
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcfm20

Engineering Applications of Computational Fluid
Mechanics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcfm20

Energetic thermo-physical analysis of MLP-RBF
feed-forward neural network compared with
RLS Fuzzy to predict CuO/liquid paraffin mixture
properties

Xiaoluan Zhang, Xinni Liu, Xifeng Wang, Shahab S. Band, Seyed Amin
Bagherzadeh, Somaye Taherifar, Ali Abdollahi, Mehrdad Bahrami, Arash
Karimipour, Kwok-Wing Chau & Amir Mosavi

To cite this article: Xiaoluan Zhang, Xinni Liu, Xifeng Wang, Shahab S. Band, Seyed Amin
Bagherzadeh, Somaye Taherifar, Ali Abdollahi, Mehrdad Bahrami, Arash Karimipour, Kwok-
Wing Chau & Amir Mosavi (2022) Energetic thermo-physical analysis of MLP-RBF feed-
forward neural network compared with RLS Fuzzy to predict CuO/liquid paraffin mixture
properties, Engineering Applications of Computational Fluid Mechanics, 16:1, 764-779, DOI:
10.1080/19942060.2022.2046167

To link to this article:  https://doi.org/10.1080/19942060.2022.2046167

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 14 Mar 2022.

Submit your article to this journal Article views: 1106

View related articles View Crossmark data

Citing articles: 4 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tcfm20
https://www.tandfonline.com/loi/tcfm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19942060.2022.2046167
https://doi.org/10.1080/19942060.2022.2046167
https://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19942060.2022.2046167
https://www.tandfonline.com/doi/mlt/10.1080/19942060.2022.2046167
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2022.2046167&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2022.2046167&domain=pdf&date_stamp=2022-03-14
https://www.tandfonline.com/doi/citedby/10.1080/19942060.2022.2046167#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/19942060.2022.2046167#tabModule


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS
2022, VOL. 16, NO. 1, 764–779
https://doi.org/10.1080/19942060.2022.2046167

Energetic thermo-physical analysis of MLP-RBF feed-forward neural network
compared with RLS Fuzzy to predict CuO/liquid paraffin mixture properties

Xiaoluan Zhanga, Xinni Liub, Xifeng Wanga, Shahab S. Bandc, Seyed Amin Bagherzadehd, Somaye Taherifare,
Ali Abdollahid, Mehrdad Bahramid, Arash Karimipourd, Kwok-Wing Chau f and Amir Mosavi g,h,i

aSchool of Computer Sciences, Baoji University of Arts and Sciences, Baoji, People’s Republic of China; bSchool of Information, Xi’an University
of Finance and Economics, Xi’an, People’s Republic of China; cFuture Technology Research Center, College of Future, National Yunlin University
of Science and Technology, Douliou, Taiwan; dDepartment of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad,
Iran; eDepartment of Computer Sciences, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahavaz, Iran;
fDepartment of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, People’s Republic of China; gJohn von
Neumann Faculty of Informatics, Obuda University, Budapest, Hungary; hInstitute of Information Engineering, Automation and Mathematics,
Slovak University of Technology in Bratislava, Bratislava, Slovakia; iInstitute of Information Society, University of Public Service, Budapest,
Hungary

ABSTRACT
Dynamic viscosity of novel generated Copper Oxide (CuO)/Liquid Paraffin nanofluids is obtained
experimentally for various temperatures and concentrations. To optimize the empirical process
and for cost-efficiency, Feed-Forward Neural Networks (FFNNs) were modeled and compared with
Recursive Least Squares (RLS) Fuzzymodel. ToprepareCuO/ liquidparaffin nanofluids, CuOnanopar-
ticles are dispersed within paraffin. Then an input-target dataset containing 30 input-target pairs is
available for T = 25, 35, 40, 50, 55, 70(◦C), and ϕ = 0.1, 0.5, 1.0 , 3.0, 5.0 (%). Based on the empiri-
cal results, two types of FFNNs are examined and compared with RLSF model to predict CuO/liquid
paraffin nanofluids. To evaluate the best optimization methods of nanofluid viscosity, Multi-Layer
Feed forward (MLF), Radial Basis Function (RBF), and RLSF are compared and discussed. TheMLF net-
work provides a global approximationwhile the RBF actsmore locally, further, RLSF provides a better
fit. On the contrary, the RBF network has better properties from the generalization and noise rejec-
tion points of view. Also, RBF networks can be applied in an online manner. Further, three curves of
RLS Fuzzymodel by Parabola2D, ExtremeCum, and Poly2Dmodels were fitted on the empirical data
and compared. The ExtremeCum model showed the least margin of error and can be employed to
predict the data.
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1. Introduction

