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A B S T R A C T   

The performance of aeration – one of the most costly processes at water resource recovery facilities – is heavily 
impacted by actual wastewater characteristics which are commonly taken into account using the alpha factor (α). 
This factor varies depending on hydraulic and organic loading; such variance includes both time and spatial 
fluctuations. In standard design practice, it is often considered as a fixed number, or at best, a predefined time 
series. The objective of this paper is to propose a new method of predicting plantwide trends in the α factor 
through the use of process modelling which can accommodate diurnal and seasonal variations. The authors’ 
concept takes into account the dependence of α on sludge retention time in the form of degradation kinetics, the 
effects of organic loading (influent filtered COD), the presence or absence of anoxic zones, diffuser depth, and the 
impact of high MLSS found in certain, e.g., MBR, technologies. The developed model was calibrated using data 
from numerous facilities, relying on off-gas measurements and tests in clean and process water. Model validation 
was carried out against averaged α factor gradient data from one plant, and against diurnal air flow measure-
ments from another. The Benchmark Simulation Model 1 configuration was used to demonstrate the applicability 
of the proposed model – in estimation of blower energy consumption and peak air flow requirements – 
comparing it with constant and scheduled α factor-based approaches.   

1. Introduction 

Wastewater aeration is one application of gas-transfer theory, and it 
is necessary for design and the analysis of aerobic processes. One of the 
bottlenecks impeding the accurate application of gas-transfer theory is 
the step between clean gas transfer scenarios (e.g., air and clean water) 
and contaminated scenarios (e.g., air and wastewater), but due to the 
unknown composition of the many contaminants that are present in 
wastewater, accuracy is limited. Numerous investigators have been 
studying how to quantify and predict the effect of contaminants on gas 
transfer for the better part of the last century (since Kessener and Rib-
bius, 1934 and Eckenfelder and Barnhart, 1961). The dynamic nature of 
gas-liquid mass transfer significantly impacts the actual process air re-
quirements of water resource recovery, affecting operational costs. It 
also plays a role in equipment sizing and capital costs, thus defining peak 
air demand. 

Aeration systems are specified based on clean water performance 
(defined as Standard Oxygen Transfer Efficiency, SOTE, %; Standard 
Oxygen Transfer Rate, SOTR, kgO2,transferred h− 1), and they are scaled to 

process conditions using the α factor (dimensionless) as well as the 
diffuser fouling factor (F, dimensionless) to quantify the decline of 
performance with time in operation (U.S. Environmental Protection 
Agency – USEPA, 1989). During the design stage, the quantification of 
SOTE is the responsibility of the aeration system manufacturer and an 
independent witness. The quantification of α and F are the purview of 
the design engineers. Standard testing protocols for SOTE quantification 
are adopted in design (American Society of Civil Engineers – ASCE, 
2018), reducing the uncertainty of SOTE quantification to the experi-
mental error. However, the research and corresponding literature on the 
subject of α and F quantification still fall short of significantly reducing 
uncertainty. This shortcoming is not due to negligence, but to the nature 
of the definition of α and F. The former is the ratio of oxygen transfer in 
process water vs. clean water (i.e., αSOTE/SOTE), aggregating in one 
parameter (or variable) all the uncertainty on the composition of the 
carbonaceous load applied to the process. The latter is site-specific and 
depends on a multitude of factors given that it is a factor that aggregates 
biofilm adhesion and growth, inorganic scaling, and diffuser material 
degradation (U.S. Environmental Protection Agency – USEPA, 1989; 
Kim and Boyle, 1993; Wagner and Pöpel, 1998; Gillot et al., 2005; Rosso 
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and Stenstrom, 2006a; Garrido-Baserba et al., 2016; 2017; 2018; Rosso, 
2018). 

Fig. 1. illustrates an example of how the contribution of factors can 
be parsed out. Nevertheless, the oxygen transfer operations in a 

wastewater treatment plant include the compounding effect of all these 
combined factors (α•F•SOTE = αFSOTE), thereby forcing investigators 
and design engineers to parse the individual contributions of said fac-
tors, chiefly because the responsibility of each is attributed to different 

Nomenclature 

α alpha (wastewater/clean water) factor 
αF alpha factor for aged diffusers 
αFSOTE standard oxygen transfer efficiency in process water for 

aged diffusers [%] 
bCOD biodegradable chemical oxygen demand [gCOD m− 3] 
coeffdamp,ALPHA coefficient of alpha first order limitation-dampening 

term 
corrcw,SCCOD,ALPHA clean water correction term in filtered COD- 

alpha indicator correlation 
corrhdiff,α depth-related alpha factor correction term 
corrTSS,α solids-related alpha factor correction term 
dampALPHA alpha first order limitation-dampening term 
expcw,SCCOD,ALPHA clean water exponent of filtered COD-alpha 

indicator correlation [m3 gCOD
− 1] 

