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a b s t r a c t

The mud weight window (MW) determination is one of the most important parameters in drilling oil
and gas wells, where accurate design can secure the drilled well and deliver a stable borehole. In this
paper, novel algorithms based on the most influential set of input features are developed to predict
pore pressure, including rate of penetration (ROP), deep resistivity (ILD), density (RHOB), photoelectric
index (PEF), corrected gamma ray (CGR), compression-wave velocity (Vp), weight on bit (WOB), shear-
wave velocity (Vs) and pore compressibility (Cp). The algorithms used in this study are as follows:
1) machine learning algorithms (ML), these are the K-nearest neighbor (KNN) algorithm, weighted
K-Nearest Neighbor (WKKNN), and distance weighted KNN (DWKNN); 2) hybrid machine learning
algorithms (HML), which include the combination of three ML with particle swarm optimization (PSO)
(KNN-PSO, WKNN-PSO and DWKNN-PSO). The 2875-record dataset used in this study was collected
from three wells (S1, S2 and S3) in one of the gas reservoirs (Tabnak field) in Iran. After comparing the
performance accuracy of all algorithms, DWKNN-PSO has the best performance accuracy compared to
other algorithms presented in this paper (for the total dataset of wells S1 and S2: R2

= 0.9656 and
RMSE = 12.6773 psi). Finally, the generalizability of the best predictive algorithm for PP, DWKNN-PSO,
is evaluated by testing the proposed algorithm on an unseen dataset from another well (S3) in the field
under study, where the DWKNN-PSO algorithm provides PP predictions in well S3 with high accuracy,
R2 = 0.9765 and RMSE = 9.7545 psi, confirming its ability to be used in PP prediction in the studied
field.
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1. Introduction

One of the requirements for achieving hydrocarbon production
from deep underground is the use of exploration operations and
drilling for oil and gas wells (Elkatatny et al., 2020; Rashidi et al.,
2020). Therefore, drilling operations are very important and sig-
nificant in the oil and gas industry (Hazbeh et al., 2021a). During
drilling operations in sedimentary succession, different pressures
are encountered in these sedimentary formations. These differ-
ent pressures must be identified in such a way that allows for
determining the drilling mud pressure and determining the most
appropriate drilling mud window. The accurate determination of
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he drilling mud window can prevent problems such as loss
nd blowout, which have a direct impact on drilling costs (Ab-
ali et al., 2021; Abad et al., 2021a,b; Jia et al., 2021; Radwan
t al., 2019, 2020; Radwan, 2021; Abdelghany et al., 2021). Pore
ressure (PP) is the fluid pressure in the pore space, and when
t exceeds the hydrostatic pressure, an overpressure situation oc-
urs (Walsh, 1981; Radwan et al., 2019, 2020; Radwan, 2021). One
f the key solutions for safe well drilling is the identification and
nderstanding of PP and fracture pressure (FP) in the subsurface,
hich includes wellbore planning, analyzes of wellbore stabil-

ty, casing design, drilling fluid designs, drilling plans, structure
ptimization, and production optimization (Brainard, 2006; Hu
t al., 2013; Yin et al., 2020; Zhang et al., 2022). In addition to
electively selecting injection and production and determining a
ydrocarbon migration route, accurate determination of PP aids
n estimating the location of pressure problems (Hou et al., 2017;
eshavarzi and Jahanbakhshi, 2013; Naveshki et al., 2021).
In general, PP is divided into normal pressure (pressure gradi-

nt of 0.433 psi/ft) and abnormal pressure (overpressure higher
han normal pressure due to an additional pressure source and
nder-pressure due to production) (Radwan et al., 2019, 2020;
adwan, 2021; Radwan and Sen, 2021a,b). Abnormal pressure
auses problems such as adhesion of various pipes and severe
ud loss (Bahrami et al., 2020; Du et al., 2020; Kremieniewski,
020). Accurate real-time PP determination and prediction can
e demonstrated by well drilling path prediction, drilling mud
chedule, and well stability analysis, and can reduce drilling time
nd cost (Baouche et al., 2020; Dawson et al., 2020). Therefore,
any researchers have tried to provide empirical equations to
redict this important parameter, which include:
In 1943, Terzaghi et al. defined overburden pressure based on

P and effective pressure (Terzaghi, 1943). As shown in Eq. (1):

over = PP + Peff (1)

where;
Pover is overburden pressure; PP is pore pressure and Peff is

effective pressure.
Later, in 1975, Biot and Willis proposed an experimental re-

lationship between overburden pressure, effective stress, and PP
with a coefficient called the Biot coefficient (Eq. (2)). The Biot
coefficient is the relative coefficient of change in the pore fluid
volume relative to the volume of the whole rock, and if this liquid
is free and does not prevent it from leaving the rock, its value is
equal to one. It should be noted that this parameter is valid only
for homogeneous rocks, and this theory (Biot coefficient) is not
true for heterogeneous rocks (Biot and Willis, 1957).

PP =
Pover − Peff

ω
(2)

where;
PP is pore pressure; Pover is overburden pressure; Peff is effec-

tive pressure and ω is Biot coefficient.
Eaton proposed two formulas for calculating the PP using the

two parameters (sonic log and gamma ray log) in 1975, which are
presented in Eqs. (3) and (4).

