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The accurate estimation of dew point temperature (Tdew) is important in climatological,
agricultural, and agronomical studies. In this study, the feasibility of two soft computing
methods, random forest (RF) and multivariate adaptive regression splines (MARS), is
evaluated for predicting the long-term mean monthly Tdew. Various weather variables
including air temperature, sunshine duration, relative humidity, and incoming solar radiation
from 50 weather stations in Iran as well as their geographical information (or a subset of
them) are used in RF and MARS as inputs. Three statistical indicators namely, root mean
square error (RMSE), mean absolute error (MAE), and correlation coefficient (R) are used to
assess the accuracy of Tdew estimates from both models for different input configurations.
The results demonstrate the capability of the RF and MARS methods for predicting the
long-term mean monthly Tdew. The combined scenarios in both the RF and MARS
methods are found to produce the best Tdew estimates. The best Tdew estimates were
obtained by the MARS model with the RMSE,MAE, and R of respectively 0.17°C, 0.14°C,
and 1.000 in the training phase; 0.15°C, 0.12°C, and 1.000 in the validation phase; and
0.18°C, 0.14°C, and 0.999 in the testing phase.

Keywords: dew point temperature, random forest, multivariate adaptive regression splines, machine learning, big
data, artificial intelligence

INTRODUCTION

Dew point temperature (Tdew) is defined as the temperature (at constant pressure) in which
water vapor in the air condenses into liquid water. The accurate estimation of Tdew is required in
many fields such as climatology, hydrology, meteorology, and agronomy (Emmel et al., 2010;
Millán et al., 2010; Katul et al., 2012; Feld et al., 2013; Mohammadi et al., 2015; Mohammadi
et al., 2016; Alizamir et al., 2020a). Tdew along with the wet bulb temperature can be used to
compute ambient temperature (Snyder and Melo-Abreu, 2005; Shank, 2006; Mohammadi et al.,
2016). The dew point also allows plants to adapt themselves for possible frosts (Mohammadi
et al., 2016). Tdew is an essential element for plant survival, particularly in regions with low
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precipitation (Agam and Berliner, 2006). Tdew is necessary for
estimating relative humidity and evapotranspiration (Hubbard
et al., 2003). Robinson (2000) stated that Tdew is important for
assessing long-term climate variability.

In recent years, soft computing and data mining approaches
have been widely employed as powerful techniques for predicting
Tdew. A review of the literature shows that random forest (RF) and
multivariate adaptive regression splines (MARS) methods have
rarely been utilized to estimate Tdew; however, they have been
extensively used for predicting other hydro-climatological
variables (Heddam et al., 2020; Kisi et al., 2021; Tan et al., 2021).

Shank et al. (2008) predicted Tdew at 20 weather stations in
Georgia by using weather data into artificial neural networks
(ANN). It was found that ANN could reliably predict Tdew.
Zounemat-Kermasni (2012) predicted hourly Tdew data via the
ANN and multiple linear regression (MLR) approaches. Kisi et al.
(2013) evaluated the robustness of generalized regression neural
networks (GRNN), Kohonen self-organizing feature maps
(KSOFM), and adaptive neuro-fuzzy inference system (ANFIS)
for estimating Tdew at the Daegu, Pohang, and Ulsan stations in
South Korea. The accuracy of GRNN and ANFIS were similar and
better than that of KSOFM. Shiri et al. (2014) estimated daily Tdew

data at two weather stations in the Republic of Korea using gene
expression programming (GEP) and ANN models. Various
combinations of climatic variables were used as inputs, with
the accuracy of GEP was found to be higher than that of
ANN. Kim et al. (2015) investigated the potential of multi-
layer perceptron (MLP), GRNN, and MLR in estimating daily