F diffuser fouling factor 
fO2,max,ALPHA non-aerated zone alpha improvement rate increase 
hdiff diffuser submergence [m] 
KI,SCCOD,ALPHA half-value in filtered COD-alpha indicator correlation 

[gCOD m− 3] 
KO2,ALPHA half-saturation of dissolved oxygen for alpha rate [gO2 

m− 3] 
maxww,SCCOD,ALPHA maximum of filtered COD-alpha indicator 

correlation, wastewater 
MCRT mean cell retention time [d] 
minSCCOD,ALPHA minimum of filtered COD-alpha indicator 

correlation 
nbCOD non-biodegradable chemical oxygen demand [gCOD m− 3] 

powdamp,ALPHA power of alpha first order limitation-dampening 
term 

Q volumetric flow of wastewater [m3 d− 1] 
qALPHA alpha improvement rate [m3 gVSS

− 1 d− 1] 
qALPHA,O2 dissolved oxygen-corrected alpha improvement rate [m3 

gVSS
− 1 d− 1] 

QSALPHA load of alpha indicator [m3 d− 1] 
rateQSALPHA reaction rate of alpha indicator in volumetric unit [m3 

d− 1] 
rateSALPHA reaction rate of alpha indicator [d− 1] 
rbCOD readily biodegradable chemical oxygen demand [gCOD 

m− 3] 
rSALPHA process rate for elimination of surfactants [d− 1] 
SALPHA alpha indicator 
SALPHA,sat maximum alpha indicator 
SCCOD filtered (soluble + colloidal) chemical oxygen demand 

[gCOD m− 3] 
slhdiff,α slope of depth-related alpha factor correction term [m− 1] 
slSCCOD,ALPHA slope of filtered COD-alpha indicator correlation [m3 

gCOD
− 1] 

slTSS,α slope of solids-related alpha factor correction term [m3 

kgTSS
− 1] 

SO2 dissolved oxygen concentration [gO2 m− 3] 
SOTE standard oxygen transfer efficiency [%] 
Vr reactive volume [m3] 
vSALPHA stoichiometric coefficient for alpha indicator (in 

elimination of surfactants) 
XTSS total suspended solids concentration [gTSS m− 3] 
XVSS volatile suspended solids concentration [gVSS m− 3]  

Fig. 1. Illustration of clean and process water factors contributing to oxygen transfer limitations.  
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parties in design (Rosso, 2018). 
Note the significant difference in dynamics amongst these variables, 

with F being the least varying and α the most varying over the short 
term. 

Studying the illustrated example, it is apparent that the so-called α 
factor can be the most significant barrier to oxygen dissolution and also 
the most sensitive to varying loading circumstances (Karpinska and 
Bridgeman, 2016) which, among diurnal patterns, also show contrast 
between workdays and weekends. The background of this factor relates 
to contaminants in the wastewater and different aerators in conjunction 
with links between surfactants and bubble size which have long been 
studied (inter alia, Kessener and Ribbius, 1934; Stenstrom and Gilbert, 
1981). 

The α factor is known to be related to the mean cell retention time 
(MCRT) of a treatment plant (U.S. Environmental Protection Agency – 
USEPA, 1989; Rosso et al., 2005; Gillot and Héduit, 2008) due to kinetic 
requirements of the processes responsible for eliminating constituents 
that hamper oxygen transfer. This causes α to vary with hydraulic 
loading which is inversely proportional to the dynamic MCRT. Conse-
quently, the greater the internal recirculation applied to a train, the 
flatter its α gradient will be due to the load distribution effect which also 
reduces the need for diffuser tapering (Rosso et al., 2007). 

The presence of non-aerated selectors at a treatment line can 
improve α values overall. This is because surface-active agents tend to 
accumulate at bubble surfaces, and therefore are harder to access and 
degrade. Aerobic processes that directly utilize O2 as an electron 
acceptor are prone to this effect (Rosso and Stenstrom, 2006b, 2007). 

Diffuser submergence plays a role, too, on the local α in aerated tanks 
(Gillot and Héduit, 2008), as the accumulation of surfactants at bubble 
surfaces – toward a steady-state in forming a barrier film – is facilitated 
by longer bubble contact times (Doyle et al., 1983; Wagner and Pöpel, 
1996). 

