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Abstract. In 1978, Yu. F. Borisov presented an axiom system using a few basic
assumptions and four explicit axioms, the fourth being a formulation of the relativity
principle; and he demonstrated that this axiom system had (up to choice of units) only two
models: a relativistic one in which worldview transformations are Poincaré transformations
and a classical one in which they are Galilean. In this paper, we reformulate Borisov’s
original four axioms within an intuitively simple, but strictly formal, first-order logic
framework, and convert his basic background assumptions into explicit axioms. Instead of
assuming that the structure of physical quantities is the field of real numbers, we assume
only that they form an ordered field. This allows us to investigate how Borisov’s theorem
depends on the structure of quantities.

We demonstrate (as our main contribution) how to construct Euclidean, Galilean, and
Poincaré models of Borisov’s axiom system over every non-Archimedean field. We also
demonstrate the existence of an infinite descending chain of models and transformation
groups in each of these three cases, something that is not possible over Archimedean fields.

As an application, we note that there is a model of Borisov’s axioms that satisfies the
relativity principle, and in which the worldview transformations are Euclidean isometries.
Over the field of reals it is easy to eliminate this model using natural axioms concerning
time’s arrow and the absence of instantaneous motion. In the case of non-Archimedean
fields, however, the Euclidean isometries appear intrinsically as worldview transformations
in models of Borisov’s axioms and neither the assumption of time’s arrow, nor the rejection
of instantaneous motion, can eliminate them.

§1. Introduction

In his famous 1905 paper, Einstein (1905) based his special theory of relativity
on two explicit postulates: (1) the principle of relativity, according to which all
inertial observers (coordinate systems) are equivalent; and (2) the light postulate,
according to which there exists a “stationary” coordinate system in which all light
signals travel with the same speed. A few years later, beginning in 1910, Ignatowsky
(1910a,b, 1911) attempted to simplify the theory by removing the need for the light
postulate. Assuming the principle of relativity, some ideas from electrodynamics,
and various hidden assumptions, he deduced that the associated (homogeneous)
coordinate system transformations must be Lorentz transformations.

c© 2009 Association for Symbolic Logic

1 doi:10.1017/S1755020300000000

4 Nov 2020 03:03:27 PST
200908-vpi46 Version 2 - Submitted to Rev. Symb. Logic



ZU064-05-FPR OnBorisovThm 4 November 2020 11:12

2 judit x madarász, mike stannett & gergely székely

Frank & Rothe (1911) then considered both Einstein’s and Ignatowsky’s ar-
guments in more detail, identifying four assumptions (rather than two) made by
Einstein. They argued not only that the light postulate is unnecessary, but that two
more of these assumptions can also be deduced by considering how transformations
compose with one another and act on points and lines. Their system was less
restrictive than Ignatowsky’s, because transformations were shown to split into
three distinct classes: Galilean transformations; Lorentz transformations; and a
rather unusual class they called “Doppler” transformations (Frank & Rothe, 1911,
eqn. 129).
In 1978, Yu. F. Borisov presented the axiom system with which we shall mostly

be concerned in this paper. In his axiom system, Borisov presented a few basic
background assumptions and four explicit axioms, the fourth being a formula-
tion of the relativity principle. Then he demonstrated that his axiom system had
(up to choice of units) only two models: a relativistic one in which worldview
transformations are Poincaré transformations (the more general, inhomogeneous,
counterparts of Ignatowsky’s Lorentz transformations), and a classical one in which
they are Galilean (Borisov, 1978) (cf. (Guts, 1982, §10, pp. 60-61)). Gyula Dávid
subsequently showed (using a different framework) the existence of a model that
also satisfies the relativity principle and in which worldview transformations are
Euclidean isometries. He also proved (over the field of reals) a characterization
theorem stating that the principle of relativity with some auxiliary assumptions
implies that the worldview transformations between inertial observers are either
Euclidean isometries, or else Galilean or Poincaré transformations (Dávid, 1990).
However, he eliminated the models corresponding to Euclidean isometries by adding
a new assumption, that motion from one spatial location to another cannot be
instantaneous. Similarly, Euclidean isometries do not appear in Borisov’s models
because they are eliminated by his assumption (Borisov, 1978, Axiom II) that there
is an arrow of time.
All of these studies implicitly assume that coordinates and other physically

observable quantities can be represented as values from the real number field (R),
even though this assumption is not well-founded. We have no empirical reason
to make this assumption, because all practical measurements yield only rational
approximations – even quantum electro-dynamics (QED), widely regarded as the
most precisely tested physical theory so far, only boasts accuracies to around 12
decimal digits (Odom et al., 2006). Indeed, one of our goals in writing this paper
is to investigate what properties of numbers are actually needed if we want to
model certain theories. For example, two of us have previously shown elsewhere that
special relativity can also be modeled over the field of rational numbers (Madarász
& Székely, 2013). We will demonstrate, in fact, that special relativity theories
defined over non-Archimedean fields are fundamentally different to those defined
over Archimedean fields like R, because models featuring Euclidean isometries as
worldview transformations cannot be eliminated, neither by introducing Borisov’s
arrow of time assumption, nor by allowing Dávid’s ban on instantaneous motion.
Moreover, the group of worldview transformations contains an infinite descending
chain of proper worldview transformation subgroups – this is in sharp contrast to
the situation when the field is Archimedean, where no such descending chains are
possible.
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These results argue that non-standard analysis has an important role to play
in the study of physical theories, since they show that one cannot rule out – on
purely empirical grounds – the possibility that infinitesimals and other non-standard
values are physically relevant; they provide strong confirmatory evidence that the
common preference for using real numbers to represent scalars and coordinates is
one of convention rather than necessity. While a few authors have considered the
use of non-standard analysis in mathematical physics and the study of stochastic
processes (e.g., Albeverio et al. (1986); Nelson (1987); Albeverio (1987); Bagarello
& Valenti (1988); Capinski & Cutland (1995); Perlis (2016)), most work in the field
has understandably focussed on applications within mathematics itself. Our results
suggest that further investigation of non-standard applications to mathematical
physics is warranted, not just in terms of its usefulness as a tool for simplifying
proofs, but in its own right: if non-standard scalars are taken to be physically
meaningful, how does that change our understanding of the world around us?