Tdew at two weather stations in California. They defined different
combinations of weather data as model predictors. The results
indicated that the Tdew estimates from GRNN were better than
those of MLP. Mohammadi et al. (2015) evaluated the accuracy of
the extreme learning machine (ELM), ANN, and support vector
machine (SVM) approaches in predicting daily Tdew at Bandar
Abbas and Tabas, Iran. The mean air temperature, relative
humidity, atmospheric pressure, solar radiation, and vapor
pressure were used as model inputs. The results revealed that
ELM and ANN produced the best and worst daily Tdew estimates,
respectively. Amirmojahedi et al. (2016) utilized a coupled model
by combining ELM with wavelet transform (WT) for predicting
daily Tdew in Bandar Abbas, South Iran. The accuracies of hybrid
ELM-WT and single ELMwere compared with those of SVM and
ANN. Four different input scenarios were used in their models.
Mohammadi et al. (2016) estimated daily Tdew at two stations in
Iran by the ANFIS technique. Different ANFIS models were
developed using various input combinations. Their results
demonstrated that water vapor pressure was the most
influential variable for the accurate prediction of Tdew.
Mehdizadeh et al. (2017a) employed GEP to estimate daily
Tdew at the Urmia and Tabriz stations in Northwest Iran.
Various input scenarios were developed using meteorological
variables and lagged Tdew data. Moreover, Tdew at each station was
predicted using data from a nearby station. Qasem et al. (2019)
estimated daily Tdew at the Tabriz station in Iran using GEP,
SVM, and M5 model tree (M5), with M5 was found to show the
highest performance. Naganna et al. (2019) attempted to increase

FIGURE 1 | Spatial distribution of the studied stations in Iran.
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the accuracy of estimating Tdew at two stations in India by
coupling the MLP with two bio-inspired optimization
algorithms. The hybrid methods outperformed the classic
MLP. Alizamir et al. (2020b) recommended a deep echo state
network (DESN) to forecast daily Tdew at two locations in the
Republic of Korea. The proposed model produced the best
performance compared to other soft computing methods.
Dong et al. (2020) improved the performance of ELM by
optimization algorithms to estimate daily Tdew in Yangling,

China. They indicated the better accuracy of hybrid models
compared to the classic ELM.

Given the importance of Tdew in various disciplines, particularly
agriculture and hydrology, its precise prediction is vital. Therefore,
this study investigated the applicability of random forest (RF) and
multivariate adaptive regression splines (MARS) for predicting the
long-Temperature-, sunshine duration-, radiation-, other climatic
variables-, geographical information-, and combined-based input
scenarios were considered in this study.

TABLE 1 | Geographical properties of the stations in Iran and long-term mean annual values of Tdew.

Stations Latitude (°N) Longitude (°E) Altitude (m) Mean
Annual Tdew (°C)

Abadan 30.37 48.25 6.6 10.03
Ahwaz 31.33 48.67 22.5 9.55
Arak 34.10 49.77 1708 0.02
Ardabil 38.25 48.28 1332 3.57
Babolsar 36.72 52.65 -21 13.45
Bam 29.10 58.35 1066.9 2.60
Bandar Abbas 27.22 56.37 9.8 19.24
Bandar Anzali 37.48 49.45 -23.6 13.26
Bandar Lengeh 26.53 54.83 22.7 19.40
Birjand 32.87 59.20 1491 -0.82
Bojnurd 37.47 57.27 1112 3.72
Bushehr 28.97 50.82 9 16.98
Chabahar 25.28 60.62 8.0 20.70
Dezful 32.40 48.38 143 9.30
Fasa 28.97 53.68 1288.3 2.80
Gorgan 36.90 54.40 0 11.49
Hamedan 34.87 48.53 1741.5 0.64
Ilam 33.63 46.43 1337 0.42
Iranshahr 27.20 60.70 591.1 5.62
Isfahan 32.62 51.67 1550.4 -0.02
Jask 25.63 57.77 5.2 20.67
Karaj 35.92 50.90 1312.5 2.58
Kashan 33.98 51.45 982.3 3.36
Kerman 30.25 56.97 1753.8 -2.58
Kermanshah 34.35 47.15 1318.6 0.64
Khorramabad 33.43 48.28 1147.8 3.06
Khoy 38.55 44.97 1103 3.49
Mashhad 36.27 59.63 999.2 2.98
Qazvin 36.25 50.05 1279.2 2.35
Qom 34.70 50.85 877.4 2.02
Ramsar 36.90 50.67 -20 13.06
Rasht 37.32 49.62 -8.6 12.60
Sabzevar 36.20 57.65 972 1.40
Sanandaj 35.33 47.00 1373.4 0.34
Saqez 36.25 46.27 1522.8 0.81
Sari 36.55 53.00 23 13.13
Semnan 35.58 53.42 1127 2.84
Shahrekord 32.28 50.85 2048.9 −0.82
Shahrud 36.42 54.95 1349.1 2.31
Shiraz 29.53 52.60 1484 1.87
Tabas 33.60 56.92 711 2.34
Tabriz 38.08 46.28 1361 1.37
Tehran 35.68 51.32 1190.8 1.48
Torbat-e Heydarieh 35.27 59.22 1450.8 1.21
Urmia 37.67 45.05 1328 2.72
Yasuj 30.68 51.55 1816.3 −0.06
Yazd 31.90 54.28 1237.2 −1.03
Zabol 31.03 61.48 489.2 4.64
Zahedan 29.47 60.88 1370 −0.74
Zanjan 36.68 48.48 1663 0.90
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Only a few studies used RF and MARS to predict Tdew (Shiri,
2018). Also, the correct choice of inputs for soft computing
models plays an important role in achieving their optimal
performance. Hence, this study attempted to find the best
input combination.