PP = Pover − (Pover − Phyd)
(

∆ts

∆t

)x

(3)

PP = Pover − (Pover − Phyd)
(
GRs

GR

)x

(4)

here;
PP is pore pressure; Pover is overburden pressure; Phyd is hy-

rostatic pressure; ∆t is a sonic log; ∆ts is a sonic log in shale;
R is a gamma ray log; GRs is a gamma ray log in shale and x is

Eaton coefficient.
6552
Much research has been conducted in the last decade to de-
velop more accurate PP predictions using machine learning. In
2013, Nour and AlBinHassan predicted the PP in an oil field in
northwest Saudi Arabia using the support vector machine (SVM)
algorithm regression method. They used seismic data to predict
this important parameter. Finally, they concluded that this algo-
rithm is capable of predicting PP with high performance accuracy
(Nour and AlBinHassan, 2013).

In 2014, Abidin used an artificial neural network (ANN) al-
gorithm to predict the PP in fields characterized by normal and
abnormal pressure. This method consists of three layers, where
the optimal number of inputs for the input, hidden, and output
layers is 2, 10, and 1, respectively. The function used in this algo-
rithm is of the sigmoid function type. The performance accuracy
of this algorithm is very high and is about 5.0048% (Abidin, 2014).

One year later, Aliouane et al. (2015) predicted the PP parame-
ter in horizontal wells drilled in shale gas formations using fuzzy
logic (FL) and the multilayer perceptron neural network (MLP-
ANN). In this paper (Aliouane et al., 2015), the input data used to
predict PP are natural gamma-ray (GR), neutron porosity (NPHI),
slowness of compression (SC), and shear wave velocity (VS).

Three years later, Kiss et al. (2018) predicted the PP parameter
using an ANN algorithm based on two important parameters:
mechanical specific energy drilling (MSE) and drilling efficiency
(DE). Their field of study was these wellbores that were drilled
in an Iranian sandstone formation. The results showed that ANN
provides more reliable results for PP prediction (Kiss et al., 2018).

Ahmed et al. (2019) predicted the PP parameter using the
ANN, radial basis function (RBF), FL, support vector machine
(SVM), and functional networks (FN) algorithms. They have used
formation density (RHOB), porosity (φ), compression time (∆t),
predicted weight on bit (WOB), rotary speed (RPM), penetration
rate (ROP) and mud density (MW). The results of this study
showed that the SVM has a shorter execution time and higher
performance accuracy than other methods. The performance ac-
curacy of this method was R2

= 0.9950 and ARE = 0.14%.
Andrian et al. (2020) predicted the PP parameter using adap-

tive neuro fuzzy inference system (ANFIS) algorithms, which is
a combination of ANN and FIS machine learning and is based
on 2D seismic data parameters. The results show that the ANFIS
algorithm can show PP with 70% performance accuracy.

The PP parameter was predicted by (Farsi et al., 2021b) using
a combination of least squares support-vector machine (LSSVM),
multilayer perceptron (MLP) and extreme learning machine
(ELM) with particle swarm optimization (PSO). In this article, a
1972 dataset from Iranian oil field has been used. The results
show that MELM–PSO has highest performance accuracy (RMSE
= 11.551 psi).

Radwan et al. (2022) used 25,935 data records to predict the
PP parameter in the Mangahewa gas field, New Zealand. They
applied several machine learning ML techniques, including the
Extreme learning machine (ELM), multi-layer perceptron (MLP),
multi-linear regression (MLR, with gradient descent optimizer),
optimizer formula (OF, polynomial equation fit with optimizer),
random forest (RF), support vector regression (SVR), Adaboost
(ADA, a boosted decision tree (DT) model), DT, and transparent
open box (TOB). The results show that the most accurate models
for predicting PP are decision tree (DT), adaboost (ADA), random
forest (RF) and transparent open box (TOB).

In this paper, using a 2875 dataset that represents three wells
from Iranian gas fields located in southern Iran, we have applied
a new model for PP prediction using three new techniques. These
are the K-nearest neighbor (KNN), weight K-nearest neighbor
(WKNN), and distance weight K-nearest neighbor (DWKNN), and
these models are combined with a PSO algorithm, which has not
been used in any of the previous PP prediction published arti-
cles. The purpose of this article is to apply the three new artificial
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Fig. 1. Illustration of workflow chart used to develop and test six ML and HML algorithms for prediction of PP.
intelligence techniques to the studied gas field data records and
compare them with each other. Moreover, in this study, we used
two novel parameters (WOB and ROP) and the result shows that
these algorithms have an effect on predicted PP. The WOB is
inversely related to PP in exchange for increasing depth, where it
decreases for every PP increase. And according to the definition of
ROP, this parameter is directly related to WOB, so both WOB and
ROP are related (inversely) to PP. This paper aims to achieve an
important (costly to access) parameter using routine drilling pa-
rameters. Therefore, this article introduces two important drilling
parameters and their tire emphasizes the formation pressure,
which is indeed a new contribution in the method proposed for
predicting PP. Because they are simple and fast to implement,
the KNN-based algorithms can be used to evaluate datasets with
noisy or incomplete data samples. The main concerns with the
KNN based algorithms are the negative effects of K values and
neighbor weights on the accuracy of the predicted target value.
As a result, the PSO optimizer was employed in this study to
estimate optimal weights and K values to enhance the model’s
prediction accuracy.