Experience shows that oxygen transfer clearly declines with 
increasing organic contaminant loading, and this has been linked with a 
relation of α factor and soluble COD as well as colloidal COD concen-
tration (Mueller et al., 2000; Odize et al., 2016). 

With increased solids concentrations in reactors, α reduces locally 
due to the increased viscosity and non-Newtonian nature of the mixed 
liquor, and thus drives bubble coalescence which is especially discern-
ible in the range of operating MLSS of membrane bioreactors or aerobic 
digesters (Muller et al., 1995; Krampe and Krauth, 2003; Steele et al., 
2019). Below 4 kg TSS m− 3, though, facilities typically operate at shorter 
MCRT and lower MLSS, and the resulting α factor is a function of the 
surfactant available for accumulation at the gas-liquid interface 
(Baquero-Rodríguez et al., 2018). 

Efforts have previously been made to describe the α factor’s dynamic 
nature, relying on algebraic correlations. The first examples of such ef-
forts include prediction in function of MCRT, air flux, and submergence 
(Rosso et al., 2005; Gillot and Héduit, 2008). One case included the 
additional impact of MLVSS along with MCRT in the equation applied 
(Henkel et al., 2011). Other methods incorporated a direct negative 
correlation to total COD or soluble COD (Jiang et al., 2017; Boog et al., 
2020; Ahmed et al., 2021). 

The available empirical models may prove useful in estimating a 
plant-average α factor. Yet, α also varies per reactor and along each 
reactor, analogously to the oxygen uptake, since both are driven by 
process loading. However, α and OUR are not correlated because their 
dynamics are affected by different causes: whereas OUR is driven by the 
entire biodegradable COD and ammonia load, α is mainly affected by a 
small subset of the bCOD molecules, i.e. the surface-active agents (Odize 
et al., 2016). 

However, past work did not address the kinetic and mass balance- 
related phenomena that, in fact, determine the location-specific trend 
and time-based changes regarding the α factor. The complex effects of 
environmental and operational conditions are fundamental in predicting 
this factor for the accurate design and operation of WRRFs (Amaral 

et al., 2019). 
The goal of this paper is to propose a novel approach that in-

corporates rate equations into process models based upon a surrogate 
state variable to simulate the wide range of contributors to α while 
adjusting to diurnal and seasonal variations in hydraulic and organic 
loading. 

2. Methodological approach 

The proposed concept of dynamic α factor prediction is based on a 
“typical” or “average” degradable and surface-active component. As this 
component sorbs onto flocs and degrades along the process, α increases 
as depicted in Fig. 2. in a simple conceptual form. This new concept was 
selected because variations of the α value in space and time cannot be 
directly linked to any of the state variables (readily biodegradable 
substrate, ammonia, etc.) usually included in process models. 

To quantify the effect of surface-active agents in individual bio-
reactors and reactive compartments, this paper reconsiders the previous 
dynamic definition of α as a function of COD or bCOD (Jiang et al., 2017; 
Boog et al., 2020; Ahmed et al., 2021), introducing a state variable 
named “alpha indicator” (SALPHA). This unitless indicator is dedicated 
specifically to consider the loading of oxygen transfer-impeding con-
taminants to individual process units in treatment plants, and their 
transformation within those units that incorporate biokinetic and other 
reactions. The change of alpha indicator in time within a completely 
stirred tank is described by a component balance according to Eq. (1): 

dSALPHA

dt
=

QSALPHA ,in − QSALPHA ,out + rateQSALPHA

Vr
(1) 

The load of alpha indicator to a tank is given by Eq. (2). 

QSALPHA ,in = Qin⋅SALPHA,in (2) 

Similarly, the flow of alpha indicator leaving a tank is interpreted in 
the form of Eq. (3). 

QSALPHA ,out = Qout⋅SALPHA (3) 

The kinetic reaction rate of the alpha indicator regarding the removal 
process of surfactants, present as rateSALPHA in Eqs. (4) and (5), is 
calculated like a rate expression of any integrated state variable derived 
from a biokinetic matrix by multiplying a stoichiometric coefficient 
(vSALPHA with a value of 1, as it indicates a positive change of the indi-
cator towards a saturation value acting as asymptote) by a process rate 
(rSALPHA): 

rateQSALPHA = Vr⋅rateSALPHA (4)  

rateSALPHA = νSALPHA ⋅rSALPHA (5) 

Fig. 2. Concept drawing of contribution of different contaminants to α as it 
evolves along the treatment process, analogously to a certain fraction of COD. 