MATERIALS AND METHODS

Study Region and Data
The study area was Iran, which is located in southwest Asia.
With an area of about 1,648,000 km2, Iran spans over the
latitude of25°00 N′- 40°00 N′ and longitude of 44°00′ E-63°30′
E. The locations of the study stations are shown in Figure 1.
Table 1 presents the geographical properties of the selected
stations. As can be seen in Table 1, the long-term mean annual
Tdew ranges from -2.58 °C at Kerman to 20.70 °C at Chabahar.

Meteorological data from 50 stations (compiled by the Iran
Meteorological Organization, IMO) were utilized in this study.
The data include long-term mean monthly dew point
temperature (Tdew), minimum, maximum, and mean air
temperatures (Tmin, Tmax, T), solar radiation (Rs), sunshine
duration (S), relative humidity (RH), vapor pressure (Vp), and
precipitation (P) between 1951 and 2015. Statistical characteristics
of these variables are presented in Table 2. In this table, So and Ra
denote themaximum possible sunshine duration and extraterrestrial
radiation, respectively, which were calculated based on the
relationships presented by Allen et al. (1998). La, Lo and Alt are
the latitude, longitude, and altitude of study stations, respectively.
We can observe that Tmin, So, Ra and Vp respectively in the
temperature-sunshine duration- radiation- and other
meteorological variables-based input scenarios have the highest
correlations with Tdew (Table 2). Figure 2 illustrates the long-
termmeanmonthly ofmeteorological variables in the study stations.

The data were split into three parts. 70% (420 months), 15%
(90 months), and 15% (months) of the data were used for
training, testing, and validating the models, respectively.

Random Forest
Random forest (RF), first developed by Breiman (2001), is a
powerful ensemble learning algorithm. This model can be
employed for regression, classification, and unsupervised
learning problems (Liaw and Wiener, 2002). Many decision
trees are created using the RF technique via permutation and
continual variation of the elements influencing the intended
parameter, before all created trees are incorporated for the
prediction. Over-fitting, which may occur in the decision tree
approach, is eliminated when the number of trees increases.
Hence, at every phase of tree growth, the developed model
becomes more accurate, and the error rate is reduced. In the
RF, the bagging process is utilized to choose random samples of
variables as the training dataset. Next, for each variable, if the
values of that variable are permuted across the out-of-bag
observations, the function specifies the model prediction error
(Trigila et al., 2015). Various bootstrap samples of the data, a
sampling approach with permutations, were involved in the
construction of the RF. Therefore, some out-of-bag datasets
were generated from the training dataset via the repetition of
the sampling operation.

The number of trees is the most important feature affecting the
accuracy of RF (Breiman, 2001). The optimal number of trees is
determined by trial and error. 500 trees were used in the RF as
increasing the number of trees did not improve its performance.

Multivariate Adaptive Regression Splines
Multivariate adaptive regression splines (MARS) were initially
presented by Friedman (1991). This is a non-parametric
regression technique, in which the response/target variable
can be estimated by using a series of coefficients and functions
called basis functions. Cheng and Cao (2014) stated that one of
the advantages of MARS is its ability to estimate the
contributions of these basis functions. Therefore, the
additive and interactive influences of input predictors are
allowed to specify the target variable.

The typical form of a MARS model can be defined as follows:

TABLE 2 | Statistical characteristics of long-term mean monthly meteorological data.

