SVM 0.46 0.5 0.78 0.61 0.31 0.4 0.34 0.52 0.88 0.58 0.21 0.41 0.24 0.51 0.94 0.62 0.13 0.38

Note: SaDE-ELM = self-adaptive differential evolution extreme learning machine; W-ELM = weighted extreme learning machine; OS-ELM = online sequential extreme learning machine; B-ELM = bidirectional extreme
learning machine; RMSE = root mean squared error; R2 = coefficient of determination; MAE = mean absolute error.
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Figure 3. Scatterplots of M1–M12 in the training and testing phases using the wavelet self-adaptive differential evolution extreme
learning machine (wavelet SaDE-ELM). SHDI = standardized hydrological drought index.
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Figure 3. Continued.

to use one PDF for all months. Thus, the authors used the
PDF with the best fit for each month to compute the SPI
and SHDI on different timescales. After SPI and SHDI
computation, the models presented in Table 1 were used
for drought forecasting. The parameters of different ELM
and support vector machine (SVM) models were tuned
during a trial-and-error procedure.

The results of 10 ELM and two SVMmodels using the
combinations in Table 1 are presented in Table 2.

A quick overview shows that the wavelet SaDE-ELM
outperforms the other models. Also, it is possible to say
that wavelet has a positive effect on the performance of
ELM and SVM models, and in almost all of the models
and input–output combinations, the results of the mod-
els with wavelets are better than the standalone ELM and

SVM models. Models M1– M3 consider previous SHDI
values for SHDI1 forecasting. Among them, M2 and M3
perform better than M1 in all 12 models. While wavelet
SaDE-ELMhas the best performance, B-ELM is the poor-
est model. As the results in M2 and M3 are almost the
same, it is possible to conclude that SHDI1 (t) in each
month related to SHDI1 (t− 1) and SHDI1 (t− 2) and
SHDI1 (t− 3) is redundant, which has negligible or no
effect on SHDI1 (t) forecasting.

M4–M6 are used to forecast SHDI3 (t). RMSE and R2

in the best model are 0.60, 0.37, 0.20 and 0.61, 0.83, 0.97
for M4, M5 and M6, respectively. This shows that the
model performswell in all scenarios, although by increas-
ing the input variables, the results improve considerably.
Again, the worst results belong to B-ELM. In M7–M9,
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Figure 4. Time series of M1–M12 in the testing phase using the wavelet self-adaptive differential evolution extreme learning machine
(wavelet SaDE-ELM). SHDI = standardized hydrological drought index.
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Figure 4. Continued.
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Figure 4. Continued.
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Figure 4. Continued.
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SPI1 with different lags is used with SHDI1 in previ-
ous months for SHDI1 (t) forecasting. As in the previ-
ous cases, wavelet SaDE-ELM has the best performance.
However, using the SPI associated with the SHDI has no
or negligible effect on improving the results. In some sce-
narios, such as M8 and M9, the results are even poorer
compared to M2 and M3. This means that the SHDI
values in previous months are the most suitable input
variables for SHDI1 forecasting, and using SPI just results
in a complicated ELM network, which leads to poorer
results. This can also be observed in M10–M12. In these
models, using the SPI cannot improve the results. More-
over, an overall comparison between the ELM and SVM
models revealed that wavelet SaDE-ELM, as the most
accurate ELMmodel, providedmore suitable predictions
than the SVM and wavelet SVMmodels.

In the next step, the scatterplots of M1–M12 for both
training and testing phases using wavelet SaDE-ELM are
plotted and presented in Figure 3. It is obvious that there
is a suitable agreement among the observed and pre-
dicted SHDI values and no considerable overestimation
or underestimation is visible in these plots. Besides, there
is a close agreement between the training and testing
phases, which proves the robust modeling.