2. Methodology

2.1. Workflow chart

The diagram shown in Fig. 1 shows the sequence of construc-
tion and evaluation steps of ML and HML algorithms in order to
predict PP and the best performance accuracy for the algorithms.
Initially, data was collected from three wells, namely: S1, S2 and
S3 from the Iranian gas field. Then, we set the minimum and
maximum values for each feature in order to normalize them. To
normalize the data in this research, we used the normalization
equation in Eq. (5) to be in the range of −1 and +1. Further, we
sed the feature selection to select the effective input variables
6553
(9 input features). In the next step, we classify the data into two
parts: training and testing. Then we compare the ML and HML
algorithms using statistical metrics. Finally we generalize the best
algorithm using well S3, which is related to the same field to
determine that this algorithm can be used in other wells.

S li =

(
S li − Sminl

Smaxl − Sminl

)
∗ 2 − 1 (5)

where:
S li = the value of data record I;
Sminl

= the minimum value of the data records; and, Smaxl =
the maximum value of all the data records.

2.2. Selection of feature for predicting pore pressure

Feature selection is a technique used for the determination
of the optimal number of input variables to include in the ma-
chine learning models. In this study, an MLP-GA algorithm was
deployed to identify the most influential set of input variables
by applying a multiple tarin and test sublets of data points. An
analysis of trial-and-error was performed to discover the most
effective model for feature selection. The MLP model of two layers
containing five and six neurons in its 1st and 2nd hidden layers
was identified as the most effective structure for feature selection
at RMSE minimization of the PP value predicted.

First, the input variables were divided into different com-
binations of variables, and the minimum value of RMSE was
considered as the evolution criteria in selecting the influential
features. Then, the PP was computed by the feature selection
model. To model the PP, the MLP-GA and the combination of
input variables with the most effective parameters that were
found to perform the best predictions in terms of accuracy were
chosen.
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.3. Predictive algorithms

Machine learning modeling has received a great deal of atten-
ion from researchers in various areas of science and engineering
ver the last decade (Abad et al., 2021b; Ghorbani et al., 2017,
020, 2019; Kombo et al., 2020; Ranaee et al., 2021). In this
egard, a variety of machine learning algorithms have been widely
sed in earth sciences and petroleum engineering to tackle dif-
erent classification and regression problems (Abad et al., 2022,
021a,b; Barjouei et al., 2021; Hazbeh et al., 2021a,b; Rajabi et al.,
021; Torabi et al., 2019). In this study, the K-Nearest Neighbor
KNN) algorithm and two of its improved versions, weighted
-Nearest Neighbor (WKKNN) and distance weighted KNN (DW-
NN) are applied for predicting pore pressure via conventional
ell logging data.

.3.1. KNN algorithm
The KNN algorithm is a simple yet robust machine learning

ML) technique that is used for tackling classification and re-
ression problems. In the KNN technique, data points that are
ot trained can be approximated using their proximity to data
oints that are trained (Navot et al., 2005; Rashidi et al., 2020).
ne of the KNN features that distinguishes it from other ML
ethods is its capability to deal with incomplete observations
nd noisy data (Brajard et al., 2020; Nguyen et al., 2019). This
pproach can identify the most influential areas from the noisy
ata records. Since field data recorded by well logging tools is
ommonly noisy, so the KNN based algorithms can be considered
n appropriate solution to accurately medal pore pressure. Eu-
lidean, Minkowski, Chebyshev, and Manhattan metrics can be
sed for machining of points performed in respect of the distance
easured. Consider X and Y to be two sets with n points each,
here X = (x1, x2, x3, . . . , xn), Y = (y1, y2, y3, . . . , yn), and (i =

1, 2, 3, 4, I, n). Then, the distance between nearby points and the
intended point can be enumerated. The following relationship
(Eq. (6)) defines the distance between the closest points and the
point desired (Kombo et al., 2020).

Di =

n∑
i=1

[(|xi − yi|2)]
1/2 (6)

where;
Di stand for the calculated Euclidean distance between data

sample X and the data sample i of the training set, xi represents
the value of test sample, yi denote the value of ith training sam-
ple. In order to predict the target value using KNN, the following
steps are followed:

1. Determine the distance between a new sample and the
neighboring points by applying Equation one.

2. Sort all the distance values determined in the first step in
increasing order.

3. Find the optimal K value based on an accuracy metric using
an optimization technique.

4. Compute an inverse distance mean by the K neighboring
samples using Eq. (7).

CP =
1
K

K∑
t=1

Ct (7)

where;
CP denotes the predicted value of output variable for test data

sample, Ct stands for the values of output variable of the nearest
neighbor t.
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2.3.2. WKNN and DW-KNN algorithms
The WKKN technique is an improved version of the KNN algo-

rithm, where a weight is assigned to each matching K data record
based on its distance to the other k-1 nearest adjacent records
from the test data. In this method, a lower weight is assigned to
the neighbors that have a longer distance to the test data record
than those closest neighbors. As a result, the nearest neighbors
have the highest degree of influence on the predicted target value.
The weight function for WKNN can be formally defined as shown
below (Eq. (8)) (Farsi et al., 2021a; Huang et al., 2017).

ωi =

{
dk−d1
dk−d1

, dk ̸= d1
1, dk = d1

(8)

Applying such weights to determine of each neighbor’s record
influence helps the WKNN in overcoming the negative effect
of neighborhood K. The DWKNN is an extended version of the
WKNN that was proposed to further overcome the neighborhood
K negative influence. In the DW-KNN, the linear mapping of the
WKNN is extended. The following relationship defines the dual-
weighted function for the DW-KNN algorithm (see Eq. (9)) (Huang
et al., 2017).