Parameter Minimum Maximum Mean Standard Deviation Coefficient of
Variation

Correlation with
Tdew

Tdew, °C −7.90 27.62 5.22 7.72 1.48 1.000
Tmin, °C −8.69 30.70 11.17 9.22 0.83 0.793
Tmax, °C 2.30 46.30 24.22 10.28 0.42 0.590
T, °C −2.79 38.00 17.82 9.72 0.55 0.695
S, hr 2.89 11.87 7.97 2.27 0.28 0.228
So, hr 9.35 14.65 12.00 1.55 0.13 0.465
S/So, - 0.25 0.88 0.66 0.14 0.22 0.055
Rs, MJ m−2 6.20 27.84 17.83 6.07 0.34 0.400
Ra, MJ m−2 14.65 41.70 30.37 8.55 0.28 0.491
Rs/Ra, - 0.38 0.69 0.58 0.07 0.12 0.055
RH, % 17.00 87.00 51.30 19.34 0.38 0.218
Vp, hpa 3.69 37.21 10.57 6.71 0.63 0.964
P, mm 0.00 308.91 29.63 39.59 1.34 −0.009
α, - 1.00 12.00 6.50 3.45 0.53 0.142
La, °N 25.28 38.55 33.48 3.60 0.11 −0.287
Lo, °E 44.97 61.48 52.56 4.62 0.09 0.113
Alt, m −23.60 2048.90 933.26 639.82 0.69 −0.737
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y � f(x) � co +∑ m
i�1cibi(x) (1)

where y is the dependent variable predicted by MARS, x is the
independent variable(s), co is a primary constant or bias, ci is the

coefficient for the ith basis function, and bi(x) indicates the ith
basis function.

TheMARSmodel consists of two phases: forward and backward.
The prediction process begins using an intercept, which is the

FIGURE 2 | Long-term mean monthly meteorological variables in the study stations.
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average of the dependent parameter values. The basis functions are
subsequently added continuously to the developed model. It should
be noted that when the basis functions are added, the model
considers the functions that cause a significant reduction in the
sum of square errors. In the forward stage, an over-fitted MARS that
include a large number of knots is realized. Then, the backwards
stage prunes the model until a suitable MARS is presented based on
the lowest value for the generalized cross-validation criterion.

Performance Investigation Metrics
The accuracies of the models were evaluated using three
statistical metric: root mean square error (RMSE), mean
absolute error (MAE), and correlation coefficient (R). These
metrics can be expressed as follows:

RMSE �
��������������∑N

i�1(To,i − Tp,i)2
N

√
(2)

MAE � 1
N

∑ N
i�1
∣∣∣∣To,i − Tp,i

∣∣∣∣ (3)

R �
∑N

i�1(To,i − To)(Tp,i − Tp)�������������������������������[∑N
i�1(To,i − To)2][∑N

i�1(Tp,i − Tp)2]√ (4)

where To,i and Tp,i are the ith measured and predicted long-term
mean monthly Tdew, respectively; To and Tp denote the mean of
the measured and predicted values of the long-term mean
monthly Tdew, respectively, and N is the number of data points.

Low values for the RMSE andMAE indices, and a high value of
the R index indicate higher performance of the model for
predicting the long-term mean monthly Tdew.

RESULTS AND DISCUSSION

This study evaluated the performance of two soft computing
approaches, RF and MARS, for predicting the long-term mean
monthly Tdew at 50 stations in Iran. Thirty-one scenarios in six
categories were considered to identify the most important

TABLE 3 | Statistical indices of Tdew estimates from the RF model for the training, validation, and testing phases.

Type
of Scenarios

Inputs Training Validation Testing

RMSE
(°C)

MAE
(°C)

R RMSE
(°C)

MAE
(°C)

R RMSE
(°C)

MAE
(°C)

R

Temperature-based Tmin 4.92 4.06 0.782 4.28 3.24 0.886 2.62 1.79 0.922
Tmax 6.17 4.78 0.628 6.56 4.71 0.657 3.60 2.89 0.899
T 5.63 4.47 0.700 5.31 3.89 0.796 3.00 2.30 0.921
Tmin, Tmax 3.44 2.80 0.906 2.38 1.89 0.965 1.61 1.23 0.941
Tmin, T 3.78 3.07 0.881 2.84 2.22 0.954 1.90 1.35 0.930
Tmin, Tmax, T 3.74 3.11 0.887 2.85 2.22 0.953 1.77 1.29 0.938