D. Bencsik et al.                                                                                                                                                                                                                                 



Water Research 216 (2022) 118339

4

The process rate (regarding the elimination of surfactants, calculated 
by Eq. (6)) depends on an alpha improvement rate component (qALPHA, 

O2) which is correlated with the MLVSS concentration, meaning that the 
longer the water is in contact with the sludge, the larger change can be 
achieved in the alpha indicator. This correction is in agreement with the 
observations previously reported by multiple investigators, i.e. that α 
improves with increasing MLVSS for activated sludge processes (Rosso 
et al., 2005; Gillot and Héduit, 2008). This correction is needed to ac-

count for the benefits of biomass sorption of surfactants. The driving 
force of the change in alpha indicator is determined by the difference of 
the alpha indicator’s saturation value (1 by default, representing the 
clean water value) and the actual value of the indicator, further cor-
rected by a dampening term (described in Eq. (8)). 

rSALPHA = qALPHA,O2
⋅XVSS⋅dampALPHA⋅

(
SALPHA,sat − SALPHA

)
(6) 

The qALPHA,O2 component of the process rate is derived from the ki-
netic model parameter qALPHA, which must be corrected by the inverse 
DO saturation term in Eq. (7) in order to account for the enhancing effect 
of anaerobic or anoxic conditions on the α factor. This factor addresses 
the beneficial effects of anoxic reactors in sorbing surfactants that 
otherwise would accumulate on bubbles (Rosso and Stenstrom, 2006b; 
2007). Thus, qALPHA,O2 is highest at 0 mgO2 l− 1 and declines towards 
qALPHA with increasing aerated status: 

qALPHA,O2
= qALPHA⋅

(
(
1 − fO2 ,max,ALPHA

)
⋅

SO2

KO2 ,ALPHA + SO2

+ fO2 ,max,ALPHA

)

(7) 

The so-called dampening is implemented – in the form of Eq. (8) – 
because the improvement in α factor with sludge residence time does 
not, in fact, occur according to first order saturation kinetics. Above a 
certain ratio of alpha indicator to the saturation value, the alpha 
improvement rate shall be justified by the dampening term to 
compensate for the otherwise hyperbolic increase in the indicator to-
ward the saturation number. 

dampALPHA = 1 + coeffdamp,ALPHA⋅
SALPHA

SALPHA,sat

powdamp,ALPHA

(8) 

The α factor itself is actually a variable calculated from the alpha 
indicator according to Eq. (9) in order to be able to account for local 
differences in depth and MLSS concentration using their respective 
correction terms: 

α = SALPHA
/

corrhdiff ,α⋅corrTSS,α (9) 

In theory, the model’s alpha indicator represents a steady-state effect 
of surfactants forming a barrier at bubble interfaces, so the α factor – 
relevant to a given submergence – needs to be back-calculated from the 
indicator using the depth correction term shown by Eq. (10). 

corrhdiff ,α = (SALPHA − 1)⋅eslhdiff ,α ⋅hdiff + 1 (10) 

The effect of MLSS on the α value is not related directly to surfac-
tants, so it is handled separately from the biokinetic changes that play a 
role in the alpha indicator. An exponential correction term accounts for 
this based on Eq. (11). The slope of this correction (slTSS,α) shall be 
different for coarse bubble aerators, and in this way the model can ac-
count for their higher flow regime interfaces – and associated α factors – 
compared to fine bubble diffusers (Stenstrom and Gilbert, 1981; Rosso 
et al., 2006b). 

corrTSS,α = eslTSS,α ⋅XTSS (11) 

Values of the alpha indicator are associated with feed streams to 
simulate their surfactant content. Clean water is described with an alpha 
indicator of 1. For the influent wastewater, a double exponential func-
tion – as seen in Eq. (12) – represents the relationship of the alpha in-
dicator in terms of influent filtered COD.  

As a method of accounting for dilute wastewater samples, the 
exponential clean water correction term in Eq. (13) is added to the in-
verse sigmoid-type base function. 

corrcw,SCCOD,ALPHA =
(
1 − maxww,SCCOD,ALPHA

)
⋅e− expcw,SCCOD,ALPHA⋅SCCOD (13) 

For demonstrating modelling applications, a variant of the BSM1 test 
configuration (Alex et al., 2008) was set up in the Sumo21 simulation 
software and used to evaluate potential CAPEX and OPEX savings by 
using the predictive α method (and the resultingly more accurate blower 
size, control strategy, and power demand) instead of fixed or scheduled 
α values generally used in design. 