ωi =

{
dk−d1
dk−d1

.
dk+d1
dk+d1

, dk ̸= d1
1, dk = d1

(9)

For the DW-KNN and WKNN, the dependent variable value (Cun)
can be predicted using Eq. (10), in whichWi represents the weight
of dependent variable to be utilized for neatest neighbor i.

Cun =

k∑
i=1

wiCi (10)

The particle swarm optimization algorithm is used in this study
to estimate the optimal value for K and to optimize the set of
weights assigned to each variable in the dataset under consider-
ation.

2.3.3. Optimization algorithm
Particle swarm optimization (PSO) is an evolutionary com-

putation method that was developed on the basis of various
patterns of populations existing in nature, such as fish, birds, and
insects (Eberhart and Kennedy, 1995; Rashidi et al., 2021). This
technique solves the optimization problems by promoting initial
populations where the solutions are called ‘‘particles’’. In this
approach, a swarm is represented by a group of particles, so the
terms ‘‘particle’’ and ‘‘swarm’’ respectively indicate individual and
population (Abad et al., 2021a; Onwunalu and Durlofsky, 2010).
Although the PSO method resembles genetic algorithms in terms
of some properties, none of the evaluation operators, cross-over
and mutation, are used in the PSO. In the PSO optimization tech-
nique, each particle moves around in the optimization problem’s
domain area based on the influence of its topological neigh-
borhoods, which are physical, social, and queen neighborhoods
(Sharma and Onwubolu, 2009).

PSO optimizer defines two vectors, a velocity vector Vi(t) and
a position vector Xi(t) for each particle of the population. In each
iteration of algorithm, these velocity and position are updated
for each particle in the population. The velocity and the position
of the particles can be updated based on the following formulas
(Eqs. (11) and (12)).

Xi (t + 1) = Xi (t) + Vi(t + 1) (11)

Vi (t + 1) = wVi (t) + c1r1 (Pbi (t) − Xi (t)) + c2r2(Gb (t) − Xi (t))
(12)
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Fig. 2. Illustration of PSO algorithm implementation workflow.

where;
Gb and Pb represent the best global position and the best

previous position for the ith particle respectively; w denotes the
nertia weight; r stands for random number; and c denotes learn-
ng rate (Chen, 2013; Farsi et al., 2021b). The above-mentioned
elationship (Eq. (12)) is formed of three components, which are
ocial, inertia, and cognitive components. Inertia component is
epresented by wVi (t), which is the previous movements’ reten-
ion and directs the individual (particle) to its path at tth iteration.
he second term, c1r1 (Pbi (t) − Xi (t)), represents the cognitive
omponent that contains c1. Movement of the individuals to pre-
ious best position is performed by this cognitive component. The
hird term, c2r2(Gb (t) − Xi (t)), reparents the social component.
This component evaluates the particles efficiency and the swarm
trajectory in the domain. Fig. 2 illustrates the flow diagram to use
the PSO algorithm.

3. Data analysis

3.1. Data collection

In order to predict PP in this paper, a 2875 dataset related
to three wells (S1, S2 and S3) located in the Tabnak gas field
in the southeast of Mohr City and north of Fars City, which was
discovered in 1978. So far, 44 wells have been drilled in this field,
of which 43 are producing gas. The available data is between
depths of 3456–3738.6 m (942 data points) in the S1 well, 3462–
3764.4 m (1008 data points) in the S2 well, and 3477–3754.5 m
(925 data points) in the S3 well. The data collected to predict the
PP parameter from log data is related to 12 input variables: the
photoelectric index (PEF), rate of penetration (ROP), deep resis-
tivity (ILD), pore compressibility (Cp), weight on bit (WOB), bulk
density (RHOB), corrected gamma ray (CGR), laterolog shallow
6555
Fig. 3. Pore pressure calculated by Eaton’s method datapoint validation by RFT
tools.

Fig. 4. RMSE vs. number of input variable based on feature selection in wells
S1 and S2.

(ILS), uncorrected spectral gamma-ray (SGR), neutron porosity
(NPHI), caliper (CALL), hole size (HS), shear-wave velocity (Vs)
and compression-wave velocity (Vp). But in order to determine
PP, Eaton’s method is used. In order to verify PP data, several data
points related to data recorded by repeat formation tester (RFT)
tools are used. Fig. 3 shows the verification information for some
points in the S1, S2 and S3 wells.

3.2. Feature selection

In order to eliminate unnecessary inputs in this study, we have
used the feature selection method. Table 1 shows the notation
information for the inputs. Using the feature selection shown in
Table 1 and Fig. 4, the PP was predicted. After the results of
feature selection are shown, the best number of feature selection
is nine input features. The best nine input features are A2, A4, A7,
A1, A8, A12, A6, A3 and A11 (ROP, ILD, RHOB, PEF, CGR, vp, WOB,
vs and Cp).