As this brief summary illustrates, there is long history of research addressing the
logical foundations of relativity theory, with each generation of researchers discov-
ering implicit (unstated) assumptions embedded in the work of their predecessors.
We believe it is important to avoid hidden assumptions wherever possible, so as to
place physical theory on secure logical and strictly mathematical foundations. Our
preferred approach is to express assumptions as simple, strictly formal, first-order,
explicit axioms, which are then used to support formal proof-driven investigation.
This provides the clarity we need for ensuring that hidden assumptions are captured
explicitly (cf. (Andréka et al., 2002, §Why FOL?) and (Székely, 2009, §11)), while
at the same time making it relatively simple to verify whether the axioms are strong
enough to do the job we require of them (Govindarajalulu et al., 2015; Stannett &
Németi, 2014).

Contributions. In this paper:

1. We reformulate Borisov’s original four axioms within an intuitively simple, but
strictly formal, first-order logic framework, and convert his basic background
assumptions into explicit axioms.

2. Instead of assuming that the structure of physical quantities is the field of
real numbers, we assume only that they form an ordered field. This allows us
to investigate how Borisov’s theorem depends on the structure of quantities.

3. We characterize the groups of worldview transformations corresponding to
models of (our reformulation of) Borisov’s axiom system over any ordered
field, cf. Theorems 5.10. and 5.12.. Using this characterization, we show that
Borisov’s Axiom III is not needed to prove his main theorem, cf. Theorem 4.7..

4. We demonstrate (as our main contribution) how to construct Euclidean,
Galilean, and Poincaré models of Borisov’s axiom system over every non-
Archimedean field, cf. Theorem 4.5.. In this theorem, we also demonstrate the
existence of an infinite descending chain of models and transformation groups
in each of these three cases, something that is not possible over Archimedean
fields like R.

5. We show, in the case of non-Archimedean fields, that the Euclidean isome-
tries appear intrinsically as worldview transformations in models of Borisov’s
axioms. Neither Borisov’s assumption of time’s arrow, nor Dávid’s rejection
of instantaneous motion, can eliminate them.
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§2. Basic notations and axioms

2.1. The underlying logical framework Throughout this paper we consider
models of the form

M = 〈Ev, IM, IOb,Q,+, ·,≤,C,P〉

where the various components are intended to have the following interpretations:

• Ev is a nonempty set of events;
• IM is a nonempty set of inertial motions;
• IOb is a nonempty set of inertial observers (reference systems);
• Q = (Q,+, ·,≤) is a structure of quantities;
• C ⊆ IOb× Ev × Q4 is a relation used to express coordinatization ; and
• P ⊆ IM× Ev is a relation used to express participation.

In other words, we use the following many-sorted first-order logic language:

• Ev, IM, IOb,and Q are four sorts representing different kinds of basic entities
(events, inertial motions, inertial observers, and quantities);

• +, ·, and ≤ are the usual operation symbols and ordering relation, defined on
the sort Q;

• C is a relation of sort IOb×Ev×Q4, where the expression C(k, e, ~p) represents
the idea that inertial observer k ∈ IOb coordinatizes (“sees”) event e ∈ Ev at
coordinate point ~p ∈ Q4; and

• P is a relation of sort IM×Ev, where the expression P(i, e) represents the idea
that inertial motion i ∈ IM participates in event e ∈ Ev, or in other words
worldline of inertial motion i contains event e.

We have chosen this formal language in accordance with Borisov’s choice of
basic concepts, but using some notations of the Andréka–Németi school to make
it easier to connect the results of this paper to the school’s general project of
logic based axiomatic foundations of relativity theories. Axiomatic approaches to
relativity theory have extensive literature, see e.g., Andréka et al. (2006). Most
of these approaches use entirely different basic concepts, and hence it is not at
all straightforward to check whether these different axioms systems capture the
same physical theory. By showing the connection between two radically different
approaches, Andréka & Németi (2014) takes an important first step in bringing
these sporadic axiom systems together. See Friend (2015) and Friend & Molinini
(2015) for general discussions of Andréka–Németi school’s project and methodology
from points of view of epistemological significance and role in scientific explanation.

2.2. Borisov’s basic assumptions In his paper, Borisov declares four ax-
ioms (Axiom I–Axiom IV), which are in turn based upon a number of basic assump-
tions, which we here refer to as BA1–BA4.

BA1 Q = (Q,+, ·,≤) is an ordered field in the sense of abstract algebra.1

1 In (Borisov, 1978), Q is assumed to be the field of real numbers.
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BA2 For every inertial observer k ∈ IOb, the coordinatization2 of k is a bijection
Ck : Ev → Q4.

Given inertial observer k ∈ IOb, the binary relation Ck ⊆ Ev×Q4 between events
and coordinate points described in BA2 can be defined by

Ck(e, ~p)
def

⇐⇒ C(k, e, ~p).

By BA2, we can introduce the worldview transformations, fkh, between in-
ertial observers h and k as the composition of bijections Ck and C−1

h , i.e.

fkh
def

= Ck ◦ C−1
h : Q4 → Q4.

Again by BA2, these worldview transformations are bijections from Q4 to Q4, for
which

fmh = fmk ◦ fkh and f−1
kh = fhk (1)

for all inertial observers h, k,m ∈ IOb.
Let us define the worldline3 of inertial motion i ∈ IM as

wl(i)
def

=
{
e ∈ Ev : P(i, e)

}
,

and the worldline of inertial motion i ∈ IM according to inertial observer

k ∈ IOb as

wlk(i)
def

= Ck[wl(i)].

By BA2, worldview transformations map worldlines to worldlines, i.e. for all inertial
observers h, k ∈ IOb and every inertial motion i ∈ IM,

fkh[wlh(i)] = wlk(i). (2)

The time component and space component of ~p = (p0, p1, p2, p3) ∈ Q4 are
defined respectively as

pt
def

= p0 and ~ps

def

= (p1, p2, p3).

A set ℓ is called a line if and only if there are ~p, ~v ∈ Q4 with ~v 6= (0, 0, 0, 0) such
that ℓ = {~p + λ · ~v : λ ∈ Q}.

The line ℓ is vertical if and only if ~ps = ~q s for every ~p, ~q ∈ ℓ.

BA3 For every4 vertical line ℓ and inertial observer k ∈ IOb, there is an inertial
motion i ∈ IM such that the worldline of i according to k is ℓ, i.e. wlk(i) = ℓ.