Sunshine duration-based S 7.35 5.75 0.366 7.67 5.43 0.448 5.06 4.25 0.673
So 6.44 5.12 0.593 6.53 4.86 0.672 4.38 3.86 0.838
S/So 7.60 5.81 0.280 7.71 5.63 0.424 5.12 4.01 0.543
So, S 5.98 4.66 0.664 5.80 4.23 0.756 4.04 3.32 0.783
So, S/So 5.91 4.61 0.672 5.67 4.13 0.764 3.94 3.14 0.788
So, S, S/So 5.85 4.55 0.686 5.80 4.32 0.762 3.82 3.14 0.807

Radiation-based Rs 7.00 5.61 0.466 7.07 5.35 0.584 4.63 3.89 0.789
Ra 6.55 5.17 0.573 6.70 4.97 0.655 4.40 3.76 0.824
Rs/Ra 7.60 5.81 0.280 7.71 5.63 0.424 5.12 4.01 0.543
Ra, Rs 6.20 4.87 0.627 6.02 4.57 0.736 4.18 3.40 0.785
Ra, Rs/Ra 5.80 4.50 0.690 5.46 4.02 0.791 3.84 3.04 0.809
Ra, Rs, Rs/Ra 5.90 4.48 0.674 5.66 4.19 0.772 3.71 3.03 0.822

Other meteorological variables-
based

RH 6.90 5.40 0.484 6.79 5.28 0.628 4.84 3.78 0.231
Vp 0.53 0.31 0.998 0.67 0.34 0.997 0.39 0.21 0.996
P 7.37 5.73 0.370 7.54 5.77 0.554 5.35 4.28 0.495
Vp, RH 0.57 0.32 0.997 0.70 0.37 0.997 0.35 0.21 0.997
Vp, P 0.58 0.32 0.997 0.71 0.37 0.997 0.36 0.21 0.997
Vp, P, RH 0.85 0.50 0.996 0.87 0.46 0.997 0.54 0.34 0.994

Combined Vp, Tmin 0.56 0.32 0.998 0.68 0.36 0.997 0.35 0.21 0.997
Vp, So 0.53 0.31 0.998 0.65 0.35 0.997 0.35 0.21 0.997
Vp, Ra 0.54 0.31 0.998 0.67 0.36 0.997 0.36 0.22 0.997
Vp, Tmin, Ra 0.77 0.55 0.996 0.70 0.45 0.998 0.45 0.29 0.995
Vp, Tmin, So 0.76 0.54 0.996 0.71 0.45 0.998 0.43 0.27 0.995
Vp, Tmin,
Ra, So

0.63 0.43 0.997 0.64 0.38 0.998 0.38 0.23 0.996

Geographical information-based La, Lo, Alt, α 2.31 1.78 0.959 2.29 1.83 0.968 1.69 1.36 0.943

Note: Bold values indicate the statistical metrics of the best input.
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variables affecting Tdew, and to determine the best input
combinations. The RMSE, MAE, and R values were employed
to assess the accuracy of the methods.

Performance of RF and MARS Approaches
The statistical indices of dew point estimates from the RF and
MARS approaches for various input scenarios are presented in
Tables 3, 4, respectively.

In the temperature-based input scenarios, Tmin and T both
produced better results than Tmax., Tdewwas found to have a higher
correlation with Tmin than T and Tmax. Therefore, better results
were obtained by employing Tmin as the input. The superiority of
Tmin compared to T and Tmax was also found byMohammadi et al.
(2016) and Mehdizadeh et al. (2017a). Tdew is more correlated with
Tmin as cool air cannot retain water vapor much longer, meaning
the effect of Tmin on Tdew is greater than those of Tmax and T
(Mehdizadeh et al., 2017a). To develop scenarios withmore inputs,
T and Tmax were added to Tmin. A similar strategy was followed to
develop scenarios with multiple inputs for other categories. The

input combination of Tmin and Tmax exhibited a better accuracy
than Tmin and T. Also, the scenarios with all inputs generally
yielded better results in comparison with the scenarios with fewer
inputs, particularly single-input scenarios. Air temperature is
typically measured at all weather stations. Therefore, it can be
easily used as a possible input predictor to predict Tdew.