After selecting the attribute selection and selecting the 9 at-
tributes, the parameters related to the input variables, including
ROP, ILD, RHOB, PEF, CGR, vp, WOB, vs and Cp for three, are shown
in Table 2. In order to build single and hybrid artificial intelligence
models, data related to two wells (S1 and S2) has been used.
Finally, in order to generalize the best algorithm, we used S3-well
data to find out if this algorithm gives the same result for other

data in this field.
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Table 1
Results of feature selection and the determination characters of parameters in wells S1 and S2.
No. of features Features RMSE (psi) Parameters Characters

1 A12 42.355 PEF A1
2 A3, A12 36.395 ROP A2
3 A2, A12, A3 32.259 vs. A3
4 A12, A3, A2, A6 29.482 ILD A4
5 A2, A6, A12, A3, A8 27.346 LLS A5
6 A3, A8, A2, A6, A12, A7 25.338 WOB A6
7 A7, A12, A6, A2, A3, A8, A1 23.755 RHOB A7
8 A3, A8, A6, A12, A1, A7, A2, A4 22.974 CGR A8
9 A2, A4, A7, A1, A8, A12, A6, A3, A11 (Best) 22.001 CALI A9
10 A12, A6, A3, A7, A2, A11, A8, A4, A1, A5 22.224 HS A10
11 A4, A12, A2, A8, A7, A4, A6, A5, A3, A1, A9 22.311 Cp A11
12 A8, A4, A5, A3, A6, A4, A11, A7, A2, A10, A1, A12 22.523 vp A12
Table 2
Statistical parameters for all input and output variable for wells in wells S1, S2 and S3 after feature selection.
Wells Variables The

photoelectric
index

Rate of
penetration

Deep
resistivity

Pore com-
pressibility

Weight on
bit

Bulk
density

Corrected
gamma ray

Shear-wave
velocity

Compressional-
wave
velocity

Pore
pressure

Symbol PEF ROP ILD Cp WOB RHOB CGR vs vp PP
Units Barn/cm3 ft/s mmho/m psi-1 klb g/cm3 GAPI km/s km/s Psi

Well S1 (942
data point)

Mean 4.13 16.79 847.13 1.19E−06 13.66 2.58 23.45 97.93 53.50 4674.39
Std. Dev. 0.73 2.28 3567.09 2.85E−07 7.17 0.11 22.18 6.48 3.15 346.31
Variance 2.29 5.34 1.31 1.32E−07 5.15 2.01 1.06 79.58 47.02 4092.16
Minimum 6.33 28.24 20000.00 2.23E−06 22.16 2.83 121.40 187.09 67.30 5428.00
Maximum −0.27 0.11 4.86 2.48E−01 0.63 −0.91 2.25 3.34 0.57 0.13
Skewness 0.06 −0.08 22.56 −3.55E−01 −0.35 1.17 5.06 37.28 0.15 −1.11
Kurtosis 4.31 19.17 1447.61 1.19E−06 17.24 2.88 21.11 396.88 53.38 4872.79

Well S2 (1008
data point)

Mean 1.14 2.65 4802.25 1.56E−06 9.74 0.53 15.85 266.88 3.75 195.56
Std. Dev. 1.21 1.67 0.45 1.22E−07 4.32 1.20 3.31 62.45 45.72 4498.00
Variance 7.41 36.67 20012.34 4.07E−06 30.16 3.87 110.20 738.98 82.91 5428.00
Minimum 0.29 1.17 3.45 −3.21E−01 −0.42 −0.01 1.99 −0.25 2.72 0.54
Maximum −0.92 6.44 10.23 6.45E−01 0.15 −0.43 4.84 −1.86 13.75 −0.45
Skewness 4.90 15.82 1273.94 1.85E−06 16.24 3.49 26.16 283.30 53.82 4759.19
Kurtosis 1.38 5.65 4571.83 1.65E−07 10.52 0.38 19.89 259.95 1.79 179.59

Well S3 (925
data point)

Mean 4.45 4.32 0.42 1.65E−06 5.34 2.29 3.17 57.55 48.06 4405.47
Std. Dev. 5.34 27.32 20002.09 2.32E−06 27.15 3.93 124.27 712.52 65.54 5226.00
Variance 0.44 1.24 3.72 −1.88E−01 0.64 −1.62 2.09 0.47 0.91 0.17
Minimum −0.36 6.18 12.15 −6.88E−01 −0.14 1.69 5.30 −1.72 4.03 0.04
Maximum 4.13 16.79 847.13 1.19E−06 13.66 2.58 23.45 97.93 53.50 4674.39
Skewness 0.73 2.28 3567.09 2.85E−07 7.17 0.11 22.18 6.48 3.15 346.31
Kurtosis 2.29 5.34 1.31 1.32E−07 5.15 2.01 1.06 79.58 47.02 4092.16
S

S

D

4. Result and discussion

In order to compare the artificial intelligence algorithms, we
sed conventional statistical metrics that are the basis of compar-
son for regression. Among the statistical metrics used to predict
P in this article are the following (Eqs. (13)–(19)).

elative error (RE) :

Di =
H(Measured) − H(Predicted)

H(Measured)
x100 (13)

Average relative error (ARE) :

ARE =

∑n
i=1 PDi

n
(14)

bsolute average relative error (AARE) :

ARE =

∑n
i=1 |PDi|

n
(15)

oefficient of Determination(R2) :

R2
= 1 −

∑N
i=1(SPredictedi − SMeasuredi)2∑N

i=1(SPredictedi −
∑n

I=1 SMeasuredi
n )2

(16)

Mean Square Error (MSE) :

MSE =
1
n

n∑
(ZMeasuredi − ZPredictedi)2 (17)
i=1
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Root Mean Square Error (RMSE) :

RMSE =
√
MSE (18)

tandard Deviation (STD) :

TD =

√∑n
i=1(Di − Dimean)2

n − 1
(19)

imean =
1
n

n∑
i=1

(
SMeasuredi − SPredictedi

)
The difference between test and validation data is that valida-

tion data is entered into the model during training if it has not
previously been evaluated, where the first test is provided by this
data. This data allows researchers to evaluate useful information
up to the model prediction. On the other hand, test data are unla-
beled data that are used to perform the final evaluation; in other
words, it is predetermined data that is randomly selected for the
purpose of final control and output accuracy determination.