The line ℓ is of finite slope if and only if there are ~p, ~q ∈ ℓ such that pt 6= qt.

2 In (Borisov, 1978), inertial observers and their coordinatizations are identified.
3 In (Borisov, 1978), inertial motions and their worldlines are identified.
4 In our first-order logic language, quantifying over lines can be done by quantifying over
pairs of coordinate points.
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wl(i′)wl(i)
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wlk(i
′′)

Q4
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h
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m
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i, i′, i′′ ∈ IM

k, h,m ∈ IOb

Fig. 1. Illustrating the concepts of coordinatization, worldlines and worldview
transformations, and the relationship between them.

BA4 For every inertial motion i ∈ IM and every inertial observer k ∈ IOb,
worldline wlk(i) is a line of finite slope.

2.3. Borisov’s Axioms We say that inertial motion i ∈ IM is stationary
w.r.t. inertial observer k if and only if wlk(i) is a vertical line. Then inertial observer
h ∈ IOb is at rest w.r.t. inertial observer k ∈ IOb, if and only if, whenever inertial
motion i ∈ IM is stationary w.r.t. h, then i is also stationary w.r.t. k.

Axiom I There exist inertial observers k, h ∈ IOb, where h is not at rest w.r.t. k.

Given ~u = (u0, . . . , un−1) ∈ Qn and ~v = (v0, . . . , vn−1) ∈ Qn, the scalar

product of ~u and ~v is defined in the usual way:

~u · ~v
def

= u0v0 + . . .+ un−1vn−1.

The Euclidean length of certain vectors in Q4 may not exist because Q can be
any ordered field, including for example the field of rational numbers in which
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square roots are not always defined. To avoid this problem, we use instead the
squared-Euclidean length of ~v , defined as

|~v |
2 def

= ~v · ~v = v20 + . . .+ v2n−1.

We call a transformation T : Q4 → Q4 a trivial transformation if and only
if (a) it takes vertical lines to vertical lines; and (b) it is the composition of a
translation and a linear transformation preserving the squared-Euclidean length
(or equivalently, preserving the scalar product). We say that transformation T :
Q4 → Q4 is orthochronous if and only if T (1, 0, 0, 0)t > T (0, 0, 0, 0)t. The set of
orthochronous trivial transformations is denoted by Triv↑.

Axiom II

a) Given any inertial observer k ∈ IOb and any5 orthochronous trivial trans-
formation ϕ ∈ Triv↑, there is an inertial observer h ∈ IOb for which the
worldview transformation between h and k is ϕ, i.e. fkh = ϕ.

b) For all inertial observers k, h ∈ IOb, if h is at rest w.r.t. k, then fkh ∈ Triv↑.

Axiom III Given any inertial motion i ∈ IM, any inertial observer k ∈ IOb, and

any orthochronous trivial transformation ϕ ∈ Triv↑, there is an inertial motion
i′ ∈ IM such that wlk(i

′) = ϕ
[
wlk(i)

]
.

Axiom IV Given any inertial observers k, k′, h ∈ IOb, there is an inertial observer
h′ ∈ IOb such that fhh′ = fkk′ .

Overall, then, we capture Borisov’s axiom system formally as:

Borisov′s Axioms
def

=
{
BA1, . . . ,BA4,Axiom I, . . . ,Axiom IV

}
.

2.4. Axiom IV as a formulation of Einstein’s Special Principle of Rela-

tivity The principle of relativity can be formalized in several different ways, see
e.g., Madarász et al. (2017); Gömöri (2015); Gömöri & Szabó (2015). In Borisov’s
axiom system, Einstein’s principle of relativity is captured by Axiom IV. This is
so because in terms of worldview transformations Axiom IV tells that no inertial
observer is distinguished by how its worldview can be related to those of other
observers. In this section, we are going to explore some equivalent formulations of
this central assumption. To do so, for each inertial observer k ∈ IOb, we define the
worldview of k to be

Wk
def

=
{
fkh : h ∈ IOb

}
.

5 Trivial transformations are affine ones and hence they can be represented by a 4 ×

4 matrix and a 4-dimensional translation vector. Therefore, in our first-order logic
language, quantifying over trivial transformations can be done by quantifying over the
20 quantity parameters representing those transformations.
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h′

∃h′

fkk′

fhh′

fkk′ = fhh′

Fig. 2. Illustrating Axiom IV.

and the set of worldview transformations by

W
def

=
⋃

k∈IOb

Wk =
{
fkh : k, h ∈ IOb

}
.

Where we wish to emphasize the underlying model M on which these constructs
are based, we will add the model name as a suffix, and write, e.g., WM.

Wk

k

b

a

c

a

b

c

fka

fkb

fkc

. . .

Fig. 3. Illustrating the worldview Wk of inertial observer k.

We first show (Proposition 2.1.) that Axiom IV is equivalent to the claim that all
observers have the same worldview, which is in turn equivalent to saying that each
worldview is a group under composition.

Proposition 2.1. Assume BA2. Then Axiom IV is equivalent to each of the fol-
lowing statements (and they are all equivalent to one another):
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(i). Wk = Wh for all k, h ∈ IOb.
(ii). Wk = W for all k ∈ IOb.
(iii). Wk = W for some k ∈ IOb.
(iv). Wk is closed under composition for all k ∈ IOb.
(v). Wk forms a group under composition for some k ∈ IOb.

(ii)

Axiom IV (i) (iv) (iii)

(v)

Fig. 4. Diagram illustrating the steps proving Proposition 2.1.

Proof. Axiom IV says that, given any fkk′ ∈ Wk, there is an fhh′ ∈ Wh satisfying
fkk′ = fhh′ . So statement (i) is simply a reformulation of Axiom IV in terms of
worldviews.

(i) =⇒ (ii): follows because W =
⋃

h∈IOb
Wh.