One of themain incentives for the application of nanoflu-
ids in the industry is the thermal conductivity of the
nanoparticles, which results in increased heat transfer. It
causes a significant improvement in the conduction of the
mixture. However, nanoparticles Brownian motions can
cause the activation of the nanofluid convention. Besides,
because of the hybrid nanoparticles’ lower concentra-
tion, the costs are reduced, and the efficiency is increased.
Additionally, different kinds of base liquids can be stud-
ied depending on the operational conditions (Abdalla
et al., 2010; Rajpal, 2014; Santos et al., 2013). Hence, it
seems necessary that one should have an acceptable level
of knowledge regarding nanofluid thermophysical prop-
erties, particularly for the new kinds of nanofluid. The
heat transfer rate and thermal efficiency are among the

CONTACT Xifeng Wang dweisky@yeah.net; Shahab S. Band shamshirbands@yuntech.edu.tw

advantages of encouraging applying the nanofluid. Var-
ious studies have reported these advantages. Because of
the high-cost empirical works on nanofluid, some studies
have utilized numerical approaches. A correlation is pro-
posed in these works. It is between the favorite subjects
of researchers in the field of composites and nanoflu-
ids (Akhlaghi & Kompany-Zareh, 2005; Bagwari et al.,
2015; Ghasemi & Karimipour, 2018). The experimental
studies have some problems, and some specific matters
should be taken into account. Hence, it is suggested to
use the numerical approaches to predict fluid properties
at the optimal condition. Generally, the ANN method
is utilized for estimating the thermo-physical character-
istics according to the empirical data. Because of the
universal approximation property of the ANN approach,
it is considered the most leading regression approach.
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A multi-layer feed-forward can anticipate the relation-
ships between the independent and dependent variables.
Among the optimization methods, the artificial neural
network (ANN) has been applied in numerous stud-
ies for predicting the nanofluid characteristics, particu-
larly for its viscosity and thermal conductivity. Besides,
the acceptable accuracy of this approach motivates the
researchers to construct newer ANN models for better
consistency with the available physical conditions of a
nanofluid flow (Abdollahi et al., 2018; Dehghani et al.,
2019; Karimipour et al., 2018; Sedeh et al., 2019; Teng
et al., 2010).

Current progress in machine learning (ML) suggests
novel tools to excerpt novel understandings from large
data sets and to achieve small data sets more efficiently
(Ahmadi, Ahmadi et al., 2014; Ali Ahmadi & Ahmadi,
2016; Amedi et al., 2016; Moosavi et al., 2019). Scien-
tists in nanoscience are investigating with these tools to
tackle demands in many fields. Further, ML’s progress
of nanoscience, nanoscience supports the foundation
for neuromorphic computing hardware to develop the
implementation of ML algorithms: (i) employing ML
to analyze and extract novel understandings from large
nanoscience data sets, (ii) employing ML to advance
material discovery, containing the use of active learn-
ing to guide empirical design, and (iii) the nanoscience
of memristive devices to realize hardware tailored for
ML (Ahmadi, Ebadi, Marghmaleki et al., 2014, Ahmadi,
Ebadi, & Yazdanpanah, 2014; Ahmadi, Bahadori et al.,
2015; Ahmadi, Pouladi et al., 2015; Nguyen, Ghorbani
et al., 2020; Shafiei et al., 2014).