Two of the most important metrics used in this paper are
RMSE and R2. In order to find the best algorithm for PP prediction,
the results used in Tables 3 to 6 are used. The results in Ta-
bles 3 to 6 are the results of statistical tests related to testing,
training, validating, and total dataset, respectively. In order to
build artificial intelligence algorithms and train them, 1364 data
points related to S1 and S2 wells have been used. Furthermore,
in order to check the results of these algorithms, 293 data points
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Table 3
Prediction accuracy to prediction of PP for six ML and HML models based on
six statical metric for training dataset in wells S1 and S2 (1364 data ∼ 70%).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (Psi) (Psi) (Psi) –

KNN 0.136 3.522 28.475 8.114E+02 28.4846 0.7903
WKNN −0.035 3.019 24.361 5.931E+02 24.3541 0.8315
DWKNN 0.013 2.499 20.365 4.134E+02 20.3311 0.8533
KNN-PSO −0.052 2.013 17.685 3.129E+02 17.6888 0.8964
WKNN-PSO −0.052 2.305 16.190 2.621E+02 16.1904 0.9016
DWKNN-PSO −0.022 1.760 12.679 1.605E+02 12.6690 0.9336

Table 4
Prediction accuracy to prediction of PP for six ML and HML models based on
six statical metric for testing dataset in wells S1 and S2 (293 data ∼ 15%).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (Psi) (Psi) (Psi) –

KNN −0.214 3.415 25.308 6.423E+02 25.3437 0.8215
WKNN −0.041 3.203 23.272 5.417E+02 23.2739 0.8741
DWKNN 0.083 2.483 18.308 3.355E+02 18.3160 0.8915
KNN-PSO −0.133 2.075 16.317 2.671E+02 16.3423 0.9262
WKNN-PSO −0.133 2.284 14.745 2.178E+02 14.7585 0.9274
DWKNN-PSO −0.009 1.747 11.257 1.267E+02 11.2570 0.9846

Table 5
Prediction accuracy to prediction of PP for six ML and HML models based on
six statical metric for validating dataset in wells S1 and S2 (293 data ∼ 15%).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (Psi) (Psi) (Psi) –

KNN 0.144 3.510 26.132 6.837E+02 26.1468 0.8024
WKNN −0.079 3.023 22.468 5.050E+02 22.4733 0.8533
DWKNN 0.121 2.557 19.017 3.622E+02 19.0314 0.8846
KNN-PSO 0.218 1.989 15.987 2.581E+02 16.0650 0.9137
WKNN-PSO 0.218 2.291 14.918 2.226E+02 14.9183 0.9279
DWKNN-PSO 0.099 1.796 11.745 1.382E+02 11.7571 0.9787

Table 6
Prediction accuracy to prediction of PP for six ML and HML models based on
six statical metric for total dataset in wells S1 and S2 (1950 data = 100%).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (Psi) (Psi) (Psi) –

KNN 0.136 3.522 28.475 8.114E+02 28.4846 0.8047
WKNN −0.035 3.019 24.361 5.931E+02 24.3541 0.8530
DWKNN 0.013 2.499 20.365 4.134E+02 20.3311 0.8765
KNN-PSO −0.052 2.013 17.685 3.129E+02 17.6888 0.9121
WKNN-PSO −0.052 2.305 16.190 2.621E+02 16.1904 0.9190
DWKNN-PSO −0.024 1.762 12.687 1.607E+02 12.6773 0.9656

Table 7
Generalization of DWKNN-PSO based on all dataset of well S3 for determination
of accuracy to prediction of PP based on training data (70% dataset from wells
S1 and S2).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (Psi) (Psi) (Psi) –

DWKNN-PSO −0.019 1.001 9.759 9.515E+01 9.7545 0.9756

known as testing data are used, and finally, in order to validate
these algorithms, 293 data points are used as validation data.

The results of each of the algorithms in Table 3 for the train-
ng dataset show the high-performance accuracy of algorithm
WKNN-PSO compared to other algorithms. As indicated in the
esults, the best result for DWKNN-PSO is presented in (Table 3),
hese values are AARE (KNN) = 1.76 psi and R2 (KNN) = 0.9336.

The results of each algorithm in Table 3 for the training dataset
how that algorithm DWKNN-PSO outperforms other algorithms
n terms of accuracy.

As shown in the results, the best DWKNN-PSO result is pre-
ented in (Table 3), with values of AARE (KNN) = 1.76 psi and R2
KNN) = 0.9336.
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Table 5 displays the validation dataset results, and this table
demonstrates the high-performance accuracy of the DWKNN-PSO
algorithm, with RMSE, ARE, AARE, and STD values of 11.757,
0.099, 1.796, and 11.745, respectively. When the DWKNN-PSO
algorithm’s accuracy is compared to the other five algorithms
when tested on the validation subset, it is clear that this algo-
rithm outperforms the others in terms of PP prediction accuracy.
For instance, the STD value achieved by the DWKNN-PSO is
11.745, whereas the other five algorithms evaluated, KNN, WKNN,
DWKNN, KNN-PSO, and WKNN-PSO present the STD values of
26.132, 22.468, 19.017, 15.987,14.918, respectively.