For the sake of the case studies in this paper, there were some 
modifications necessary compared to the original BSM1 model setup. 
The double exponential settler implementation (Takács et al., 1991) was 
replaced with a triple exponential approach and compression was 
included (Dynamita, 2021). Furthermore, no sensor delays were added 
because they are not significant for the purpose of these studies. All three 
compartments of the BSM1 reactor cascade were set up with DO control 
and assigned set points of 2 mgO2 l− 1 given that the standard BSM1 
version provides over-aeration with the predefined α∙kLa values (10 h− 1 

for the first two of the three aerobic zones). After initial model testing, it 
was decided that DO probes in the three aerated cells and controlled air 
valves are cheaper compared to purchasing bigger blowers to meet the 
significant loading peaks and over-aerating the first two cells in lower 
loaded periods that are present in BSM1. DO set points were constant 
throughout the simulation runs. For these example studies, there is 
effluent discharge limitation assigned for ammonia nitrogen, i.e., 1.0 
mgN l− 1 as weekly average and a maximum daily peak of 4.0 mgN l− 1. 
Since this paper focuses on aerated processes, optimizing the effluent TN 
via denitrification was not an objective. 

The selected biokinetic model was also replaced from the original 
ASM1 by MiniSumo in favour of the available gas transfer background 
calculations along with Sumo21’s blower and pump models to assess 
energy and associated costs (Dynamita, 2021). MiniSumo is a simplified 
plant-wide model with one-step nitrification and denitrification, 
focusing on estimating oxygen requirement and sludge production. Its 
gas transfer concept relies on Fick’s two-film theory and Henry’s law, 
and features equipment models of fine and coarse bubble diffuser types 
for SOTE prediction. Air flow rates are standardized at 20◦C temperature 
and 1 atm pressure. Throughout the model simulation, α factor for aged 
diffusers (αF, including the fouling factor F (U.S. Environmental Pro-
tection Agency – USEPA, 1989)) was used to interpret results – having 
assigned a fixed value of 0.75 for F. The selection of a constant F is 
adequate if the modelling time-window is limited (e.g., less than 1-2 
months). In practice, this is best adjusted knowing the diffuser age 
and the time of the last cleaning procedure (Jiang et al., 2020). 

SALPHA =
maxww,SCCOD,ALPHA − minSCCOD,ALPHA

1 + e(SCCOD− KI,SCCOD,ALPHA)⋅slSCCOD,ALPHA
+ minSCCOD,ALPHA + corrcw,SCCOD,ALPHA (12)   
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3. Model calibration and validation 

Data was collected from results of off-gas measurement campaigns, 
batch clean water, and process water tests as well as from aeration 
literature review (Doyle et al., 1983; Gillot and Héduit, 2008; Leu et al., 
2009; Baquero-Rodríguez et al., 2018). Reconciliation of data was car-
ried out according to the IWA Good Modelling Practice Guidelines 
(Rieger et al., 2013). The model was then first fitted to averaged α factor 
off-gas measurements (American Society of Civil Engineers – ASCE, 
2018) from facilities applying newly commissioned fine pore diffusers – 
with and without non-aerated selectors – in function of the given plant 
MCRT values, as displayed in Fig. 3. The depth-related, as well as 
solids-related corrections in the model, were fine-tuned based upon 
clean water and process water unsteady state test results (American 
Society of Civil Engineers – ASCE, 2006; 2018). The α versus influent 
filtered COD relationship was adjusted based on air flow-weighted 
average diurnal off-gas measurements (American Society of Civil Engi-
neers – ASCE, 2018) from a facility in Simi Valley, California (Leu et al., 
2009), as shown by Fig. 4 which displays a uniform distribution of errors 

Fig. 3. Model calibration regarding α factor versus MCRT. The data used here is from plants with Mediterranean climate.  

Fig. 4. Model calibration for α profile against time-dependent organic loading.  

Table 1 
Calibrated model parameter set.  

Parameter symbol Value Unit 

coeffdamp,ALPHA 4.2 – 
expcw,SCCOD,ALPHA  0.05  m3 gCOD

− 1  

fO2,max,ALPHA 2.5 – 
KO2,ALPHA 0.05 gO2 m− 3 

KI,SCCOD,ALPHA 162 gCOD m− 3 

maxww,SCCOD,ALPHA 0.5 – 
minSCCOD,ALPHA 0 – 
powdamp,ALPHA 7.3 – 
qALPHA 0.0014 m3 gVSS

− 1 d− 1 

slSCCOD,ALPHA 0.067 m3 gCOD
− 1 

slhdiff,α -0.29 m− 1 

slTSS,α (fine bubble) -0.0711 m3 kgTSS
− 1 

slTSS,α (coarse bubble) -0.0474 m3 kgTSS
− 1  
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between measured and modelled outputs throughout the day. Dots on 
graphs indicate measured data, while connected lines represent model 
outputs. Calibrated model parameter values are listed in Table 1. 