Cost efficiency is the act of saving money by optimiz-
ing a process. This is done by decreasing experimental
costs and improving efficiencies across the process (Abidi
et al., 2021; Du et al., 2020; Nguyen, Rizvandi et al.,
2020; Sun et al., 2021). Liu et al. (2019) presented a
new approach of ‘Recursive Least Squares Fuzzy’ neu-
ral network. They optimized the thermal conductivity
measurement of Graphene Oxide/Water nanofluid by
R-Squared of 0.99. Alsarraf, Malekahmadi et al. (2020)
used the neural network to optimized the thermal con-
ductivity measurement of Graphene/Water nanofluid
by R-Squared of 0.99. Xu et al. (2020) used Leven-
berg Marquardt (LM) algorithm to optimize the vis-
cosity measurement process of Graphene Oxide/Water
nanofluid by R-Squared of 0.997 for RMPs of 10 and
100. Li et al. (2021) presented a novel neural network
algorithm (Orthogonal Distance Regression (ODR)) to
optimize the thermal conductivity measurement of Car-
bonNanotube-TitaniumDioxide/Water-Ethylene Glycol
nanofluid by R-Squared of 0.9999. Malekahmadi et al.
(2021) compared two kinds of neural network algo-
rithms, LM and ODR, to find the best optimization

method for thermal conductivity measurement of Car-
bon Nanotube-Hydroxyapatite/Water nanofluid. They
reported that the ODR is a better method to model the
process and to reduce the cost of experiments.

For neural networks models, Ebtehaj et al. (2018) by
hybrid decision tree (DT) technique with multilayer per-
ceptron (MLP) and radial basis function (RBF) artificial
neural networks, indicated that it is possible to extract
matrices to provide applicable models. Also, Ebtehaj
and Bonakdari (2016) optimized Multilayer Perceptron
(MLP) network with three different training algorithms,
including variable learning rate (MLP-GDX), resilient
back-propagation (MLP-RP) and Levenberg-Marquardt
(MLPLM) to apply in the practical application.

ANN optimization method is examined based on
empirical data of the CuO/ liquid paraffin nanofluids
in volume fraction 0.1, 0.5, 1.0, 3.0 and 5.0, and in the
temperature range 25–70°C. To evaluate the best opti-
mization method of nanofluid viscosity, MLF, RBF and
RLS Fuzzy are compared and discussed (Al-Rashed et al.,
2019; Alsarraf, Shahsavae et al., 2020a; Izadi et al., 2018;
Jiang et al., 2019; Ranjbarzadeh et al., 2017, 2018, 2019;
Safaei et al., 2019).

2. Numerical method

Artificial Neural Networks (ANNs) are frequently used
for curve fitting and function estimation. The ANNs are
very successful in this regard due to their iterative pro-
cess, bywhich the precision of the outputs is continuously
improved. Since the ANNs have nonlinear activation
functions, they can approximate any arbitrary function
without knowing the investigated data. Despite effective
applications of the ANN in the curve fitting and function
approximation fields, it is not easy to select the proper
type of ANNs in practice. In this paper, two types of Feed-
Forward Neural Networks (FFNNs) are examined and
compared with RLS Fuzzy model to predict CuO/liquid
paraffin nanofluids.

Multi-Layer Perceptrons (MLPs) are the most popular
type of FFNNs for curve fitting, pattern recognition, and
clustering. In this method, any neuron in a specified layer
collects weighted outputs of all the neurons in the pre-
vious layer. The MLP networks usually have one or two
hidden layers and one output layer. In any layer, the sum-
mation of the weighted inputs is mapped by an activation
function to the output space. The MLP networks usually
have ‘sigmoid’ and ‘linear’ neurons. Once the outputs of
the networks are obtained, they can be compared with
the targets. One can use a training algorithm tominimize
the Mean Squared Error (MSE) between the outputs and
targets. There are a variety of back-propagation training
algorithms with dissimilar schemes and characteristics.
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Figure 1. The architecture of two-layer MLP networks.

