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Abstract
In the present study, the prokaryotic community structure of the water of Lake Balaton was investigated at the littoral region 
of three different points (Tihany, Balatonmáriafürdő and Keszthely) by cultivation independent methods [next-generation 
sequencing (NGS), specific PCRs and microscopy cell counting] to check the hidden microbial diversity of the lake. The 
taxon-specific PCRs did not show pathogenic bacteria but at Keszthely and Máriafürdő sites extended spectrum beta-
lactamase-producing microorganisms could be detected. The bacterial as well as archaeal diversity of the water was high 
even when many taxa are still uncultivable. Based on NGS, the bacterial communities were dominated by Proteobacteria, 
Bacteroidetes and Actinobacteria, while the most frequent Archaea belonged to Woesearchaeia (Nanoarchaeota). The ratio 
of the detected taxa differed among the samples. Three different types of phototrophic groups appeared: Cyanobacteria (oxy-
genic phototrophic organisms), Chloroflexi (anaerobic, organotrophic bacteria) and the aerobic, anoxic photoheterotrophic 
group (AAPs). Members of Firmicutes appeared only with low abundance, and Enterobacteriales (order within Proteobac-
teria) were present also only in low numbers in all samples.
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Introduction

Lake Balaton is the biggest lake of Central Europe, a shal-
low water ditch, with an average depth of 3.0–3.6 m. The 
open water of the lake is almost permanently homogenized 
by wind, resulting concomitant resuspension of the sedi-
ment. The lake has a great importance also due to its tour-
istical use. The quality of the water is regularly tested, and 
monitoring has started already in the 1960s (Szabó 1999; 
Kiss et al. 2005). In 2006, Hungary joined the water quality 
assessments in line with the EU Water Framework Direc-
tive (EU WFD). In it, the definitions of biological variables 
were given a much stronger role than before. Moreover, till 
that time many studies had revealed the state of the water 

(Istvánovics et al. 2008; Bolla et al. 2010; Hatvani et al. 
2014; Maasz et al. 2019).

The first microbiological investigations aimed at studying 
the prokaryotic diversity of the lake showed that members 
of the genus Bacillus (Firmicutes) are dominant at some 
regions (Langó 1982). Different Actinobacteria were also 
isolated from the water of Keszthely Bay, e.g. Streptomy-
ces and Micromonospora species (Farkas 1982). In 1985, 
the presence of Enterobacteria (indicating faecal pollution) 
was found in Keszthely Bay, and Enterobacter agglomer-
ans, Escherichia coli, Kluyvera cryocrescens and Klebsiella 
oxytoca were detected in high number among the cultivated 
bacterial strains (Bognár, 1990).

Tóth (1995) has studied the bacterial communities of the 
open water in the Balatonfüred region and found the domi-
nance of many Gram-negative organisms belonging to the 
genera Aeromonas, Pseudomonas and Acinetobacter. Bacte-
rial partners of Eudiaptomus gracilis (important member of 
the zooplankton of the lake) were also studied (Homonnay 
et al. 2011) as well as the microbiology of big-headed carps 
(Borsodi et al. 2017). The first detailed reports about aerobic 
anoxygenic phototrophs (AAPs) of the lake showed that their 
abundance as compared to heterotrophic bacteria is between 
1 and 7% (Szabó-Tugyi et al. 2019).
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All of these studies are very important, but most of them 
were based on cultivation techniques, and it is known that 
less than 1% of bacteria are cultivable from natural aquatic 
habitats (Amann et al. 1995).

The aim of the present study was to reveal the prokaryotic 
community structure of the water of the lake at the littoral 
region (where the water is subjected also to strong human 
influence due to bathing) by cultivation independent meth-
ods [next-generation sequencing (NGS) and microscopic cell 
counting]. By using specific PCRs, the presence of some 
hygienically important bacteria was tested. Our results show 
the hidden prokaryotic diversity of the lake which has never 
been revealed until now, and provide information about the 
potential health risks of bathing.