Model validation was carried out against measurements from two 
water resource recovery facilities. Firstly, steady-state α factor simula-
tions were compared to daily averaged off-gas test (American Society of 
Civil Engineers – ASCE, 2018) results from a municipal plant located in 
Southern California (not the aforementioned plant used for calibration), 
with two parallel and independent lines fed separate return sludge 
(Rosso et al., 2007). Both were equipped with ceramic disc diffusers and 
received the same influent quality but with different volumetric loading; 
thus, one of them was operated as a BOD removal system (i.e., carbon 
oxidation only, with short sludge retention time), while the other one 
also featured nitrification (i.e., with long sludge retention time). 
Throughout the sampling locations, measured data points are somewhat 
scattered compared to a continuous gradient due to the tank hydrody-
namic conditions that are difficult to mimic in process modelling – this is 
especially true of the low α measurements at the effluent of both sys-
tems, and the high outlying datapoints between 130 and 200 m positions 
of the high MCRT system. Regardless of this, the estimated α trend 
presented by Fig. 5 shows good agreement with the measured data, 
reproducing the phenomenon that higher MCRT can result in a two-fold 
increase in oxygen transfer efficiency (Rosso et al., 2005; Gillot and 
Héduit, 2008). Replicating such evolution of α along reactors, as well as 
quantifying air distribution accurately when setting up a plant model, 
are key aspects of diligent plant-wide oxygen transfer modelling. Also, 
these are required for reliable energy and cost calculations and are 
aligned with the various degrees of oxygenation requirements at 
different stages of treatment. 

Secondly, the capability of estimating dynamically varying air flow 
demand was tested based on a 2-day dataset – as seen on Fig. 6 – from a 
plug flow reactor of WWTP Waßmannsdorf in Brandenburg, Germany, a 
facility with denitrification and enhanced biological phosphorus 
removal (Schuchardt et al., 2007). Three zones of the aeration tank – 
with DO control in each, utilizing a ceramic tube diffuser system – were 
used for comparison. Modelled results show satisfactory response in 
terms of air flow. 

Despite the slightly higher modelled air flow during the peak loading 
period, a need for larger or more blowers in practice may not be needed 
if the exercise of scheduling blower operations with varying diurnal DO 
set points is applied. Being able to reproduce such dynamic profiles 
along with α in various reactors is essential for the specification of 
blowers and for the determination of the blower duty schedule. Also, 
since the n+1 blower added to operations could incur stiff power de-
mand penalties, there is a need to overlay these dynamic calculations 
with the structured power tariff to increase the accuracy of predicting 
energy consumption, power demand, energy costs, and carbon footprint 
(Aymerich et al., 2015; Amerlinck et al., 2016; Emami et al., 2018). 

5. Results and discussion 

In the first example, the model test configuration ran at a steady-state 
in dry weather conditions, using Sumo21’s combined global and local 
solvers, followed by five weeks of repeated dry weather diurnal weeks. 
Three runs were performed (Fig. 7) to obtain the weekly blower energy 
demand for the following design scenarios:  

1 “Predictive scenario”: Kinetic-based model prediction (space and 
time varying αF): average calculated αF at 0.49, 0.52 and 0.53 in 
AER1, AER2 and AER3  

2 “Cautious scenario”: design based on constant αF set to 0.3, 0.4 and 
0.5 in AER1, AER2 and AER3  

3 “Optimistic scenarios”: design based on constant αF set to 0.5, 0.6 
and 0.7 in AER1, AER2 and AER3. 

Compared to the cautious design example that estimates an accu-
mulated blower energy consumption of 44.5 MWh, the time and 
location-specific αF prediction use case determines 33.3 MWh, sug-
gesting 25 % savings on operational costs if blowers with adequate turn- 
down capability were specified. The required blower capacity deter-
mined with predicted αF is also lower by 21 % (1.08 104 m3 h− 1 instead 
of 1.37 104 m3 h− 1), with corresponding implications on CAPEX and 
OPEX. Although the weekend air demand estimated by the optimistic 
design approach shows good agreement with the predictive method, it 
only assumes 30.7 MWh of required blower energy and 8.30 103 m3 h− 1 

for the peak air flow requirement which would lead to insufficient air 
supply during most of the week. 