(ii) =⇒ (iii): trivial as IOb is not empty.
Let us now prove the following:

Wk = W =⇒ Wk is a group. (3)

We know that Wk = W is closed under inverses because f−1
kh = fhk by (1) (which

follows from BA2). It remains to show that W is closed under composition. To do
so, choose any fdc, fba ∈ W. Since Wk = W, there are observers a′, d′ ∈ IOb such
that fka′ = fba and fkd′ = fcd. Now (1) yields fdc ◦ fba = f−1

cd ◦ fba = f−1
kd′ ◦ fka′ =

fd′k ◦ fka′ = fd′a′ ∈ W, as required.
(iii) =⇒ (v): follows trivially from (3).
(v) =⇒ (i): We have Wh = fhk ◦ Wk for all k, h ∈ IOb since, by (1), fhm =

fhk ◦ fkm for all m ∈ IOb. Therefore, since fhk = f−1
kh by (1), we have Wh =

fhk ◦Wk = f−1
kh ◦Wk = Wk for all h ∈ IOb if Wk is a group (as fkh ∈ Wk).

(ii) =⇒ (iv): follows trivially from (3).
(iv) =⇒ (v): Since IOb is not empty, we only have to prove that Wk is closed

under composition and inverses for some k ∈ IOb. Since, by (iv), Wk is closed under
composition it is enough to show that it is also closed under inverses. To prove that,
let fkm ∈ Wk be arbitrary. We need to show that fmk = f−1

km ∈ Wk. Since Wm

is also closed under composition by (iv), we have fmk ◦ fmk ∈ Wm. Then there is
h ∈ IOb such that fmk◦fmk = fmh. Then fmk = f−1

mk◦fmk◦fmk = fkm◦fmk◦fmk =
fkm ◦ fmh = fkh ∈ Wk. �

§3. Transformations

Throughout this section, we assume BA1, i.e. that Q = (Q,+, ·,≤) is an ordered
field. Let c ∈ Q and suppose c > 0.
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We define the c-scalar product of vectors ~p, ~q ∈ Q4 as:

~p ⊙c ~q
def

= cpt · cqt + ~ps · ~q s,

and analogously the c-Minkowski scalar product as:

~p ⟐c ~q
def

= cpt · cqt − ~ps · ~q s.

(Note that the 1-scalar product coincides with the usual scalar product.) As usual,

we write |v|
def

= max{−v, v} for the absolute value of v ∈ Q.
We say that a function T : Q4 → Q4 is a linear c-Euclidean isometry if and

only if it is a linear transformation which preserves the c-scalar product, i.e.

T~p ⊙c T~q = ~p ⊙c ~q

for every ~p, ~q ∈ Q4. We call T a c-Euclidean isometry if and only if it is a
composition of a linear c-Euclidean isometry and a translation.
We say that T is a linear Galilean transformation if and only if T is a linear

transformation and, for every ~p, ~q ∈ Q4,

|(T~p)t| = |pt| and pt = qt = 0 =⇒ T~p · T~q = ~p · ~q .

T is a Galilean transformation if and only if it is a composition of a linear
Galilean transformation and a translation.6

We call T a linear c-Poincaré transformation if and only if it is a linear
transformation which preserves the c-Minkowski scalar product, i.e.

T~p ⟐c T~q = ~p ⟐c ~q ,

for every ~p, ~q ∈ Q4. T is a c-Poincaré transformation if and only if it is a
composition of a linear c-Poincaré transformation and a translation.
In the particular case when c = 1, we sometimes revert to the more familiar

standard terminology, viz. T is a Euclidean isometry if and only if it is a 1-
Euclidean isometry, and a Poincaré transformation if and only if it is a 1-
Poincaré transformation.
Finally, we note that T is a trivial transformation if and only if it is a Euclidean

isometry taking vertical lines to vertical lines.
Throughout this paper we investigate the various groups corresponding to these

different transformation classes. The notation we use for each of these transforma-
tion groups is shown in Table 1.
The orthochronous variants of these sets are respectively denoted by Triv

↑
Q
, Eucl↑

Q
,

Poi
↑
Q
, cEucl

↑
Q
, cPoi

↑
Q

and Gal
↑
Q
.

As one would expect, all of these sets (except cEucl
↑
Q
) are groups under com-

position. To see that cEucl
↑
Q

is not a group, notice that while it is closed under
inverses, it is not closed under composition. For example, for the case c = 1, let
R be a rotation of 45◦ in the first two coordinates which leaves the other two
coordinates fixed. Then R ∈ cEucl

↑
Q
, but R ◦R 6∈ cEucl

↑
Q
.

6 In the literature it is customary to assume that Galilean transformations preserve
time orientation, but here we would like to speak also about time reversing Galilean
transformations. Hence here it is more natural to introduce them this way.
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Table 1. Transformation group notations used in this paper.

TrivQ Trivial transformations over Q
EuclQ Euclidean isometries over Q
PoiQ Poincaré transformations over Q

cEuclQ c-Euclidean isometries over Q

cPoiQ c-Poincaré transformations over Q
GalQ Galilean Transformations over Q

Let us also note that

TrivQ =
⋂

c>0

cPoiQ ∩
⋂

c>0

cEuclQ ∩ GalQ

and hence

Triv
↑
Q
=

⋂

c>0

cPoi
↑
Q
∩

⋂

c>0

cEucl
↑
Q
∩ Gal

↑
Q
.

Let us introduce the following notations for the squared c-Euclidean length

and squared c-Minkowski length :

‖~p‖2
c

def

= ~p ⊙c ~p = c2p2t + |~ps|
2 and ‖~p‖2

c,µ

def

= ~p ⟐c ~p = c2p2t − |~ps|
2

We note that squared 1-Euclidean length coincides with the squared-Euclidean
length.

Finally, we introduce the following notations for the standard basis of Q4:

~et
def

= (1, 0, 0, 0), ~ex
def

= (0, 1, 0, 0), ~ey
def

= (0, 0, 1, 0), ~e z
def

= (0, 0, 0, 1).

Proposition 3.2. Let L be a linear transformation. Then the following are equiv-
alent:

(i). L ∈ cEuclQ.
(ii). Given any i, j ∈ {t,x,y, z},

L~e i ⊙c L~e j = ~e i ⊙c ~e j =







c2 if i = j = t

1 if i = j 6= t

0 if i 6= j.

(iii). Given any ~p ∈ Q4, ‖L~p‖2
c
= ‖~p‖2

c
, i.e. L preserves the squared c-Euclidean

length.

Proof. (i) =⇒ (ii) and (i) =⇒ (iii) hold by definition (this is what we mean by
c-Euclidean transformations, c-scalar product, and squared c-Euclidean length).