Time series of M1–M12 are plotted for the testing
phase using wavelet SaDE-ELM in Figure 4. The error
of the models in forecasting the SHDI is also presented
in these plots. In M1–M3, a suitable agreement may be
comprehended between the observed and forecast SHDI.
The high/low values are forecast with an acceptable error.
Just two values in the time series are predicted with more
than 1 unit error. Among them, M3 has the lowest error
compared to M1 and M2. Although the statistical met-
rics show that M2 and M3 have nearly the same perfor-
mance, considering SHDI1 (t− 3) as an input leads to
the lowest error. For M4–M6, while it is possible to find
a general agreement between the observed and forecast
values, the errors are high, especially in M4 and M5. The
error reduces considerably from M4 to M6, which indi-
cates the effect of inputs on the model performance. The
model performs nearly perfectly in M6, with low errors.
All SHDI values are predicted with less than 1 unit error.
There is no obvious difference betweenM8 andM9,while
the results of themodel using these two combinations are
better than those of M7. However, it can be observed that
in M8, there is a better agreement between the observed
and forecast values even in extreme values. M10–M12
have nearly the same performance. However, as M12 has

Figure 5. Frequencies of errors in M1–M12 using the wavelet self-adaptive differential evolution extreme learning machine (W-SaDE-
ELM) and the self-adaptive differential evolution extreme learning machine (SaDE-ELM).
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Figure 5. Continued.
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just one error value above 1, it can be considered as the
best scenario.

Finally, the effect of wavelet as a preprocessing proce-
dure in modeling is evaluated. The frequencies of errors
in modeling using wavelet SaDE-ELM and SaDE-ELM
are presented in Figure 5. Based on this figure, it is
obvious that the model error reduces considerably in
M1–M12 using the wavelet as a preprocessing tool. In
M1, 51% of forecast values have an error less than 0.3
using the wavelet, while 35% have this range of error
without the wavelet. Besides, 2% and 15% of the forecast
values have an error more than 1 with and without the
wavelet, respectively. In all scenarios, 50% of the wavelet
SaDE-ELM forecast values have an error less than 0.3,
while in M12, SaDE-ELM is capable of predicting values
with an error less than 0.3 inmore than 50% cases. More-
over, an error greater than 1 is seen in less than 5% of all
wavelet SaDE-ELM models, except in M10, while in the
SaDE-ELM models, an error greater than 1 happens in
more than 10% of values in all scenarios except for M6
and M12.

4. Conclusion

In this study, multiple ELM and SVM models are used
to forecast hydrological drought captured by the SHDI.
For this purpose, the SPI and SHDI are computed on
1 and 3month timescales. Five different ELM models
and one SVM model are used for modeling, and 12
input–output combinations are considered. For prepro-
cessing, thewavelet is coupledwith the different ELMand
SVMmodels. Based on the results, SaDE-ELM is the best
model for SHDI modeling on both timescales and with
different input–output combinations, while B-ELM is the
worst. Besides, the wavelet has a positive effect of increas-
ing the precision of the models. The models that are
coupled with the wavelet have less error in the predicted
values. The error distribution shows that a lag of at least
3months is needed for precise forecasting, while the sta-
tistical criteria show that a lag of 2months is satisfactory.
Moreover, using the SPI as input for SHDI prediction
does not improve the model performance considerably.
It can be concluded that using ELM models for hydro-
logical drought forecasting is promising, and thismethod
can be used as an effective tool for water resources
management.

Acknowledgments

This research was funded by the Foundation of 2022 project
of Jilin Provincial Science and technology development
plan of Jilin Provincial Department of science and tech-
nology (212551GX010487425), Jilin Educational Committee
(JJKH20210750KJ).

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Kwok wing Chau http://orcid.org/0000-0001-6457-161X
Saeed Samadianfard http://orcid.org/0000-0002-6876-7182
Amir Mosavi http://orcid.org/0000-0003-4842-0613

References

Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). An
ensemble-ANFIS based uncertainty assessment model for
forecasting multi-scalar standardized precipitation index.
Atmospheric Research, 207, 155–180. https://doi.org/10.
1016/j.atmosres.2018.02.024

Amr, H., El-Shafie, A., El Mazoghi, H., Shehata, A., & Taha,
M. R. (2011). Artificial neural network technique for rain-
fall forecasting applied to alexandria, Egypt. International
Journal of the Physical Sciences, 6, 1306–1316.

Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-
Pearson and spearman correlation coefficients: Meaning,
test of hypothesis and confidence interval. The Inter-
national Journal of Biological Markers, 17(2), 148–151.
https://doi.org/10.1177/172460080201700213

Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J., & Hoell,
A. (2016). A review of drought in the Middle East and
southwest Asia. Journal of Climate, 29(23), 8547–8574.
https://doi.org/10.1175/JCLI-D-13-00692.1

Başakın, E. E., Ekmekcioğlu, Ö, & Özger, M. (2020). Drought
prediction using hybrid soft-computing methods for semi-
arid region. Modeling Earth Systems and Environment,
1–9. 10.1007/s40808-020-01010-6

Belayneh, A., Adamowski, J., Khalil, B., & Ozga-Zielinski, B.
(2014). Long-termSPI drought forecasting in the awash river
basin in Ethiopia using wavelet neural network and wavelet
support vector regression models. Journal of Hydrology, 508,
418–429. https://doi.org/10.1016/j.jhydrol.2013.10.052

Boroujeni, H. S. (2012). Sedimentmanagement inHydropower
Dam (case study–Dez Dam project)DOI: 10.5772/33115
Hydropower—
practice and application (5 Vol. 6, pp. 33–43). InTech.

Choubin, B., Khalighi-Sigaroodi, S., Malekian, A., Ahmad, S.,
& Attarod, P. (2014). Drought forecasting in a semi-arid
watershed using climate signals: A neuro-fuzzy modeling
approach. Journal of Mountain Science, 11(6), 1593–1605.
https://doi.org/10.1007/s11629-014-3020-6

Choubin, B., Khalighi-Sigaroodi, S., Malekian, A., & Kişi,
Ö. (2016). Multiple linear regression, multi-layer percep-
tron network and adaptive neuro-fuzzy inference system
for forecasting precipitation based on large-scale climate
signals. Hydrological Sciences Journal, 61(6), 1001–1009.
https://doi.org/10.1080/02626667.2014.966721

Choubin, B., Malekian, A., & Golshan, M. (2016). Applica-
tion of several data-driven techniques to predict a stan-
dardized precipitation index. Atmósfera, 29(2), 121–128.
10.20937/ATM.2016.29.02.02

Dehghani, M., Saghafian, B., Nasiri Saleh, F., Farokhnia, A.,
& Noori, R. (2014). Uncertainty analysis of streamflow
drought forecast using artificial neural networks andmonte-
carlo simulation. International Journal of Climatology, 34(4),
1169–1180. https://doi.org/10.1002/joc.3754

http://orcid.org/0000-0001-6457-161X
http://orcid.org/0000-0002-6876-7182
http://orcid.org/0000-0003-4842-0613
https://doi.org/10.1016/j.atmosres.2018.02.024
https://doi.org/10.1177/172460080201700213
https://doi.org/10.1175/JCLI-D-13-00692.1
https://doi.org/10.1007/s40808-020-01010-6
https://doi.org/10.1016/j.jhydrol.2013.10.052
https://doi.org/10.1007/s11629-014-3020-6
https://doi.org/10.1080/02626667.2014.966721
https://doi.org/10.20937/ATM.2016.29.02.02
https://doi.org/10.1002/joc.3754


1380 G. C. WANG ET AL.

Deo, R. C., Kisi, O., & Singh, V. P. (2017). Drought fore-
casting in eastern Australia using multivariate adaptive
regression spline, least square support vector machine
and M5Tree model. Atmospheric Research, 184, 149–175.
https://doi.org/10.1016/j.atmosres.2016.10.004

Deo, R. C., & Şahin, M. (2016). An extreme learning machine
model for the simulation of monthly mean streamflowwater
level in eastern queensland. Environmental Monitoring and
Assessment, 188(2), 90. https://doi.org/10.1007/s10661-016-
5094-9

Dikshit, A., Pradhan, B., & Alamri, A. M. (2021). Long lead
time drought forecasting using lagged climate variables and
a stacked long short-term memory model. Science of The
Total Environment, 755, 142638. https://doi.org/10.1016/j.
scitotenv.2020.142638