The MLP neuron can be mathematically described as
follows:

y = sigmoid(wTx + b) (1)

in which x and y are the input and output, respectively.
Also, w and b indicate the network weight and bias,
respectively. Also, the ‘sigmoid’ activation function can
be represented as follows:

a = sigmoid(n) = 2
1 + exp(−2n)

− 1 (2)

A Radial Basis Function (RBF) network consists of
only one hidden layer and one output layer. The hid-
den layer of the RBF networks is different from the MLP
ones. In the hidden layer, the Euclidean distance between
the weight and input vectors are obtained. Therefore, the
number of inputs and weights of the hidden layer are
identical. Then, the output of the previous step is mul-
tiplied by the bias value. Finally, the net value is mapped
by an activation function to the output space. The RBF
network usually employs ‘radbas’ and ‘linear’ transfer
functions. The training algorithm of the RBF is different
from that of the MLP. The training is usually performed
in a two-phase process where the centers and scaling
parameters of the RBF layer are fixed in the first step, and
the weights of the output layer are fixed in the second
step. The RBF neuron can be mathematically described
as follows:

y = radbas(||w − x||b) (3)

Also, the ‘radbas’ activation function can be repre-
sented as follows:

a = radbas(n) = exp(−n2) (4)

The architecture of two-layer MLP and RBF networks
are illustrated schematically in Figures 1 and 2. In these
figures, the first activation functions f 1 represent the
‘sigmoid’ and ‘radbas’ for the MLP and RBF networks,
respectively. Also, the second activation functions f 2 are
‘linear’ for both cases. Also, Figure 3 is illustrated the RLS
Fuzzy architecture that Layer 1 is the inputs, Layer 2 is the
‘IF part’, Layer 3 is the ‘Rules+Norm’, Layer 4 is ‘THEN
part’, and Layer 5 is the output.

It can be observed that the MLP has simpler architec-
ture. The MLP is widely used for diverse types of prob-
lems, while the RBF is less popular. Also, there are essen-
tial differences between the performances of the MLP
and RBF networks. According to (Santos et al., 2013),
the MLP network provides a global approximation while
the RBF acts more locally. On the contrary, the RBF net-
work has better properties from the generalization and
noise rejection points of view. Also, RBF networks can
be applied in an online manner. Due to these proper-
ties, it is not theoretically possible to select the network
having the best performance. Hence, for any specific real
problem, the performance of theMLP andRBF should be
numerically compared (Abdalla et al., 2010; Akhlaghi &
Kompany-Zareh, 2005; Bagwari et al., 2015; Rajpal, 2014;
Santos et al., 2013). In this study, the performance of the
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Figure 2. The architecture of two-layer RBF networks.

Figure 3. The architecture of RLS Fuzzy networks.

MLP, RBF and RLS Fuzzy are compared for the problem
of prediction CuO/ liquid paraffin nanofluids.

Data points selection, that used to train the models,
depends both on the complexity of the problem (the
unknown underlying function that best relates the input
variables to the output variable) and on the complexity
of chosen algorithm (the algorithm used to inductively
learn the unknown underlying mapping function from
specific examples). Thus, the number of data points are
selected based on previous related studies which are at
least 30 data points to train the model (Alsarraf et al.,
2020b; Liu et al., 2019; Xu et al., 2020).

The parameters of ANN, RBF, and RLSF are the learn-
ing algorithm, number of hidden layers and neurons in

the hidden layer. The selection of each parameter was
based on the following:

For the learning algorithm, the selection was based on
the size of the training data (which is 30 in this study),
Accuracy and/or Interpretability of the output (Linear
Regression could easily be understood how any individ-
ual predictor is associated with the response while the
flexible models give higher accuracy at the cost of low
interpretability), Speed or Training time (Higher accu-
racy typically means higher training time, however, the
training time was not an important issue in this study),
Linearity (not always is the data is linear, so other algo-
rithms are required which can handle high dimensional
and complex data structures), and Number of features
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Figure 4. Value of nanofluid’s dynamic viscosity at different nanoparticles mass fraction and temperature (Abdollahi et al., 2018;
Dehghani et al., 2019; Ghasemi & Karimipour, 2018; Karimipour et al., 2018; Sedeh et al., 2019).

Figure 5. Experimental dynamic viscosity for various temperatures and concentrations.