Overall, the results and the illustration in Fig. 7 emphasize that, since 
predictive αF values relate to dynamic process variables that respond to 
fluctuations in load, the corresponding air flow calculation also follows 
turn-down and turn-up trends (bounded by the optimistic and cautious 
αF-based ranges) that blowers experience in actual facilities. 

The following case study was developed to show the negative effects 
on effluent quality from choosing excessively optimistic values of αF. 
Two simulations were run for 5 weeks with dry weather diurnal flows 
following steady-state calculation. All runs applied the predictive αF 
method, however, the blower size was restricted according to the ca-
pacity determined from either the previously presented predictive sce-
nario (1.08 104 m3 h− 1), the cautious scenario (1.37 104 m3 h− 1) or the 
optimistic design scenario (8.30 103 m3 h− 1) in order to simulate a real 
plant situation. The total air flow was distributed assuming manual 
butterfly valves in the proportion of 53 %, 29 %, and 18 % to the three 
aerated zones (AER1 to AER3). Fig. 8 displays a comparison of the 
resulting DO levels in the last aerated cell (AER3) and NH4-N concen-
trations in the plant effluent. 

Despite the smaller blower size and associated cost benefit shown by 
optimistic αF-based sizing, this method confirms how excessively opti-
mistic α ranges correspond to inevitably insufficient air flow re-
quirements during periods with higher load, i.e., when oxygen is most 
needed, and with DO targets only met throughout the weekend (on some 
days, the actual DO drops as low as 0.5 mgO2 l− 1). Moreover, this even 
leads to daily maximum effluent NH4-N violations on the first three 
consecutive days (barely complying with the 1 mgN l− 1 weekly average 
limitation), possibly leading to significant fines. Effluent limitations can 
only be met with the predictive method, or the cautious approach – the 
latter, however, entails the requirement of higher aeration capacity that 
impacts costs, as discussed in Fig. 7. 

With regard to the second demonstrated case, dynamically predicted 
αF numbers take into account variations in a real plant that the under-
lying kinetic process variables are adapted to, and when linked to a 
biokinetic model, they are efficient in determining whether an aeration 
system is appropriately sized to comply with environmental standards. 
As portrayed in Fig. 8, predicting αF can also be coupled with increased 
accuracy in blower design, which in this case corresponds to reduced 
blower capacity, to evaluate cases when the phenomenon of DO sag (due Fig. 5. Model validation with plug-flow αF gradients.  
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to lack of sufficient air flow) leads to a violation of effluent limits. 
Another scenario was also modelled, i.e. that of unscheduled addi-

tional loading of the same process. This is a case when even scheduled α 
values fall short of describing the true dynamic nature of the process. 
The model-predicted αF was compared to constant (labeled “passé”) as 

well as a sinusoidal approximation used in the industry to schedule α 
values, illustrated in Fig. 9. 

To fairly compare the calculation scenarios, the constant αF values 
assigned for the reactors in the passé scenario were averaged from 
weekday and weekend results of the predictive scenario. The sinusoidal 

Fig. 6. Model validation with dynamic air flow profiles.  

Fig. 7. Air flow comparison between constant and model-predicted αF-based design scenarios. Note how the dynamic α varies within the shaded area bounded by 
constant α sets (i.e., cases of cautious and optimistic). 
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approximation for αF in each reactor was created using a cosine func-
tion. Also, the sinusoidal αF variation was also based on the dynamically 
predicted model results by matching the average and the timing and 
value of the highest αF peak in each reactor separately for weekdays and 
weekend days. This choice simplifies the problem by assuming a single 
loading peak, whilst more complex α curves can be constructed by 
compounding sinusoidal functions so that the process loading pattern is 
mirrored in the α schedule. 

After steady-state calculation and five weeks of dry weather loading, 

the model was run for a sixth week when an additional stormwater event 
was introduced to the plant on Wednesday doubling the peak flow. For 
the hydraulic loading, along with the load of organics and solids, N and P 
changed according to a first flush phenomenon. Air flow was modelled 
here, hence blower size was not restricted in these runs. Note that the 
sinusoidal αF scheduling, however, cannot change during the overload 
period. The modelled air flow, portrayed in Fig. 10, shows how the 
calculations based on constant or scheduled α are blind to the anomaly 
represented by the storm event on day 3. The predictive approach relies 

Fig. 8. DO and NH4-N comparison with optimistic and model-predicted αF-based blower sizing.  