El-Shafie, A., Noureldin, A., Taha, M., Hussain, A., &
Mukhlisin, M. (2012). Dynamic versus static neural network
model for rainfall forecasting at klang river basin, Malaysia.
Hydrology and Earth System Sciences, 16(4), 1151–1169.
https://doi.org/10.5194/hess-16-1151-2012

Fan, G. F., Qing, S., Wang, H., Hong, W. C., & Li, H. J. (2013).
Support vector regression model based on empirical mode
decomposition and auto regression for electric load fore-
casting. Energies, 6(4), 1887–1901. https://doi.org/10.3390/
en6041887

Faruk, D. Ö. (2010). A hybrid neural network and ARIMA
model for water quality time series prediction. Engineer-
ing Applications of Artificial Intelligence, 23(4), 586–594.
https://doi.org/10.1016/j.engappai.2009.09.015

Ganguli, P., & Reddy, M. J. (2014). Ensemble prediction of
regional droughts using climate inputs and the SVM–copula
approach.Hydrological Processes, 28(19), 4989–5009. https://
doi.org/10.1002/hyp.9966

Han, P., Wang, P. X., & Zhang, S. Y. (2010). Drought fore-
casting based on the remote sensing data using ARIMA
models. Mathematical and Computer Modelling, 51(11-12),
1398–1403. https://doi.org/10.1016/j.mcm.2009.
10.031

Hayes,M. J., Svoboda,M. D.,Wiihite, D. A., &Vanyarkho, O. V.
(1999). Monitoring the 1996 drought using the standardized
precipitation index. Bulletin of the American Meteorological
Society, 80(3), 429–438.

Huang, G. B., & Chen, L. (2007). Convex incremental extreme
learning machine. Neurocomputing, 70(16-18), 3056–3062.
https://doi.org/10.1016/j.neucom.2007.02.009

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learn-
ing machine: Theory and applications. Neurocomputing,
70(1-3), 489–501. https://doi.org/10.1016/j.neucom.2005.
12.126

Jehanzaib, M., Bilal Idrees, M., Kim, D., & Kim, T. W.
(2021). Comprehensive evaluation of machine learning
techniques for hydrological drought forecasting. Journal
of Irrigation and Drainage Engineering, 147(7), 04021022.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001575

Khan, M. M. H., Muhammad, N. S., & El-Shafie, A. (2020).
Wavelet based hybridANN-ARIMAmodels formeteorolog-
ical drought forecasting. Journal of Hydrology, 590, 125380.
https://doi.org/10.1016/j.jhydrol.2020.125380

Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of dif-
ferent efficiency criteria for hydrological model assessment.
Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/
adgeo-5-89-2005

Lana, X., Serra, C., & Burgueño, A. (2001). Patterns of
monthly rainfall shortage and excess in terms of the stan-
dardized precipitation index for catalonia (NE Spain).
International Journal of Climatology, 21(13), 1669–1691.
https://doi.org/10.1002/joc.697

Liang, N. Y., Huang, G. B., Saratchandran, P., & Sundarara-
jan, N. (2006). A fast and accurate online sequential learning
algorithm for feedforward networks. IEEE Transactions on
Neural Networks, 17(6), 1411–1423. https://doi.org/10.1109/
TNN.2006.880583

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relation-
ship of drought frequency and duration to time scales. In
Proceedings of the 8thConference onApplied climatology (Vol.
17, No. 22, 11 September , 1993,179-183.