Finally, Table 6 shows the results for six ML and HML models
based on six statistical metrics for the total dataset. This table
also shows the high-performance accuracy of this article for the
DWKNN-PSO algorithm. The final results for total data is for each
algorithm are: AARE (KNN) = 1.796 psi and R2 (KNN) = 0.9787,
AARE (WKNN) = 1.796 psi and R2 (WKNN) = 0.9787, AARE
(DWKNN) = 1.796 psi and R2 (DWKNN) = 0.9787, AARE (KNN-
PSO) = 1.796 psi and R2 (KNN-PSO) = 0.9787, AARE (WKNN-PSO)
= 1.796 psi and R2 (WKNN-PSO) = 0.9787, AARE (DWKNN-PSO)
= 1.762 psi and R2 (DWKNN-PSO) = 0.9665.

Furthermore, comparing the values of the other accuracy met-
rics used, RMSE, STD, and ARE, DWKNN-PSO produces the most
accurate PP predictions. For example, the STD, RMSE, and ARE val-
ues achieved by the DWKNN-PSO in PP prediction when tested on
the entire dataset are 12.687, 12.6773, and −0.024, respectively,
which are lower than those achieved by the other five algorithms
tested. Fig. 5 shows a cross diagram for predicting pp versus
the verified value for all datasets for the S1 and S2 wells. From
this figure, several conclusions can be drawn, and it can show a
visual image of the algorithms. The DWKNN-PSO algorithm, like
the entire visual form, has a much higher performance accuracy
than other hybrid or even single algorithms. Further, this diagram
shows the coefficient of determination of each algorithm for the
whole dataset. From the information about this parameter, it can
be concluded that the performance accuracy of the HML is greater
than other algorithms. Algorithms can be classified in terms of
this statistical parameter as follows: KNN < WKNN < DWKNN <

NN-PSO < WKNN-PSO < DWKNN-PSO.
Fig. 6 shows the error rate and R2 values for the different

algorithms. It can be noted that the low RMSE error rate is
inversely proportional to the R2 value (for all datasets of wells S1
and S2). In other words, if the error obtained by each algorithm
is reduced, a better fit in the results can be obtained. Based on
this diagram, the performance accuracy (RMSE) of DWKNN-PSO
is higher than that of other algorithms, and the fit of the diagram
is also higher. In other words, the results of this diagram can be
shown as follows:

R2: R2 (DWKNN-PSO) > R2 (WKNN-PSO) > R2 (KNN-PSO) >
2 (DWKNN) > R2 (WKNN) > R2 (KNN)
RMSE: RMSE (DWKNN-PSO) < RMSE (WKNN-PSO) < RMSE

KNN-PSO) < RMSE (DWKNN)< RMSE (WKNN) < RMSE
KNN)

Fig. 6 also confirms the error between the different algorithms
nd compares the AAPD and STD errors using the Pie diagram
for all datasets of wells S1 and S2). This diagram shows that the
WKNN-PSO algorithm has the highest performance accuracy in
erms of STD = 12.687 psi and AARE = 1.762%, while the KNN
lgorithm has the lowest performance accuracy. This chart can
isually and quickly present the results (see Fig. 7).

. Generalize DWKNN-PSO model for predicted PP

The results shown in the previous section discuss training,
esting, and validation for three ML (KNN, WKK, and DWKNN)
nd three HML (KNN-PSO, WKNN-PSO, and DWKNN-PSO) based
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Fig. 5. Illustration of predicted and verify PP for three ML (KNN, WKK and DWKNN) and three HML (KNN-PSO, WKNN-PSO and DWKNN-PSO) based on all of dataset
in well S1 and well S2.
on the datasets from the S1 and S2 wells. After reviewing the
results presented in this model, it can be observed that the best
artificial intelligence algorithm to predict this important param-
eter is DWKNN-PSO. In this section, we tried to investigate if
the best algorithm for predicting PP could offer the same level
of performance accuracy as other wells in the studied field. The
results presented in Table 7 confirm the performance accuracy of
the DWKNN-PSO algorithm in S3 well with the results presented
in the training, testing, and validation section in the S2 and S1
wells.

Fig. 8 also confirms the performance accuracy of the new
algorithm presented in predicting this critical parameter (PP).
The findings of this study indicate that researchers can apply
this algorithm to predict other important reservoir/geological
parameters.
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6. Recommendations for future research works

Evaluation of the effect of the inclusion of other drilling pa-
rameters such as standpipe pressure and mud flow rate as input
parameters along with well logging to predict PP can be further
investigated. According to the current findings, adding more
related input parameters could provide models with higher pre-
diction efficiencies. Involving other optimizers, such as genetic
algorithms and firefly algorithms, in the development of a high-
performance hybrid predictive model for PP prediction can also
be considered in future research work (Ahmadi et al., 2020;
Choubin et al., 2019; Kalbasi et al., 2021; Mosavi et al., 2021;
Qasem et al., 2019). The application of the proposed method
should be investigated in a wide range of applications, e.g., var-
ious energy, ecological and natural research applications (Ah-
madi et al., 2020; Band et al., 2020a,b; Emadi et al., 2020; Lei
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Fig. 6. Illustration of RMSE & R2 for predicted of PP for three ML (KNN, WKK
and DWKNN) and three HML (KNN-PSO, WKNN-PSO and DWKNN-PSO) based
on all of dataset in well S1 and well S2.