(The dataset may have a large number of features that
may not all be relevant and significant, however, all the
datasets in this study are significant).

For the number of inputs, with respect to the number
of neurons comprising this layer, this parameter is com-
pletely and uniquely determined once the shape of train-
ing data is determined. Thus, the inputs are 30 datasets.

Like the Input layer, every NN has exactly one output
layer. Determining its size (number of neurons) is com-
pletely determined by the chosen model configuration.

While for the hidden layers, one hidden layer is suf-
ficient for the large majority of problems. However, the
optimal size of the hidden layer is usually between the
size of the input and size of the output layers. To trim
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Figure 6. The experimental dynamic viscosity in semi-log axes.

network size (by nodes not layers) to improve com-
putational performance and sometimes resolution per-
formance, is removing nodes from the network during
training by identifying those nodes which, if removed
from the network, would not noticeably affect network
performance (weights very close to zero in the trained
matrix).

For the neurons in the hidden layer, the selection was
based on the following equation which usually prevent
over-fitting:

Nh = Ns

(α∗(Ni + N0))
(5)

While Ni is the number of input neurons, No is the num-
ber of output neurons, Ns is the number of samples in
training data set, and α is an arbitrary scaling factor
usually 2–10.

3. Experimentation

3.1. Materials

To prepare CuO/liquid paraffin nanofluids, CuO nano-
particles are dispersed within paraffin. All nanomaterial
were obtained with the pureness of 99.91%. Further-
more, paraffin with large pureness was acquired from
Merck Company, Germany. To obtain standard clean
conditions, deionized water was applied to clean Entirely

glaswares of the laboratory (Ghasemi & Karimipour,
2018).

3.2. Instruments

According to our previous research (Sedeh et al., 2019),
Brookfield viscometer, (model DV2T, USA) is applied to
measure the viscosity of the abovementioned nanofluid.
Our previous study presented the morphology and sizes
of dry CuO nanoparticles. Besides, a high degree of
nanofluid stability is measured and confirmed according
to DLS and Zeta Potential analysis (Sedeh et al., 2019).
The isothermal circulator bath is applied to maintain
nanofluid temperature in a certain value (Hemmat Esfe
& Afrand, 2020a, 2020b; Hemmat Esfe et al., 2020; Iran-
doost Shahrestani et al., 2020; Khanmohammadi et al.,
2020; Komeilibirjandi et al., 2020; Ma et al., 2020; Maleki
et al., 2021; Rahmat et al., 2017, 2019; Wang et al., 2020;
Zheng et al., 2020).

3.3. Nanofluid preparation

As mentioned in our previous research (Dehghani et al.,
2019), stirring is used with 500 rpm for about 30min to
disperse 1 g of CuO nanoparticles within 19 g of paraf-
fin. To avoid nanoparticles accumulation, the sonication
waves with a maximum amplitude of 60% for three sep-
arate steps of 20min is applied to suspension (Dehghani
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et al., 2019). The specific amount of stock nanofluid was
applied. In the next step, to obtain the total mass of
nanofluid to reach 20 g, the paraffin was applied to the
nanofluid.

4. The experimental viscosity evaluation

To assure the results, the evaluation was repeated three
times in an identical situation, and deviation was eval-
uated by applying Equation (6) (Abdollahi et al., 2018;
Karimipour et al., 2018; Sedeh et al., 2019):

S.D. =
√∑

i (Rμ,i − Rμ)
2

n2
(6)

where Rμ,i represents the ratio of dynamic viscosity of
a fluid with nanoparticles to clean basefluid, Rμ is aver-
age relative dynamic viscosity, and n stands for numbers
of repetition, which is three in this work. To perform
the uncertainty analysis, we determined the variation of
significant parameters and the variation of thermal cir-
culator bath accuracy the precise electric balance, and
viscometer are ±0.005°C, ±0.0003 gr, and ±1%, respec-
tively (Rajpal, 2014). Equation (7) was applied to evaluate
the uncertainty of tests (Teng et al., 2010):

U.M. = ±
√(

�μ

μ

)2
+

(
�w
w

)2
+

(
�T
T

)2
(7)

According to our results, the uncertainty of the
dynamic viscosity of nanofluid was approximately 8.4%.