Among the sunshine duration-based scenarios, So and S/So
were the best and the worst predictors, respectively. Input
combinations So and S, and So and S/So generally produced a
similar accuracy, particularly for the MARS model. Interestingly,
the So and S/So scenario was slightly better than the So and S
scenario in the RF approach. The full-input scenario performed
best in both the RF and MARS approaches. However, the
performance of this scenario is still not accurate enough for
predicting Tdew. Additionally, a sunshine duration sensor is
needed to measure the sunny hours, which may not be
available at some locations. Therefore, the application of
sunshine duration variables as the only input of the models is
not recommended.

TABLE 4 | Statistical indices of Tdew estimates from the MARS model for training, validation, and testing phases.

Type
of Scenarios

Inputs Training Validation Testing

RMSE
(°C)

MAE
(°C)

R RMSE
(°C)

MAE
(°C)

R RMSE
(°C)

MAE
(°C)

R

Temperature-based Tmin 5.01 4.10 0.771 4.15 3.16 0.888 2.63 1.76 0.923
Tmax 6.37 4.99 0.591 6.44 4.60 0.671 3.84 3.07 0.901
T 5.80 4.67 0.678 5.63 4.09 0.763 3.25 2.43 0.928
Tmin, Tmax 2.93 2.30 0.929 2.36 1.77 0.965 1.61 1.22 0.927
Tmin, T 3.15 2.54 0.917 2.40 1.80 0.966 1.54 1.14 0.935
Tmin, Tmax, T 2.88 2.27 0.931 2.21 1.61 0.970 1.52 1.19 0.936

Sunshine duration-based S 7.52 5.96 0.307 7.74 5.60 0.437 5.07 4.33 0.660
So 6.79 5.39 0.513 6.96 5.26 0.581 4.65 3.95 0.782
S/So 7.70 5.94 0.231 7.89 5.73 0.389 5.25 4.21 0.499
So, S 6.04 4.70 0.646 5.57 4.14 0.755 3.99 3.22 0.733
So, S/So 6.04 4.64 0.645 5.57 4.00 0.761 3.93 3.11 0.743
So, S, S/So 5.68 4.29 0.695 4.82 3.37 0.832 3.79 2.98 0.747

Radiation-based Rs 7.08 5.73 0.445 7.23 5.58 0.543 4.83 4.10 0.743
Ra 6.88 5.48 0.493 7.14 5.51 0.548 4.60 3.91 0.807
Rs/Ra 7.70 5.94 0.231 7.89 5.73 0.389 5.25 4.21 0.499
Ra, Rs 5.79 4.43 0.682 5.46 3.91 0.764 4.28 3.26 0.666
Ra, Rs/Ra 5.81 4.45 0.678 5.61 4.33 0.750 3.98 3.07 0.745
Ra, Rs, Rs/Ra 6.14 4.75 0.630 6.04 4.58 0.701 4.13 3.37 0.722

Other meteorological parameters-
based

RH 6.99 5.43 0.464 6.92 5.39 0.584 5.40 4.07 0.083
Vp 0.48 0.38 0.998 0.48 0.36 0.998 0.58 0.44 0.991
P 7.55 5.96 0.296 7.79 5.92 0.439 5.43 4.48 0.508
Vp, RH 0.35 0.27 0.999 0.28 0.22 1.000 0.37 0.27 0.997
Vp, P 0.44 0.34 0.998 0.39 0.30 0.999 0.45 0.33 0.995
Vp, P, RH 0.24 0.18 1.000 0.19 0.14 1.000 0.23 0.17 0.999

Combined Vp, Tmin 0.28 0.22 0.999 0.20 0.15 1.000 0.23 0.19 0.999
Vp, So 0.35 0.26 0.999 0.27 0.20 1.000 0.34 0.26 0.997
Vp, Ra 0.32 0.24 0.999 0.25 0.18 1.000 0.31 0.22 0.998
Vp, Tmin, Ra 0.24 0.18 1.000 0.16 0.12 1.000 0.21 0.17 0.999
Vp, Tmin, So 0.19 0.15 1.000 0.16 0.12 1.000 0.19 0.15 0.999
Vp, Tmin,
Ra, So

0.17 0.14 1.000 0.15 0.12 1.000 0.18 0.14 0.999

Geographical information-based La, Lo, Alt, α 2.60 2.04 0.944 2.16 1.67 0.971 2.51 1.83 0.866

Note: Bold values indicate the statistical metrics of the best input.
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In the radiation-based scenarios, the input Ra showed the best
accuracy, while the performance of the clearness index (Rs/Ra)
was not as good as Rs. In general, the performance of the Ra and
Rs/Ra input combinations was slightly better than that of Ra and
Rs single-input predictors. The RF approach generally produced
the highest accuracy with the full-input scenario in the radiation-
based classes. However, for the MARS models, two-input
scenarios exhibited better performance than the full-input
scenario. Similar to the sunshine duration scenarios, radiation-
based input combinations did not perform satisfactorily, resulting
in higher values of RMSE and MAE and lower values of R. Solar
radiation is measured by pyranometer, a relatively expensive

device that may not be available at weather stations in
developing countries. Therefore, the use of radiation-based
scenarios may be limited.