Materials and methods

Sampling

Sampling was carried out in 30. 08. 2018 at three points 
of the lake: Tihany (65.91900  N; 17.88903 E), Kesz-
thely (46.76014 N; 17.25448 E) and Balatonmáriafürdő 
(46.70725 N; 17.38276 E) (later: Máriafürdő), from the lit-
toral water region. The water samples (1–1 L) were asep-
tically collected into sterilized screw-capped flasks from 
10 cm subsurface according to ISO 19458:2006. Samples 
were transported to the laboratory in a cooler bag (at 4 °C) 
and processed within 4 h after sampling.

Analysis of physical and chemical parameters

To measure the physical and chemical parameters, the fol-
lowing standards were used: MSZ 448-32:1977 (conductiv-
ity), MSZ ISO 5813:1992 (dissolved oxygen, DOC), MSZ 
1484-13:2009 (nitrate concentration), MSZ 448-13-1983 
(sulphate concentration), MSZ ISO 10260:1993 (chlorophyll 
a). The measures were done by the Central Transdanubian 
Water Authority, and we got it via the National Directorate 
of Water Management (OVF); data were obtained from the 
office except values of water temperature and pH which were 
measured on site.

Determination of microscopy cell counts

Determination of bacterioplankton abundance (micros-
copy cell counts) was carried out as described by Kéki 
et al. (2019) using Nikon80i epifluorescent microscopy 
and NisElements program package. For the investigations, 
10 mL water samples were filtered on sterile polycarbonate 
filters (Millipore, Billerica, MA, USA) and fixed with 2% 
paraformaldehyde solution.

DNA extraction from the water samples

For DNA extraction, 0.25L water samples were fil-
tered through 0.22  μm pore size, mixed cellulose fil-
ter (type GSWP; Millipore, Billerica, MA, USA) using 
the  Ultraclean® PowerSoil DNA Isolation Kit (MoBio, 
Carlsbad, CA, USA) according to the manufacturer’s 
instructions.

Specific PCRs

Taxon-specific PCRs were applied for the following bacte-
rial groups: Pseudomonas spp. and Pseudomonas aerugi-
nosa according to Lavenir et al. (2007), Legionella spp. 
according to Cloud et al. (2000), Legionella pneumophila 
according to Fiume et al. (2005), Acinetobacter baumannii 
according to Tsai et al. (2018) and Stenotrophomonas malt-
ophilia according to Filho et al. (2004).

At the sampling sites there were no people at the time of 
sampling (it was late pm), but the sites were subjected to 
bathing in the previous days, therefore, the bacterial com-
munity was tested also for extended spectrum beta-lactamase 
(ESBL)-producing and macrolide-resistant bacteria.

The presence of ESBL genes was tested by multiplex 
PCRs in the water samples according to Trung et al. (2015) 
and macrolide-resistance genes following the protocol 
described by Zmantar et al. (2011), testing five genes (ermA, 
ermB, ermC, msrA and mefA) simultaneously.

Next‑generation DNA sequencing and data analysis

For the identification of bacterial and archaeal taxa, the 16S 
rRNA gene of the DNA samples was amplified with PCRs 
in separate, triplicate reactions using primers with the fol-
lowing target-specific sequences: Bact_341F (5′-CCT ACG 
GGN GGC WGC AG-3′) and modified Bact_805R (5′-GAC 
TAC NVG GGT ATC TAA TCC-3′) for bacteria (Herlemann 
et al. 2011), and A519F (5′ -CAG CMG CCG CGG TAA- 
3′) and Arch855R (5′ -TCC CCC GCC AAT TCC TTT 
AA-3′) for Archaea (Klindworth et al. 2013). DNA sequenc-
ing was performed on an Illumina MiSeq platform using 
MiSeq standard v2 chemistry by the Genomics Core Facil-
ity RTSF, Michigan State University, USA. Sequencing and 
the description of bioinformatic analysis were done accord-
ing to Benedek et al. (2019). OTUs were determined at the 
species-level delineation based on Tindall et al. (2010). 
Sequence reads were deposited in the NCBI SRA database 
and are accessible through the BioProject PRJNA628507, 
Biosample ID SAMN14732963 (Tihany), SAMN14732959 
(Máriafürdő) and SAMN14732964 (Keszthely). Diversity 
indices were calculated using mothur (Schloss et al. 2009), 
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and reads were subsampled to the read number of the sample 
having the lowest sequence count.