Fig. 9. Comparison of αF factor profiles by constant (passé), sinusoidal (scheduled), and model-predicted use cases.  
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on kinetic process calculations and considers the load increase, evalu-
ates (properly) lower αF, and consequently, higher air flow demand 
(1.35 104 m3 h− 1) associated with it. The sinusoidal and constant sce-
narios calculate that less air flow would suffice during this event – they 
do not account for the αF reduction by the sudden load variation – as 
seen previously in Fig. 9. The sinusoidal approach estimates a peak 
requirement of 1.03 104 m3 h− 1, less than the 1.07 104 m3 h− 1 suggested 
by the constant case, emphasizing that the predefined varying α values 
are randomly scheduled compared to actual loading events. These es-
timations are both more than 20% lower than what the dynamic alpha 
model predicts. There are even short lower-loaded periods during the 
weekend when the scheduled and passé scenarios overestimate the air 
consumption, supposing energy wastage compared to the predicted use 
case. Consequently, the overall blower energy consumption (35.4 MWh) 
summed for the predicted α-based run, despite the appropriately pre-
dicted increase during the storm event, is in fact, less than 4% higher 
than the demand associated with the sinusoidal and constant cases (34.5 
MWh and 34.2 MWh, respectively). DO set points are maintained in all 
three scenarios, but, in reality, only a blower sized using the dynamic αF 
case would be able to maintain them through the entire time frame. 
Although the scheduled α is a step ahead of the constant α model, it is a 
time-dependent description of α but is not reliant on process dynamics. 
Hence, it cannot be considered a true dynamic model. 

The presented dynamic α model is applicable to municipal main-
stream treatment processes, with no separate model structure dedicated 
to address non-biodegradable surface-active agents (i.e., here only MLSS 
determines the asymptote of the maximum α factor in reactors). Certain 
types of industrial or mixed municipal-industrial wastewater may 
contain significant amounts of non-biodegradable surfactants. Thus, for 
such applications in the future, a new model component – representing 
non-biodegradables – shall be introduced, along with the necessary ki-
netic parameter re-estimation steps. Other potential further de-
velopments include adaptation to municipal sidestream processes. 

6. Summary and conclusions 

The proposed kinetic model concept for predicting the α factor in 
time and space was demonstrated to be an ideal option for dynamically 

estimating process air consumption of WRRFs under both dry and wet 
weather conditions. An α factor derived from process state variables is 
fundamentally different than a schedule of α values even though both 
appear time-dependent. This new predictive approach is verified to 
provide increased accuracy when sizing or improving aeration systems 
potentially resulting in significant operational and capital cost savings. 

Model-predicted α values were revealed to provide a swift response 
in the calculated reactor-specific air flow consumption, reproducing the 
turn-up and turn-down effects that are important to take into account for 
time-related blower energy and cost estimation. 

The prediction of αF factors using this method is advantageous 
compared to scheduling αF profiles manually, not only because it 
eliminates the need for complex knowledge and consideration about 
contributors (varying SRT, COD, MLSS etc.), but also because sudden 
operational changes in load may be accounted for using the underlying 
process variables. The concept can also be applied on a configuration to 
test whether a blower is undersized – if linked to process units with air 
flow restriction, and αF enters a low range that the blower capacity 
cannot handle, pointing out cases of effluent limit violation when DO 
falls short of target values. 

The authors note that α generally correlates well with filtered COD in 
municipal influents based on the modelled facilities in this paper. 
However, the surfactant content relative to the filtered COD of certain 
wastewater samples may vary. If engineers have the opportunity to 
perform off-gas measurements in multiple locations of a system treating 
a given type of wastewater, it is advised that – based on air flow- 
weighted diurnal α and influent COD profiles – they re-estimate the 
“alpha improvement rate” and the filtered COD-alpha indicator regres-
sion parameters in order to achieve an α prediction more representative 
of that water type. 

It shall be noted that the fouling effects on the αF factor are not 
modelled dynamically here because the longer term dynamic effects are 
outside the scope of this research. The authors advocate for closing this 
knowledge gap. 

Future research shall be conducted to assess if the presented model 
represents the process water-associated dynamic nature of not only 
oxygen transfer but other gases, both in terms of absorption and strip-
ping. Once sufficient data is available, surfactant elimination kinetics 

Fig. 10. Air flow comparison between constant (passé), sinusoidal (scheduled), and model-predicted αF scenarios; with overload.  
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may also be extended with temperature dependency. 
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