5. Results and discussion

In the conducted experiments, the dynamic viscosity
of CuO/liquid paraffin nanofluids is obtained for dif-
ferent temperatures and nanoparticle mass fractions.
An input-target dataset containing 30 input-target pairs
is available for T = 25, 35, 40, 50, 55, 70(◦C), and ϕ =
0.1, 0.5, 1.0 , 3.0, 5.0 (%). Figure 4 presents the impact
of dynamic viscosity of CuO/paraffin. According to
obtained results, viscosity significantly increases as the
concentration is raised. Indeed, this is mainly due
to the presence of solid particles within nanofluid.
Subsequently, viscosity is enhanced. Our results also
demonstrated that viscosity declines meaningfully when
the temperature is increased. The micro-convection of
nanoparticles in basefluid is the main reason for these
phenomena. Viscosity reduces 59, 64, 67, 68 and 69%
at CuO nanoparticle concentration of 0.1, 0.5, 1.0, 3.0
and 5.0 wt%; while temperature varies from 25 to 70°C.
The values of the dynamic viscosity are illustrated in
Figure 5.Moreover, nanofluid dynamic viscosity is shown
in Figure 6.

Figure 7. Experimental versus numerical data from (a) MLP, (b)
RBF.

The MLP and RBF networks are applied. Regression
curves are presented in Figure 7. The numerical outputs
of the models are plotted against the experimental tar-
gets. It can be seen that both networks have acceptable
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Figure 8. The error plot between experimental and numerical data by (a) MLP, (b) RBF.

performance. The error plots are shown in Figure 8(a)
and (b). Results are depicted in Figure 9 for the numeri-
cal data from both methods. It can be observed that both
networks result in identical predictions.

Finally, the networks are examined at non-trained
inputs throughout the investigated intervals. The results
are presented in Figure 10. The results of the MLP

network have better smoothness. It can be concluded that
theMLP network has better generalization while the RBF
network has better precision. In a small training dataset,
the MLP network may lead to better results, while the
RBF is suggested for a large training dataset.

The RLS Fuzzy model curve fitting method applied
on the empirical data based on three different models,
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Figure 9. Numerical data by (a) MLP, (b) RBF.

‘Parabola2D’, ‘ExtremeCum’ and ‘Poly2D’. As can be seen
in Figure 11, Parabola2Dmodel did not fit completely on
the data, hence, ExtremeCum and Poly2D models did fit
completely and can be used to predict the data.

Three original formulas derived from these three cur-
ves. As can be seen, the second Equation (ExtremeCum)
has better R-squared (almost 1), and can be employed to
predict the data.

Equation (8) is the ‘Parabola2D’ Eq., Equation (10) is
the ‘ExtremeCum’ Eq., and Equation (12) is the ‘Poly2D’
Eq., while the Equations (9), (11), and (13) are original
equations for the fitted curves of RLS Fuzzy model.

Fitted Curve: Parabola2D

Z = z0 + a ∗ X + b ∗ Y + c ∗ X2 + d ∗ Y2 (8)

Viscosity = 2.76704 + (−1.48864) ∗ (T/T0)



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 773

Figure 10. Numerical data by (a) MLP, (b) RBF networks at non-trained inputs throughout the investigated intervals.

+ 0.19591 ∗ wt + 0.22226 ∗ (T/T0)
2

+ (−00.1857) ∗ wt2 (9)

Reduced Chi-Sqr: 0.00811, R-Square (COD): 0.998
43, Adj. R-Square: 0.99818

Fitted Curve: ExtremeCum

Z = z0 + b ∗ exp(− exp(−(X − c)/d))

+ e ∗ exp(− exp(−(Y − f )/g))

+ h ∗ exp
(− exp(−(X − c)/d)

− exp(−(Y − f )/g)

)
(10)

Viscosity = (−443.92327) + 447.23973∗
exp(−exp(−((T/T0)

− (−3.53698))/ 1.50106)) + 495.17655∗
exp(−exp(−(wt − (−6.51497))/ 2.32232))