Results

Physico‑chemical and biological parameters

The physico-chemical parameters together with the cell 
count values of the samples of the Lake Balaton are given 
in Table 1. Data of the three sampling sites showed similari-
ties though some differences could be detected: the quantity 
of total organic carbon (TOC), total organic nitrogen (TON), 
total organic phosphorous (TOP) as well as chlorophyll-a 
concentration were the lowest in the Tihany region. Most 
TOC appeared in dissolved form (DOC), and the water was 
aerated at all sites.

Specific PCRs

The taxon-specific PCRs showed  (Table  2) that Pseu-
domonas spp. and Legionella spp. were present at all sites, 
but pathogenic L. pneumophila and P. aeruginosa as well 
as Acinetobacter baumannii could not be detected. At Kes-
zthely and Máriafürdő sites ESBL-producing bacteria could 
also be detected.

Amplicon sequencing

NGS results showed that diversity indices of Keszthely 
and Máriafürdő samples were similar in case of all types 
of indices, while Tihany sample (despite the fact that cell 
counts were high even at that site) produced much lower 
values. The Chao indices (abundance-based estimator of 
species richness) were 747.5 in case of Tihany, 1433.4 in 
case of Keszthely and 1509 in case of Máriafürdő sample, 
respectively.

The distribution of the different bacterial phyla and domi-
nant classes among the samples is given in Fig. 1.

Results show that on the level of phyla the samples are 
similar: Proteobacteria, Bacteroidetes and Actinobacteria 
were the most abundant members of the communities at each 
site and many unclassified bacteria: Planctomycetes, Cyano-
bacteria and Patescibacteria also occurred. Abundance of 
Firmicutes was relatively low in case of each sample. On 
the other hand, the ratio and composition of the different 
lower-level taxa differed among the samples. Most abundant 
orders among Alphaproteobacteria were Rhizobiales, Azos-
pirillales, Rhodobacterales, Rhodospirillales and members 
of SAR11 clade (Azospirillales and Rhodospirillales were 
present only at Tihany region), among Deltaproteobacteria, 
Bdellovibrionales, Myxococcales and many sulphate-reduc-
ing bacteria (SRB) appeared, while Gammaproteobacteria Ta
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(giving more than 60% of Proteobacteria at each site) were 
represented by the abundance of unclassified Burkholde-
riaceae, Methylococcales (was not present at Tihany sam-
ple), Betaproteobacteriales, Pseudomonadales and Xan-
thomonadales. Enterobacteriales were present only in low 
numbers in all samples.

From the phylum Actinobacteria members of Micro-
trichales, Frankiales and Micrococcales appeared in high 
number, their ratio was higher at Máriafürdő and at Kes-
zthely. Among Bacteroidetes, the orders Chitinophagales, 
Cytophagales, Flavobacteriales and Sphingobacteriales were 
abundant, at Tihany sample, less orders were identified than 
in the other two samples.

Three different types of phototrophic metabolisms 
appeared in the samples: Cyanobacteria are oxygenic 
phototrophic organisms, Chloroflexi are anaerobic, 

organotrophic bacteria and the aerobic, anoxic photohet-
erotrophic group (AAPs). Their distribution among the 
samples and the ratio of different Cyanobacteria are dis-
played in Fig. 2.

Among Cyanobacteria, ratio of Nostocales was high at 
Keszthely and Máriafürdő samples, while members of Syn-
echococcales were more abundant in the Tihany region, and 
they are represented by the dominance of Cyanobium (pico-
cyanobacterium). Among Chloroflexi, members of the order 
Anaerolineales were the most abundant, but they did not 
appear in Tihany sample.