(ii) =⇒ (i) follows by direct calculation in the standard basis because L is a
linear transformation and ⊙c : Q

4 × Q4 → Q is a bilinear function.
(iii) =⇒ (i) follows because ⊙c is symmetric, whence we can write

~p ⊙c ~q =
‖~p + ~q‖2

c
− ‖~p‖2

c
− ‖~q‖2

c

2
for every ~p, ~q ∈ Q4

and the claim follows immediately. �

The proofs of Proposition 3.3. and 3.4. below are analogous and we leave the
details to the reader.
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Proposition 3.3. Let L be a linear transformation. Then the following are equiv-
alent:

(i). L ∈ GalQ.
(ii). (L~et)t = ±1, (L~ex)t = (L~ey)t = (L~e z)t = 0; and

L~e i · L~e j = ~e i · ~e j =

{

1 if i = j

0 if i 6= j
for all i, j ∈ {x,y, z}.

(iii). Either (L~p)t = pt for all ~p ∈ Q4 or else (L~p)t = −pt for all ~p ∈ Q4; and

pt = 0 =⇒ |L~p |
2
= |~p |

2
. ✷

Proposition 3.4. Let L be a linear transformation. Then the following are equiv-
alent:

(i). L ∈ cPoiQ.
(ii). Given any i, j ∈ {t,x,y, z},

L~e i ⟐c L~e j = ~e i ⟐c ~e j =







c2 if i = j = t

−1 if i = j 6= t

0 if i 6= j.

(iii). Given any ~p ∈ Q4, ‖L~p‖2
c,µ = ‖~p‖2

c,µ, i.e. L preserves the squared c-
Minkowskian length. ✷

§4. Theorems

In this section we outline the various theorems that we’ll be proving in this
paper; the proofs follow in §5. and §6.. Our main result is Theorem 4.5., showing
how Borisov’s theorem changes when fields other than R are considered. Whenever
we speak about a set G of transformations as a group, we mean the group 〈G, ◦〉.
Recall that if we assume BA2 and Axiom IV, then Wk = W for every k ∈ IOb and
W is a group (by Proposition 2.1.). Recall also what Borisov’s theorem states:

Borisov’s Theorem (Borisov, 1978)
Suppose that Borisov′s Axioms hold and that Q is the ordered field R of
reals. Then there are just two possibilities: either

W = Gal
↑
R
, or else

W = cPoi
↑
R
for some c > 0.

In the first-order logic framework developed in this paper, it can be shown that
Borisov’s Theorem remains true if we omit the assumption that Q is the ordered
field R of reals, and simply assume instead that Q is an Archimedean ordered field
in which every positive number has a square root (we omit the details). It is an
open question whether the statement remains true if we omit the assumption that
positive numbers have square roots. Note, however, that if we drop the assumption
that Q = R without adding anything new, then Borisov’s Theorem is no longer
valid, because W can then be a proper subgroup of Gal↑ and cPoi

↑. Indeed, W can
even be an orthochronous subgroup of cEucl.
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As usual, we will write H ≤ G to mean that H is a subgroup of G, and H < G to
indicate that it is a proper subgroup. Analogously, we write M < M′ to mean that
M is a proper submodel of M′.

Theorem 4.5. (Main Theorem) Let Q be any non-Archimedean ordered field.
Then, for every c > 0, there are models ME, MG and MP of Borisov′s Axioms over
Q such that

Triv
↑
Q
< WME ⊂ cEucl

↑
Q
,

Triv
↑
Q
< WMG < Gal

↑
Q
,

Triv
↑
Q
< WMP < cPoi

↑
Q
.

Moreover, in each of these three cases, there is a strictly descending countably
infinite chain of models

. . . < M
E
i < . . . < M

E
1 < M

E
0 ,

. . . < M
G
i < . . . < M

G
1 < M

G
0 ,

. . . < M
P
i < . . . < M

P
1 < M

P
0

over Q of Borisov′s Axioms such that

Triv
↑
Q
< . . . < WME

i
< . . . < WME

1

< WME
0

⊂ cEucl
↑
Q
,

Triv
↑
Q
< . . . < WMG

i
< . . . < WMG

1

< WMG
0

< Gal
↑
Q
,

Triv
↑
Q
< . . . < WMP

i
< . . . < WMP

1

< WMP
0

< cPoi
↑
Q
.

✷

Note the use of subset (⊂) – as opposed to subgroup (<) – inclusion in the cases

involving cEucl
↑
Q

(and likewise below); this is because, as observed on page 10,

cEucl
↑
Q

is not a group.

Theorem 4.6. Let Q be an ordered field and let G be a group for which either

Triv
↑
Q
< G ⊂ cEucl

↑
Q
, or

Triv
↑
Q
< G ≤ Gal

↑
Q
, or

Triv
↑
Q
< G ≤ cPoi

↑
Q
.

Then there is a model M of Borisov′s Axioms over Q such that WM = G. ✷

We also show that Borisov’s Theorem remains true if we remove Axiom III from
Borisov′s Axioms:

Theorem 4.7. Assume Borisov′s Axioms \ {Axiom III} and that Q is the ordered
field R of reals. Then there are two possibilities: either

W = Gal
↑
R
, or else

W = cPoi
↑
R

for some c > 0.

✷
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Remark 4.8. If we don’t require Q to be the field R of reals, then using results
in Madarász et al. (2020) the following can be proven: Assume Borisov′s Axioms \
{Axiom III} and that every positive number has a square root in Q. Then either

Triv
↑
Q
< W ⊂ cEucl

↑
Q
, or

Triv
↑
Q
< W ≤ Gal

↑
Q
, or

Triv
↑
Q
< W ≤ cPoi

↑
Q

for some c > 0.

Moreover, the statement remains true even if we replace BA4 with the more general
assumption: “For every inertial motion i ∈ IM and every inertial observer k ∈ IOb,
wlk(i) is a line”. It is an open question if they remain true if we omit the assumption
that positive numbers have square roots.

The next result, Corollary 4.9., is a direct consequence of Borisov’s Theorem and
4.6..

Corollary 4.9. Let Q be the ordered field R of reals. Then there is no group G

for which

Triv
↑
R
< G ⊂ cEucl

↑
R
, or

Triv
↑
R
< G < Gal

↑
R
, or

Triv
↑
R
< G < cPoi

↑
R
.