Mohammadi, K., Shamshirband, S., Motamedi, S., Petković,
D., Hashim, R., & Gocic, M. (2015). Extreme learning
machine based prediction of daily dew point temperature.
Computers and Electronics in Agriculture, 117, 214–225.
https://doi.org/10.1016/j.compag.2015.08.008

Mouatadid, S., Raj, N., Deo, R. C., & Adamowski, J. F.
(2018). Input selection and data-driven model performance
optimization to predict the standardized precipitation and
evaporation index in a drought-prone region. Atmospheric
Research, 212, 130–149. https://doi.org/10.1016/j.atmosres.
2018.05.012

Nabipour, N., Dehghani, M., Mosavi, A., & Shamshirband,
S. (2020). Short-Term hydrological drought forecasting
based on different nature-inspired optimization algorithms
hybridized With artificial neural networks. IEEE Access, 8,
15210–15222. https://doi.org/10.1109/ACCESS.2020.
2964584

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differen-
tial evolution algorithm with strategy adaptation for global
numerical optimization. IEEE Transactions on Evolution-
ary Computation, 13(2), 398–417. https://doi.org/10.1109/
TEVC.2008.927706

Rahmati, O., Panahi, M., Kalantari, Z., Soltani, E., Falah, F.,
Dayal, K. S., Mohammadi, F., Deo, R. C., Tiefenbacher, J.,
& Bui, D. T. (2020). Capability and robustness of novel
hybridized models used for drought hazard modeling in
southeast queensland, Australia. Science of the Total Environ-
ment, 718, 134656. https://doi.org/10.1016/j.scitotenv.2019.
134656

Sajjadi, S., Shamshirband, S., Alizamir, M., Yee, L., Mansor, Z.,
Manaf, A. A., Altameem, T. A., & Mostafaeipour, A. (2016).
Extreme learning machine for prediction of heat load in dis-
trict heating systems. Energy and Buildings, 122, 222–227.
https://doi.org/10.1016/j.enbuild.2016.04.021

Salleh, M. N. M., Talpur, N., & Hussain, K. (2017). Adap-
tive neuro-fuzzy inference system: Overview, strengths,
limitations, and solutions. In International Conference on
data mining and Big data (33 Vol. 14, pp. 527–535).
Springer.

Shahdad,M., & Saber, B. (2022). Drought forecasting using new
advanced ensemble-based models of reduced error prun-
ing tree.Acta Geophysica, 70(2), 697–712. https://doi.org/10.
1007/s11600-022-00738-2

Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S.,
Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour,
N., & Chau, K. W. (2020). Predicting standardized stream-
flow index for hydrological drought using machine learn-
ing models. Engineering Applications of Computational Fluid

https://doi.org/10.1016/j.atmosres.2016.10.004
https://doi.org/10.1007/s10661-016-5094-9
https://doi.org/10.1016/j.scitotenv.2020.142638
https://doi.org/10.5194/hess-16-1151-2012
https://doi.org/10.3390/en6041887
https://doi.org/10.1016/j.engappai.2009.09.015
https://doi.org/10.1002/hyp.9966
https://doi.org/10.1016/j.mcm.2009.10.031
https://doi.org/10.1016/j.neucom.2007.02.009
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001575
https://doi.org/10.1016/j.jhydrol.2020.125380
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1002/joc.697
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1016/j.compag.2015.08.008
https://doi.org/10.1016/j.atmosres.2018.05.012
https://doi.org/10.1109/ACCESS.2020.2964584
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1016/j.scitotenv.2019.134656
https://doi.org/10.1016/j.enbuild.2016.04.021
https://doi.org/10.1007/s11600-022-00738-2


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1381

Mechanics, 14(1), 339–350. https://doi.org/10.1080/19942
060.2020.1715844

Singh, T. P., Nandimath, P., Kumbhar, V., Das, S., & Barne, P.
(2020). Drought risk assessment and prediction using artifi-
cial intelligence over the southernmaharashtra state of India.
Modeling Earth Systems and Environment, 1–9.

Storn, R., & Price, K. (1997). Differential evolution–a simple
and efficient heuristic for global optimization over continu-
ous spaces. Journal of Global Optimization, 11(4), 341–359.
https://doi.org/10.1023/A:1008202821328

Tallaksen, L. M., & Van Lanen, H. A. (Eds.). (2004).Hydrologi-
cal drought: Processes and estimation methods for streamflow
and groundwater (Vol. 48). Elsevier.