In case of Archaea, the diversity indices showed simi-
lar tendencies than in case of bacteria, Chao indices were 
108.27 in case of Tihany, 178.9 in case of Keszthely and 
119.02 in case of Máriafürdő sample, respectively, and val-
ues were much lower than in case of bacteria.

Table 2  Results of the taxon-specific, ESBL-producing and macrolide resistance genes by PCRs

Sampling site Pseu-
domonas 
spp.

P. aeruginosa Legionella 
spp.

L. pneu-
mophila

Stenotrophomonas 
maltophilia

Acinetobacter 
baumannii

ESBL-pro-
duction

Macrolide 
resistance

Tihany + − + − + − − −
Máriafürdő + − + − + − + −
Keszthely + − + − + − + −
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Fig. 1  The distribution of the different bacterial phyla and the ratio of dominant classes among the samples of Lake Balaton
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The archaeal phyla appearing at the samples are shown 
in Fig. 3.

The absolute dominance of Nanoarchaeota was obvi-
ous in all samples, and Woesearchaeia dominated each 
sample among them: representing more than 65% of each 

community. Crenarchaeota (e.g. Bathyarchaeia) and Eur-
yarchaeota (e.g. Methanobacteria and Thermoplasmata) 
were very less abundant in Tihany sample, and Asgardeota 
did not even appear there. Unclassified Archaea were pre-
sent in all of the three samples.
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Fig. 2  a Distribution of phototrophic bacteria among the samples. b Ratio of the different Cyanobacteria (Nostocales, Synechococcales, Vam-
pirovibrionales, Leptolyngbiales and unclassified Cyanobacteria) among the samples of Lake Balaton

Fig. 3  Distribution of archaeal 
phyla among samples of Lake 
Balaton
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Discussion

The quality of the surface waters (e.g. lakes, rivers, 
streams) is very important, they often serve as basis for 
drinking waters or act as touristic sites, also for bathing 
purposes. In the nature, complex systems exist, where 
the characteristics of the given habitat are determined 
by inside and outside effects, influenced by interacting 
microbial populations as well as anthropogenic effects 
(e.g. bathing or any contamination). Studies using next-
generation sequencing (NGS) technologies are providing 
new insights into the ecology of microbially mediated pro-
cesses that influence freshwater quality.

Among the three sampling sites at Lake Balaton, only 
small differences could be revealed in the composition of 
bacterial communities, and all can probably be explained, 
e.g. by the small shifts and differences in the organic mate-
rial (TOC, TON, TOP) content or the light access of the 
different sampling sites. Though the water body is aerobic 
(the dissolved oxygen content was always high), being a 
shallow lake, the wind can easily stir the whole water col-
umn, so anaerobic microbes can originate also from the 
sediment. Moreover, microbes can live in microhabitats 
where the oxygen concentration can differ strongly that of 
the water column.

In case of Lake Balaton, based on the chemical and 
biological parameters all the three sampling sites are low 
nutrient content habitat, seemed to be oligotrophic (https ://
www.vizug y.hu/index .php?modul e=vizst rat&progr amele 
mid=149; Borics and Kiss 2015) at time of samplings, 
though to state it, more investigations should be done (e.g. 
checking macrozoobenthos, macrophyton, etc.). But our 
result shows that even at the end of a summer period, when 
anthropogenic effect is higher due to bathing, the self-
purification of the lake is adequate. Studying the seasonal 
dynamics of the phytoplankton, Somogyi et al. (2016) 
revealed a west-east trophic gradient in the longitudinal 
axis in the lake, similar to the previous years.

In 2018, the tendency is similar, though the cell counts 
of bacteria were in the same magnitude of all sampling 
sites. At the same time, the diversity indices (based on 
amplicon sequencing) showed the bacterial communities 
are less diverse in the Tihany region. It is also true that 
the DOC values as well as TON and TOP were the less at 
that site: if the amount of the available substrates is lower, 
most probably their concentration is limited, and these 
circumstances favour the reproduction of fewer types of 
organisms (Howarth and Marino 2006).