✷

Corollary 4.9. fails for more general choices of Q because (by Theorem 4.5.) for all
non-Archimedean fields Q, there are strictly descending countably infinite chains
of subgroups such that

Triv
↑
Q
< . . . < GE

i < . . . < GE
1 < GE

0 ⊂ cEucl
↑
Q
,

Triv
↑
Q
< . . . < GG

i < . . . < GG
1 < GG

0 < Gal
↑
Q
, and

Triv
↑
Q
< . . . < GP

i < . . . < GP
1 < GP

0 < cPoi
↑
Q
.

§5. Worldview transformation groups and model constructions

The symmetric group over Q4 is denoted by Sym(Q4). The time-axis is defined as

t
def

=
{
(t, 0, 0, 0) ∈ Q4 : t ∈ Q

}
.

Theorem 5.10. Assume Borisov′s Axioms \ {Axiom III}. Then W is a group sat-
isfying:

(i). Triv
↑
Q
< W ≤ Sym(Q4);

(ii). for every f ∈ W, f [t] is a line of finite slope;

(iii). if f ∈ W takes vertical lines to vertical lines, then f ∈ Triv
↑
Q
.

Proof. (i) We know from Proposition 2.1. that W ≤ Sym(Q4), and Axiom II(a) tells

us that Triv
↑
Q

≤ W. So it is enough to show that there is some f ∈ W \ TrivQ.
By Axiom I, there are k, h ∈ IOb such that h is not at rest w.r.t. k, i.e. there is
i ∈ IM such that wlh(i) is a vertical line but wlk(i) is not a vertical line. Since,
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by equation (2), fkh takes wlh(i) to wlk(i) and trivial transformations take vertical
lines to vertical ones, we have fkh 6∈ TrivQ, as required.

(ii) Let fkh ∈ W. By BA3, there is i ∈ IM such that wlh(i) = t. By BA4, wlk(i)
is a line of finite slope. Now, by equation (2), fkh[t] = fkh [wlh(i)] = wlk(i), as
claimed.

(iii) Finally, suppose fkh ∈ W takes vertical lines to vertical lines. We will prove
that h is at rest w.r.t. k. Let i be an arbitrary inertial motion which is stationary
according to h, i.e. wlh(i) is a vertical line. Since fkh maps wlh(i) to wlk(i), wlk(i)

is also a vertical line. Thus h is at rest w.r.t. k. Hence, by Axiom II(b), fkh ∈ Triv
↑
Q

as required. �

For every Q = (Q,+, ·,≤) and G ⊆ Sym(Q4), we will construct a model M(G) as
follows:

Ev
def

= Q4, IM
def

= {g[t] : g ∈ G}, IOb
def

= G,

C(k, e, ~p)
def

⇐⇒ k(e) = ~p, P(i, e)
def

⇐⇒ e ∈ i,

M(G)
def

= 〈Ev, IM, IOb,Q,+, ·,≤,C,P〉.

Proposition 5.11. Suppose G′ ⊂ G ⊆ Sym(Q4). Then M(G′) < M(G).

Proof. The proposition easily follows from the definitions of M(G) and M(G′). �

Theorem 5.12. Suppose Q is an ordered field and G is a group for which:

(i). Triv
↑
Q
< G ≤ Sym(Q4);

(ii). For every g ∈ G, g[t] is a line of finite slope;

(iii). If g ∈ G takes vertical lines to vertical lines, then g ∈ Triv
↑
Q
.

Then M(G) satisfies Borisov′s Axioms. Furthermore, WM(G) = G.

Remark 5.13. Assume that Q is an ordered field in which every positive number
has a square root and that G is a group for which the conditions of Theorem 5.12.
hold. Then by Theorem 5.12. and and Remark 4.8., either

Triv
↑
Q
< G ⊂ cEucl

↑
Q
, or

Triv
↑
Q
< G ≤ Gal

↑
Q
, or

Triv
↑
Q
< G ≤ cPoi

↑
Q

for some c > 0.

✷

Proof of Thm. 5.12.. It is easy to see that Ck = k and wl(i) = i for every k ∈ IOb

and i ∈ IM, whence fkh = k ◦ h−1 and wlk(i) = k[i].
Axioms BA1 and BA2 hold by construction. To prove BA3, let ℓ be a vertical

line and k ∈ IOb = G. Then, there is f ∈ Triv
↑
Q

such that f [t] = ℓ. It follows that

k−1 ◦ f ∈ G since Triv
↑
Q

⊆ G and G is a group. Let i = (k−1 ◦ f)[t] ∈ IM. Then
wlk(i) = k[i] = f [t] = ℓ. Thus BA3 holds.

To prove BA4, suppose i ∈ IM and k ∈ IOb = G. We have to prove that wlk(i)
is a line of finite slope. By the definition of IM in M(G), i = g[t] for some g ∈ G.
Since G is a group, k ◦ g ∈ G. But now, by assumption (ii), wlk(i) = k[i] = (k ◦ g)[t]
is a line of finite slope. Thus BA4 holds.
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Let us now prove Axiom I. By assumption (i), we can fix some g ∈ G \ Triv↑
Q
. By

assumption (iii), there is a vertical line ℓ such that g[ℓ] is not vertical. Let us fix
such an ℓ. Let Id denote the identity transformation of Q4. Then Id, g ∈ IOb = G.
By the already proven BA3, there is i ∈ IM such that wlId(i) = ℓ. So, by equation
(2), wlg(i) = fgId

[
wlId(i)

]
= g[ℓ]. Therefore, i is stationary w.r.t. inertial observer

Id but is not stationary w.r.t. inertial observer g, which proves Axiom I.
To prove Axiom II(a), let k ∈ IOb and ϕ ∈ Triv

↑
Q
. We have to prove that there is

h ∈ IOb such that fkh = ϕ. Let h = (k−1 ◦ ϕ)−1. Then h ∈ G = IOb since G is a
group and fkh = k ◦ h−1 = ϕ, which is what we wanted to prove.
To prove Axiom II(b), let k, h ∈ IOb be such that h is at rest w.r.t. k. We have to

prove that fkh ∈ Triv
↑
Q
. Let ℓ be an arbitrary vertical line. By the already proven

BA3, there is i ∈ IM such that wlh(i) = ℓ. Since ℓ is vertical, i is stationary w.r.t.
h. Thus i must be stationary w.r.t. k because h is at rest w.r.t. k. Hence wlk(i)
is also a vertical line. By equation (2), fkh takes wlh(i) = ℓ to vertical line wlk(i).
Since ℓ was an arbitrary vertical line, fkh takes vertical lines to vertical ones. Since
G is a group, we have fkh = k ◦ h−1 ∈ G. Hence, by assumption (iii), we have that

fkh ∈ Triv
↑
Q
, which is what we wanted to prove.