Tian, M., Wang, P., & Khan, J. (2016). Drought forecasting
with vegetation temperature condition index using ARIMA
models in the guanzhong plain. Remote Sensing, 8(9), 690.
https://doi.org/10.3390/rs8090690

Valipour, M., Banihabib, M. E., & Behbahani, S. M. R. (2013).
Comparison of the ARMA, ARIMA, and the autoregres-
sive artificial neural network models in forecasting the
monthly inflow of Dez dam reservoir. Journal of Hydrol-
ogy, 476, 433–441. https://doi.org/10.1016/j.jhydrol.2012.
11.017

Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S.,
Lorenzo-Lacruz, J., Azorin-Molina, C., & Morán-Tejeda,
E. (2012). Accurate computation of a streamflow drought
index. Journal of Hydrologic Engineering, 17(2), 318–332.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433

Wilhite, D. A., & Glantz, M. H. (1985). Understanding: The
drought phenomenon: The role of definitions. Water Inter-
national, 10(3), 111–120. https://doi.org/10.1080/02508068
508686328

Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D.
(2005). The effect of the length of record on the standard-
ized precipitation index calculation. International Journal of

Climatology: A Journal of the Royal Meteorological Society,
25(4), 505–520. 10.1002/joc.1142

Wu, H., Svoboda, M. D., Hayes, M. J., Wilhite, D. A., &Wen, F.
(2007). Appropriate application of the standardized precipi-
tation index in arid locations and dry seasons. International
Journal of Climatology: A Journal of the Royal Meteorological
Society, 27(1), 65–79. 10.1002/joc.1371

Xu, L., Chen, N., Zhang, X., & Chen, Z. (2018). An evalua-
tion of statistical, NMME and hybrid models for drought
prediction in China. Journal of Hydrology, 566, 235–249.
https://doi.org/10.1016/j.jhydrol.2018.09.020

Yang, Y., Wang, Y., & Yuan, X. (2012). Bidirectional extreme
learning machine for regression problem and its learning
effectiveness. IEEE Transactions on Neural Networks and
Learning Systems, 23(9), 1498–1505. https://doi.org/10.1109/
TNNLS.2012.2202289

Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.
W. (2019). An enhanced extreme learning machine model
for river flow forecasting: State-of-the-art, practical appli-
cations in water resource engineering area and future
research direction. Journal of Hydrology, 569, 387–408.
https://doi.org/10.1016/j.jhydrol.2018.11.069

Zhang, Y., Yang, H., Cui, H., & Chen, Q. (2020). Comparison of
the ability of ARIMA, WNN and SVM models for drought
forecasting in the sanjiang plain, China. Natural Resources
Research, 29(2), 1447–1464. https://doi.org/10.1007/s11053-
019-09512-6

Zhu, S., Heddam, S., Wu, S., Dai, J., & Jia, B. (2019). Extreme
learning machine-based prediction of daily water temper-
ature for rivers. Environmental Earth Sciences, 78(6), 202.
https://doi.org/10.1007/s12665-019-8202-7

Zong, W., Huang, G. B., & Chen, Y. (2013). Weighted extreme
learning machine for imbalance learning. Neurocomput-
ing, 101, 229–242. https://doi.org/10.1016/j.neucom.2012.
08.010

https://doi.org/10.1080/19942060.2020.1715844
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.3390/rs8090690
https://doi.org/10.1016/j.jhydrol.2012.11.017
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433
https://doi.org/10.1080/02508068508686328
https://doi.org/10.1002/joc.1142
https://doi.org/10.1002/joc.1371
https://doi.org/10.1016/j.jhydrol.2018.09.020
https://doi.org/10.1109/TNNLS.2012.2202289
https://doi.org/10.1016/j.jhydrol.2018.11.069
https://doi.org/10.1007/s11053-019-09512-6
https://doi.org/10.1007/s12665-019-8202-7
https://doi.org/10.1016/j.neucom.2012.08.010

	1. Introduction
	2. Material and methods
	2.1. Study area
	2.2. SHDI and SPI calculation procedure
	2.3. Extreme learning machine
	2.4. Input–output combinations
	2.5. Evaluation metrics

	3. Results
	4. Conclusion
	Acknowledgments
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