Taxon-specific PCRs did not show pathogenic microbes 
among the studied ones, but the presence of ESBL-pro-
ducing bacteria at Keszthely and Máriafürdő may indicate 
anthropogenic effect or other faecal contamination (De 

Boeck et al. 2012; Blaak et al. 2014), since these regions 
are strongly affected by bathers.

If we check the composition of bacterial communities, we 
can immediately see that the diversity of the lake is much 
higher than we have ever thought. NGS results have not only 
shown the presence of many non-cultivable taxa but indi-
cated also that those bacteria which previously were thought 
to be dominant, occur in the lake only with low frequency. 
Since, that our results are based on molecular data com-
parisons with previous studies is not really applicable, it is 
worth mentioning: members of Firmicutes appeared only 
with low abundance in the water of the lake at each sampling 
sites (e.g. Bacillus, Exiguobacterium species) though they 
were frequently isolated earlier (Langó 1982; Homonnay 
et al. 2011).

Among Proteobacteria, mainly different Pseudomonas, 
Aeromonas and Acinetobacter species were detected pre-
viously (Tóth, 1995), their seasonal abundance was also 
remarkable.

The present studies showed that in the water there are 
several bacteria which can be responsible for  N2 fixation 
(Rhizobiales, Azospirillales, etc.) which phenomenon can 
be very important in low nutrient content environments, 
where the nitrogen is often in limited concentration (How-
arth and Marino 2006). Nitrogen fixation was documented 
also in case of Lake Balaton earlier (Kovács et al. 2012; 
Borics et al. 2016), authors revealed that during eutrophi-
cation processes nitrogen-fixing, filamentous cyanobacteria 
became frequent in the western part of the lake. This time 
also the heterotrophic, free living nitrogen-fixing bacteria 
were identified.

Based on literature data, bacteria belonging to SAR11 
have an oligotrophic lifestyle with slow but efficient nutrient 
uptake at low substrate concentrations (Salcher et al. 2011). 
The concentration of TOC was low at each sampling site, 
which could have a positive effect on the abundance of sub-
group III of SAR11.

The presence of Bdellovibrionales and Myxococcales 
(and even that of Vampirovibrionales) shows that even 
predator/parasite prokaryotes are present in the water body 
(Li et al. 2014).

Actinobacteria were also detected earlier in Lake Bala-
ton (Szabó, 1982; Farkas, 1982; Tóth, 1995), they are often 
described in freshwaters and sediments of lakes. Holm-
feldt et al. (2009) demonstrated that the prevalence of the 
clades of different Actinobacteria has changed in relation 
to total phosphorus (TOP) and Chl A, respectively. In our 
studies, several actinobacterial taxa were detected, among 
them Frankiales with the abundance of the hgcI clade. 
Though the exact role of these bacteria in Lake Balaton 
has to be defined by later studies, it is known that they can 
play a dominant role in degradation processes. Members 
of hgcI clade are common and abundant in a wide range 

https://www.vizugy.hu/index.php?module=vizstrat&programelemid=149
https://www.vizugy.hu/index.php?module=vizstrat&programelemid=149
https://www.vizugy.hu/index.php?module=vizstrat&programelemid=149
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of freshwater habitats (Warnecke et al. 2004); they have 
also the potential to utilize sunlight via actinorhodopsin 
which might promote anaplerotic carbon fixation (Ghy-
lin et al. 2014). Ghai et al. (2014) studying a freshwater 
lake in Spain by metagenomic analysis showed a remark-
able potential of their genomes to transform recalcitrant 
plant detrital material (e.g. lignin-derived compounds). 
Moreover, they detected that the abundances of Actino-
bacteria correlate inversely to those of Cyanobacteria that 
can be responsible for prolonged damage to freshwater 
ecosystems.