To prove Axiom III, let i ∈ IM, k ∈ IOb, and ϕ ∈ Triv
↑
Q
. We have to prove that

there is an inertial motion i′ ∈ IM such that wlk(i
′) = ϕ

[
wlk(i)

]
. Let g ∈ G = IOb

such that i = g[t]. Then k−1 ◦ ϕ ◦ k ◦ g ∈ G because G is a group containing Triv
↑
Q
.

Let i′ = (k−1 ◦ ϕ ◦ k ◦ g)[t]. Then i′ ∈ IM by the definition of IM in M(G) and

k[i′] = k
[
(k−1 ◦ ϕ ◦ k ◦ g)[t]

]
= (ϕ ◦ k)

[
g[t]

]
= ϕ

[
k[i]

]
.

Since wlk(i
′) = k[i′] and wlk(i) = k[i], this proves that wlk(i

′) = ϕ
[
wlk(i)].

To prove Axiom IV, let k, k′, h ∈ IOb. We have to prove that there is h′ such that
fkk′ = fhh′ , i.e. k ◦ k′−1 = h ◦ h′−1. Such h′ exists because IOb = G is a group:
setting h′ = k′ ◦ k−1 ◦ h ∈ IOb yields fkk′ = fhh′ .

It remains to show thatWM(G) = G. This is straightforward because, by definition
and because G is a group,

WM(G) =
{
fkh : k, h ∈ G} = {k ◦ h−1 : k, h ∈ G

}
= G

as required. �

In the proof of Theorem 4.6., we will use the following lemma.

Lemma 5.14. Assume BA1. Assume L ∈ cEucl
↑
Q
∪Gal

↑
Q
∪ cPoi

↑
Q

for some c > 0

and that L takes vertical lines to vertical lines. Then L ∈ Triv
↑
Q
.

Proof. Without loss of generality, we can assume that L is linear. In this case,
we only have to prove that L preserves the squared-Euclidean length, i.e. that
|L~p |

2
= |~p |

2
for every ~p ∈ Q4.

Then (L~et)t > 0 and L~et ∈ t because L is an orthochronous linear transfor-
mation that takes vertical lines to vertical lines. The only point on t with positive
time component and squared c-Minkowskian (squared c-Euclidean) length of c2 is
~et. Therefore, L~et = ~et by Propositions 3.2., 3.3., and 3.4..

Let ~p = (pt, px, py, pz) ∈ Q4 be arbitrary but fixed. We have to prove that

|L~p |
2
= |~p |

2
. By the linearity of L and L~et = ~et, we have

L(pt, 0, 0, 0) = (pt, 0, 0, 0). (4)
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We also have

L(0, px, py, pz) = (0, qx, qy, qz) and q2x + q2y + q2z = p2x + p2y + p2z (5)

for some qx, qy, qz ∈ Q because of the following. If L ∈ cPoi
↑
Q
, then L(0, px, py, pz)t =

0 because L(0, px, py, pz)⟐c ~et = L(0, px, py, pz)⟐c L~et = (0, px, py, pz)⟐c ~et = 0
as L is a linear c-Poincaré transformation. Hence L(0, px, py, pz) = (0, qx, qy, qz) for
some qx, qy, qz ∈ Q, and q2x+q2y+q2z = −‖L(0, px, py, pz)‖

2
c,µ = −‖(0, px, py, pz)‖

2
c,µ =

p2x + p2y + p2z by Proposition 3.4.. A completely analogous proof based on Proposi-

tion 3.2. shows that (5) holds when L ∈ cEucl
↑
Q
. And if L ∈ Gal

↑
Q
, then (5) holds

by Proposition 3.3..
Thus, by linearity of L and equations (4) and (5), we have

|L~p |
2
= |L(pt, 0, 0, 0) + L(0, px, py, pz)|

2
= |(pt, qx, qy, qz)|

2

= p2t + q2x + q2y + q2z = p2t + p2x + p2y + p2z = |~p |
2

as claimed. �

Proof of Theorem 4.6.. Let G be a group for which Triv
↑
Q

< G and either G ⊂

cEucl
↑
Q
, or G ≤ Gal

↑
Q

or G ≤ cPoi
↑
Q
. Then G satisfies assumptions (i) and (ii)

of Theorem 5.12. because elements of G are orthochronous linear transformations
composed with translations. G also satisfies assumption (iii) of Theorem 5.12. by
Lemma 5.14.. By Theorem 5.12., M(G) is a model of Borisov′s Axioms and WM(G) =
G. �

Proof of Theorem 4.7.. Assume Borisov′s Axioms \ {Axiom III} and that Q is the or-
dered field R of reals. Then, by Theorem 5.10., W is a group satisfying assumptions
(i), (ii), and (iii) of Theorem 5.12.. Hence M(W) is a model of Borisov′s Axioms and
WM(W) = W. The statement now follows by Borisov’s Theorem. �

§6. Proof of the main theorem (Theorem 4.5.)

Throughout this section, we assume BA1, i.e. that Q = (Q,+, ·,≤) is an ordered
field. Let us now prove our main result, Theorem 4.5.. To do so, we first introduce
some additional notation. The set of infinitesimals is defined as follows:

E
def

=
{
x ∈ Q : |nx| < 1 for every natural number n

}
,

where nx is an abbreviation for x+ . . .+ x
︸ ︷︷ ︸

n-times

when x ∈ Q and n ∈ N.

A quantity x ∈ Q is said to be

• infinitesimal if and only if x ∈ E ;
• unlimited if and only if 1/x ∈ E ; and
• limited if and only if it is not unlimited.

Let us note that x is limited if and only if |x| < n for some natural number n.
When Q is an Archimedean field, we have E = {0} (and hence there are no unlim-

ited numbers), but in non-Archimedean fields there are infinitely many unlimited
and infinitesimal numbers.