In the other meteorological scenarios, various combinations of
RH, Vp, and P were examined. The results for the single-input
scenarios show that Vp is the most influential input variable for
the accurate prediction of Tdew. Also, the performance of this
predictor is better than the most effective variables in
temperature- (i.e., Tmin), sunshine duration- (i.e., So), and
radiation-based (i.e., Ra) scenarios. For the Vp predictor, the
RMSE, MAE, and R of Tdew estimates from the RF method in
the testing phase were 0.39°C, 0.21°C, and 0.996, respectively.

FIGURE 3 | Dew point temperature (Tdew) predicted by the superior scenarios of RF and MARS approaches versus the measured values for the training, validation,
and test phases.
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Corresponding values from the MARS method were0.58°C,
0.44°C and 0.991. Furthermore, the model with RH as input
performed better than P. Comparing the statistical indices of
single RH and P scenarios with the two- and full-input scenarios
shows that the accuracy of Tdew predictions significantly
increased by adding Vp to RH and P. For the two-input and
three-input scenarios, the Vp and RH combination in the RF
method, and the Vp, P, and RH combination in the MARS
method were the best performers.

The most important variables of the four classes (i.e., Tmin, So,
Ra, and Vp) were employed to develop the combined scenarios.
The performance of Tmin, So, and Rawas not as good as that ofVp.
However, the feasibility of Tmin, So, and Ra was considerably
improved by adding Vp into them. In the combined-based classes
with two inputs, Vp and Tmin in the MARS model, and Vp and So
in the RF model yielded slightly better Tdew estimates.
Interestingly, utilizing three-input and four-input scenarios did
not necessarily increase the accuracy of the RF method. But, the
accuracy of the MARS method was enhanced by increasing the
number of predictors. All combined scenarios produced reliable
results due to the higher R values and lower RMSE and MAE
values. Unfortunately, these scenarios require many weather
variables, which is typically unavailable in developing
countries. These scenarios can only be used to predict Tdew at
weather stations, which are able to measure all required
meteorological parameters.

The long-term mean monthly Tdew can also be predicted
from the geographical characteristics (i.e., latitude, longitude,
and altitude) and periodicity (α), which denotes the number of
months (i.e., one for January and 12 for December). These
predictors can be applied to predict the long-term mean
monthly Tdew without using meteorological data. These
results support the outcomes of previous studies (Kisi et al.,
2015; Kisi and Sanikhani, 2015; Mehdizadeh et al., 2017b;
Sanikhani et al., 2018) in which the geographical information
and number of month were successfully utilized in soft
computing models to predict mean monthly time series of
hydrological variables such as air and soil temperatures,
precipitation, and reference evapotranspiration.

As can be seen in Tables 3, 4, Tmin, So, Ra, and Vp variables
showed more accurate results than the other sole-input
scenarios. The better performance of these predictors in
their respective scenario classes can be attributed to their
high correlations with Tdew (see Table 2).

Comparison of MARS and RF Approaches
for Different Input Scenarios
It can be concluded that the RF method is generally superior to
the MARS method for the single-input temperature-, sunshine
duration-, and radiation-based scenarios. However, the MARS
approach generally showed a better performance for the multi-
input scenarios. The geographical information-based scenario
was superior in the RF method compared to the MARS
method. In contrast, the other weather variable-based
classes (except the single RH and single P inputs, and the
combined scenarios) performed better in MARS than RF.

Comparison of predicted and measured long-term mean
monthly Tdew values by the best inputs for the training,
validation, and testing phases are depicted in Figure 3. As
can be seen in Figure 3, these inputs can accurately predict
long-term mean monthly Tdew. As shown in Tables 3, 4, the
input combination of Vp and So in the RF approach, and Vp,
Tmin, Ra, and So in the MARS model were the superior
combinations in all of the three study periods (bold text in
Tables 3, 4). The estimates of long-term mean monthly Tdew

using these inputs are very close to the measured data,
particularly for the MARS method.