+ (−498.52483)∗
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Figure 11. RLS Fuzzy model fitted curve on the empirical data by (a) Parabola2D, (b) ExtremeCum, and (c) Poly2D.

exp

⎛
⎜⎜⎝

−exp(−((T/T0)

−(−3.53698))/ 1.50106)
−exp(−(wt − (−6.51497))/

2.32232)

⎞
⎟⎟⎠ (11)

Reduced Chi-Sqr: 5.28744E-4, R-Square (COD):
0.998, Adj. R-Square: 0.99736

Fitted Curve: Poly2D

Z = z0 + a ∗ X + b ∗ Y + c ∗ X2

+ d ∗ Y2 + f ∗ X ∗ Y (12)

Viscosity = 2.33617 + (−1.22617) ∗ (T/T0)

+ 0.3781 ∗ wt + 0.20149∗
(T/T0)

2 + (−0.02037) ∗ wt2

+ (−0.08835) ∗ (T/T0) ∗ wt (13)

Reduced Chi-Sqr: 0.0019, R-Square (COD): 0.992
16, Adj. R-Square: 0.99053

While the T0 is 25°C and T is the Temperature from
25 to 70°C.

Figure 12 shows Margin of error by RLS Fuzzy
model. As can be seen, the Parabola2D model’s error is
53.73918377% fromMax. error of 23.74028975% toMin.
error of −29.99889402%. The ExtremeCum model’s
error is 6.62089424% from Max. error of 2.656876933%
to Min. error of −3.964017307%. The Poly2D model’s
error is 17.47650685% from Max. error of 8.032125%
to Min. error of −9.444381852%. Thus, ExtremeCum
model has the least margin of error and can be applied
as the best fit.

Figure 13 shows the Error contour by RLS Fuzzy
model. As can be seen, the dash lines are the empirical
datasets while the solid lines are the trained datasets. The
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Figure 12. Margin of error by ‘Recursive Least Squares Fuzzy’ model for (a) Parabola2D, (b) ExtremeCum, and (c) Poly2D.

results showed that the ExtremeCum model have better
smoothness.

6. Conclusion

Through the present work, the dynamic viscosity of novel
generated CuO/ liquid paraffin nanofluids was obtained
experimentally for various temperatures and concentra-
tions. To prepare CuO/ liquid paraffin nanofluids, CuO
nanoparticles were dispersed within paraffin. Two types
of Feed-Forward Neural Networks (FFNNs) were exam-
ined and compared with RLS Fuzzy model to predict
CuO/ liquid paraffin nanofluids. It was seen that the
ANN optimization approach was examined based on
the empirical data of CuO/ liquid paraffin nanofluids.
To evaluate the best optimization method of nanofluid
viscosity, MLF, RBF, and RLSF were compared and dis-
cussed. MLP network provided a global approximation
while the RBF acted more locally. On the contrary, the

RBF network had better properties from the generaliza-
tion and noise rejection points of view. Also, RBF net-
works could be applied in an online manner. Moreover,
the results of the MLP network had better smoothness,
so the MLP network showed better generalization while
RBF had better precision. Further, three curves of RLS
Fuzzy model by Parabola2D, ExtremeCum, and Poly2D
models were fitted on the empirical data and compared.
The margin of error for Parabola2D was 53.73918%,
for ExtremeCum was 6.62089%, and for Poly2D was
17.47651%. Thus, The ExtremeCum model showed the
least margin of error and can be employed to predict the
data.

Employing of the trained models in the case studies is
possible by hybrid decision tree (DT). The viscosity mea-
surement and its optimization byANNand Fuzzymodels
can be used in a wide variety of applications within many
different industries, including: Pharmaceuticals (suspen-
sions, gelatins, and syrups); Construction industry mate-
rials (cement, coatings, and mortars); Chemicals (paints,
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Figure 13. Error contour by ‘Recursive Least Squares Fuzzy’ model for (a) Parabola2D, (b) ExtremeCum, and (c) Poly2D.

inks, detergents, adhesives, and resins); and also, Foods
containing seaweed, starches, soups, sauces, etc.
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