Our results connected to other phototrophic bacteria 
showed that their abundance is high in the water of Lake 
Balaton, which is not new. Kovács et al. (2012) described 
the effect of irradiance on the germination of  N2-fixing, fila-
mentous cyanobacteria in the sediment of Lake Balaton with 
varying phosphorous supply. They focused their studies on 
the most invasive Cyanobacteria of the lake (Cylindrosper-
mopsis raciborskii and Aphanizomenon flos-aquae). Somo-
gyi et al. (2016) detected the dominance of picocyanobac-
teria in the summer and dominance of picoeukaryotes in the 
winter period. Cyanobia (Synechococcales) which are pico-
sized cyanobacteria were observed also in the open water 
of Lake Fertő (Somogyi et al. 2010); we showed they are 
dominant in the Tihany region in the summer of 2018, and 
the abundance of these bacteria is not surprising. Felföldi 
et al. (2011) demonstrated also the diversity and seasonal 
dynamics of photoautotrophic picoplankton in Lake Balaton.

The members of Anaerolineales (Chloroflexi) are strictly 
anaerobic, organotrophic organisms, they are often found 
in freshwater sediments (Wise et al. 1997) and they can 
be responsible for metabolizing even different organic 
substrates.

Aerobic anoxic photoheterotrophic bacteria (e.g. Rhodo-
bacterales) are a diverse group of bacteria that produce bac-
teriochlorophyll a in the presence of oxygen (Ruiz-González 
et al. 2020). They are facultative photoheterotrophic bacteria 
being able to gain energy also from the utilization of light, 
which gives them an advantage over obligate heterotrophic 
bacteria (Szabó-Tugyi et al. 2019).

Cytophaga–Flavobacterium group and Chitinophagales 
are Gram-negative, chemoheterotrophic organisms (Kirch-
man, 2002), often able to degrade polymer substrates as 
cellulose, and chitin may even degrade recalcitrant organic 
substrates (Berg et al. 2009).

In case of Archaea, our knowledge is still less connected 
to their possible role as most of the novelty discovered phyla 
do not have any cultured representatives (Castelle and Ban-
field 2018). On the basis of 16S rDNA sequence compari-
sons, the phylum “Nanoarchaeota” represents a deep lineage 
within the Archaea. The predominant archaeal group of our 
water samples belonged to Woesearchaeia; they are widely 
distributed in nature, anaerobic, fermentative, syntrophic 

bacteria that contribute significantly to the biogeochemical 
cycles of iron and methane (Gayner 2018).

Members of Bathyarchaeia (phylum Crenarchaeota) are 
generalists, which appear in various environments. They are 
incorporated in Feammox processes-anaerobic ammonium 
oxidation coupled to Fe(III) reduction (Rios-Del Toro et al. 
2018). Some of them are involved in anaerobic methane 
oxidation. Evans et al. (2015) presumed also the syntrophy 
between Bathyarchaeota and sulphate-reducing bacteria 
(SRB) towards anaerobic oxidation of methane.

Conclusions for future biology

As a conclusion, we can state that the bacterial as well as 
archaeal diversity of the water of Lake Balaton is high and 
even when many taxa are uncultivable, the novel molecular 
studies can reveal their hidden diversity. Prokaryotes are 
organized in complex communities, they can be involved in 
many different metabolic processes, chemotrophic as well 
as phototrophic organisms were also detected, just as bacte-
ria involving many oxidation/reduction reactions, etc. The 
microbial communities we have revealed can be responsi-
ble for many steps in the biogeochemical cycles of carbon, 
nitrogen, sulphur but also that of phosphorous or iron: to 
discover it in details, further investigations are necessary. 
It is true that the diversity and abundance of bacterioplank-
ton depend on the phytoplanktonic primary production, but 
heterotrophic bacteria most probably are involved also in 
degradation of the residuals of different chemical contami-
nations which have been detected in the lake (Simon-Delso 
et al. 2015; Avar et al. 2015; Maasz et al. 2019), these can 
be removed by the help of these complex bacterial commu-
nities. Though the self-purification of the water is strong, 
humans must consider keeping the water quality safe for 
further use.
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