The results revealed that the other weather variable-based (except
the single RH and single P variables) and combined scenarios
outperformed the other scenarios (Table . . . . . . ). However, for
both methods, combined scenarios indicated a slightly better
performance over other weather variables-based scenarios.
Temperature-based combinations had better performance
compared to sunshine duration- and radiation-based scenarios,
which both had the lowest prediction accuracies. Furthermore,
the accuracy of the geographical information-based combinations
was better than the temperature-, sunshine duration-, and radiation-
based scenarios. This confirms the feasibility of RF and MARS for
predicting the long-term mean monthly Tdew from the geographical
information and the periodicity term.

CONCLUSION

This study evaluated the performance of two soft computing
approaches, random forest (RF) and multivariate adaptive
regression splines (MARS), for predicting the long-term mean
monthly Tdew. To specify the influential variables, different input
combinations consisting of meteorological variables, geographical
characteristics, and the periodicity component were employed as
inputs in the RF and MARS models. The meteorological variables
included minimum, maximum, and mean air temperatures (Tmin,
Tmax, and T); actual sunshine duration, maximum possible sunshine
duration, and sunshine duration ratio (S, So, and S/So); actual solar
radiation, extraterrestrial radiation, and clearness index (Rs, Ra, and
Rs/Ra); and relative humidity (RH), vapor pressure (Vp), and
precipitation (P). Thirty-one input scenarios were considered in
six different categories: temperature-, sunshine duration-, radiation-,
other weather variable-, geographical information-based, and
combined scenarios. The results obtained are summarized as follows:

• For the single-input scenarios, Tmin, So, Ra, and Vp were the
optimum inputs for the temperature-, sunshine duration-,
radiation-, and other weather variables r-based scenarios,
respectively. Among these variables, Vp had the best
performance.

• sunshine duration- and radiation-based scenarios showed
the lowest accuracy, while the combined scenarios
performed the best.

• The geographical information-based scenarios were
superior to the temperature-, sunshine duration-, and
radiation-based scenarios. Therefore, the geographical
properties and periodicity term can be used to predict
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the long-term mean monthly Tdew without using any
meteorological data.

• In general, the single-input scenarios had a higher accuracy
for the RF model compared to the MARS model. While, the
multi-input scenarios in theMARSmodel outperformed the
RF method.

• The best multi-input combinations were Vp and So for RF,
and Vp, Tmin, Ra and So for MARS.

• Vp can be used as the sole input in both the RF and MARS
approaches to predict the long-term mean monthly Tdew
with acceptable accuracy.

Often only a few input configurations were used to estimate
different hydrologic variables such as evaporation, solar
radiation, soil temperature. The various inputs scenarios
used in this study can be tested in future works to find the
best input combinations for estimating different variables of

interest. Other standalone and coupled models can be used in
future studies to estimate Tdew and compare it with the
outcomes of this work.
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NOMENCLATURE

Tdew Dew point temperature

MARS Multivariate adaptive regression splines

RF Random forest

ANN Artificial neural networks

MLR Multiple linear regression

GRNN Generalized regression neural networks

KSOFM Kohonen self-organizing feature maps

ANFIS Adaptive neuro-fuzzy inference system

GEP Gene expression programming

MLP Multi-layer perceptron

ELM Extreme learning machine

SVM Support vector machine

WT Wavelet transform

M5 M5 model tree

DESN Deep echo state network

Tmin Minimum air temperature

Tmax Maximum air temperature

T Mean air temperature

S sunshine duration

So Maximum possible sunshine duration

Rs Solar radiation

Ra Extraterrestrial radiation

RH Relative humidity

Vp Vapor pressure

P Precipitation

La Latitude

Lo Longitude

Alt Altitude

y Dependent variable predicted using the MARS

x Independent variable in MARS

co Bias

ci Coefficient for the ith basis function of the MARS

bi(x) ith basis function

RMSE Root mean square error

MAE Mean absolute error

R Correlation coefficient

To,i ith measured long-term mean monthly Tdew

Tp,i ith predicted long-term mean monthly Tdew

To Mean of the measured values of the long-term mean monthly Tdew

Tp Mean of the predicted values of the long-term mean monthly Tdew
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