Fig. 7. Illustration of AARE for predicted of PP for three ML (KNN, WKK and
DWKNN) and three HML (KNN-PSO, WKNN-PSO and DWKNN-PSO) based on all
of dataset in well S1 and well S2.

Fig. 8. Illustration of predicted and verified PP to generalized the beast HML
algorithm (DWKNN-PSO) based on well S3 data records.
6559
et al., 2020; Shamshirband et al., 2020; Taherei Ghazvinei et al.,
2018). From computational fluid and hydrological modeling to
environmental simulation for instance (Ghalandari et al., 2019c;
Mahmoudi et al., 2021; Rezakazemi et al., 2019; Seifi et al.,
2020) the proposed methodology can be effective. For the future
research the comparative analysis with other machine learning
methods, e.g., Asadi et al. (2019), Ghalandari et al. (2019b),
Joloudari et al. (2020), Mosavi et al. (2020), Mosavi and Safaei-
Farouji (2021), Sadeghzadeh et al. (2020) and Shabani et al. (2020)
would be essential to bring an insight into the true potential
of the proposed method (Ghalandari et al., 2019a; Nabipour
et al., 2020b). To improve the accuracy and the performance
of the proposed method further deep learning, ensemble and
hybrid methods for instance, those suggest in Band et al. (2020b),
Dehghani et al. (2020), Mosavi et al. (2020), Mousavi et al.
(2021), Nabipour et al. (2020a), Nourani et al. (2022) and Sham-
sirband and Mehri Khansari (2021) can come to the
consideration.

7. Conclusions

This study aims to predict the PP applying six novel algo-
rithms, including three ML (KNN, WKK, and DWKNN) and three
HML (KNN-PSO, WKNN-PSO, and DWKNN-PSO) based on log
and drilling data. To the best of the authors knowledge, these
algorithms have not been suggested to predict this parameter so
far. Three ML algorithms and their hybrid forms were developed
using based on 1950 (70%) data related to S1 and S2 wells for
building algorithms (algorithm training), 293 data (15%) for test-
ing, and 293 (15%) for validation. After reviewing the input data
with the feature selection method, the most influential nine input
features are: rate of penetration (ROP), deep resistivity (ILD),
density (RHOB), the photoelectric index (PEF), corrected gamma
ray (CGR), compression-wave velocity (Vp), weight on bit (WOB),
shear-wave velocity (Vs) and pore compressibility (Cp) and fi-
nally, using these best inputs, AI models are developed. In this
paper, the ROP and WOB were used, where the study performed
demonstrates that these two parameters are also effective for
predicting PP. The KNN based algorithm can be used for evalu-
ating datasets with noisy or incomplete data samples. The main
concerns with KNN based algorithms are the negative effects of K
values and neighbors’ weights on the accuracy of predicted target
values. As a result, the PSO optimizer was employed in this study
to estimate optimal weights and K values to enhance the model’s
prediction accuracy. When the results of three ML algorithms
and three HML algorithms were compared, it was discovered
that HML algorithms outperformed ML algorithms, where the
DWKNN-PSO was found to be the best algorithm in predicting
PP among the six algorithms tested (for total dataset of wells S1
and S2: R2 = 0.9656 and RMSE = 12.6773 psi). Finally, in order
to test the generalizability of the best-performing algorithm for
other wells in the field under study, we tested the DWKNN-PSO
on the unseen data from the S3 well, the results of which confirm
the performance accuracy of this algorithm (R2 = 0.9765 and
RMSE = 9.7545 psi for the total dataset of wells S3). Considering
the promising accuracy presented by the algorithms used in this
study, the developed models can be considered to predict PP in
the studied field or be applied to other fields.



F. Jafarizadeh, M. Rajabi, S. Tabasi et al. Energy Reports 8 (2022) 6551–6562

m
V
j
t
W

D
s
d
F
V
w
t

Nomenclature
ANFIS Adaptive neuro fuzzy inference

system
ANN Artificial neural network
DE Drilling efficiency
DWKNN Distance weight K-nearest neighbor
ELM Extreme learning machine
FL Fuzzy logic
FN Functional networks
FP Fracture pressure
GR Gamma-ray
HML Hybrid machine learning
KNN K-nearest neighbor
LSSVM Least squares support-vector machine
ML Machine learning
MLP Multilayer perceptron
MLP-ANN Multilayer perceptron neural network
MSE Mechanical specific energy
NPHI Neutron porosity
Peff Effective pressure
Pover Overburden pressure
PP Pore pressure
PSO Particle swarm optimization
PSO Particle Swarm Optimization
RBF Radial basis function
SC Slowness of compression
SVM Support vector machine
SVM Support vector machine
Vs Shear wave velocity
WKNN Weight K-nearest neighbor
CP Predicted value of output variable
Ct Values of output variable of the

nearest neighbor t
Di Calculated Euclidean distance
Vi(t) Velocity vector
Wi Dependent variable weight
Xi(t) Position vector
xi Test sample value
yi The value of ith training sample
ω Biot coefficient
c Learning rate
r Random number
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