We call a set C a cloud (see Figure 5 below) if and only if the following hold:
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• {0} ⊂ C ⊆ E ;
• if x ∈ C and |y| ≤ |x|, then y ∈ C;
• if x ∈ C, then 2x ∈ C.

It is easy to see that (a) there is a cloud in Q if and only if (b) E is a cloud if and
only if (c) Q is non-Archimedean.

Lemma 6.15. Suppose Q is non-Archimedean. Given any non-zero ε ∈ E, there
is a smallest cloud Cε containing ε. It is the intersection of all clouds containing ε,
and moreover

Cε = {α ∈ Q : |α| ≤ |nε| for some n ∈ N}.

Proof. Let Cε = {C : C is a cloud containing ε} and define C∗
ε =

⋂
Cε. Note first

that E is a cloud containing ε, so Cε is non-empty and C∗
ε ⊆ E .

We know that C ∈ Cε =⇒ {0, ε} ⊆ C, so {0, ε} ⊆ C∗
ε . Thus, because 0 6= ε, we

have {0} ⊂ C∗
ε ⊆ E . If x ∈ C∗

ε then x ∈ C for all C ∈ Cε. Thus if |y| ≤ |x|, we have
that y ∈ C for all C ∈ Cε and hence y ∈ C∗

ε . The proof that 2x ∈ C∗
ε whenever x ∈ C∗

ε

is equally straightforward. This shows that C∗
ε is a cloud containing ε, whence it is

the smallest such cloud.
Now define Cε = {α : |α| ≤ |nε| for some n ∈ N}. We need to show that Cε = C∗

ε .
Notice first that Cε is certainly a cloud. First, it contains both 0 and ε, and all
elements of Cε are infinitesimal. Second, if x ∈ Cε, there exists some n for which
|x| ≤ |nε|, whence |2x| ≤ |(2n)ε| and so 2x ∈ Cε. And finally, if |y| ≤ |x|, then
|y| ≤ |x| ≤ |nε|, so y ∈ Cε. From this it follows that Cε is a cloud containing ε, and
hence C∗

ε ⊆ Cε.
It remains to show that Cε ⊆ C∗

ε , so choose any α ∈ Cε and any C ∈ Cε. By
definition, there exists n ∈ N such that |α| ≤ |nε|. Choose m ∈ N such that n ≤ 2m

and observe that 2mε ∈ C, because ε ∈ C and C is closed under doubling. Since
|α| ≤ |nε| ≤ |2mε| it follows that α ∈ C. Thus α belongs to every cloud containing
ε, and so α ∈ C∗

ε . It follows that Cε ⊆ C∗
ε , as required. �

Corollary 6.16. Every non-Archimedean field contains infinitely many clouds.

Proof. It is enough to show that for each ε ∈ E , the smallest cloud containing ε2

does not contain ε. We argue by contradiction. If ε ∈ Cε2 , then Lemma 6.15. tells
us that there exists n ∈ N such that |ε| ≤ |nε2|. It follows that 1 ≤ |nε|, which
contradicts the assumption that ε ∈ E . �

Lemma 6.17. Let C be a cloud. Then

(i). x, y ∈ C =⇒ x+ y ∈ C,
(ii). x ∈ C and y is limited =⇒ xy ∈ C.

Proof. To prove (i), let x, y ∈ C. Without loss of generality, we can assume that
|y| ≤ |x|. Then, by the triangle inequality, |x+y| ≤ |x|+ |y| ≤ 2|x|. Hence x+y ∈ C.
To prove (ii), let x ∈ C and y be limited. Without loss of generality, we can

assume that x > 0 and y > 0. Since y is limited there is a natural number n such
that y < n. Since x > 0, we have xy < nx. There is a natural number k such that
n < 2k. Hence 0 < xy < 2kx. We have 2kx ∈ C since C is closed under doubling.
Consequently, xy ∈ C. �
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Q-1 0 1

E

C

~ex

~et

BE

BC

Fig. 5. Illustration for clouds C and E , and the balls BC and BE

Let C be a cloud. Then the C-ball around ~et is defined as follows:

BC
def

=
{
~p ∈ Q4 : |~p − ~et|

2
≤ r2 for some r ∈ C

}
,

see Figure 5 below.
By Proposition 6.18. below, the C-balls and “C-boxes” around ~et are the same

sets.

Proposition 6.18. Let C be a cloud. Then

(1 + t, x, y, z) ∈ BC ⇐⇒ t, x, y, z ∈ C.

Proof. By definition, (1 + t, x, y, z) ∈ BC if and only if t2 + x2 + y2 + z2 ≤ r2 for
some r ∈ C. So, if (1 + t, x, y, z) ∈ BC , we have max{|t|, |x|, |y|, |z|} ≤ r for some
r ∈ C. Consequently, t, x, y, z ∈ C. The converse follows because t2 +x2 + y2 + z2 ≤
(2max{|t|, |x|, |y|, |z|})2. �

Proposition 6.19. Let f : Q4 → Q4 be a linear transformation and let C be a
cloud. Assume that |f(~ex)|

2
, |f(~ey)|

2
, |f(~e z)|

2
are limited and f(~et) ∈ BC. Then

f [BC ] ⊆ BC.

Proof. Suppose (1 + t, x, y, z) ∈ BC . We need to show that f(1 + t, x, y, z) ∈ BC .
Note first that t, x, y, z ∈ C by Proposition 6.18.. Since f is linear,

f(1 + t, x, y, z) = f(~et) + tf(~et) + xf(~ex) + yf(~ey) + zf(~e z).

For all ~p, ~q ∈ Q4, we have

|~p + ~q |
2
≤ 2 |~p |

2
+ 2 |~q |

2
(6)
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since (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ Q. Consequently, we have

|f(1 + t, x, y, z)− f(~et)|
2

= |tf(~et) + xf(~ex) + yf(~ey) + zf(~e z)|
2

≤ 2 |tf(~et) + xf(~ex)|
2
+ 2 |yf(~ey) + zf(~e z)|

2

≤ 4 |tf(~et)|
2
+ 4 |xf(~ex)|

2
+ 4 |yf(~ey)|

2
+ 4 |zf(~e z)|

2

≤ 4max
{

t2 |f(~et)|
2
, x2 |f(~ex)|

2
, y2 |f(~ey)|

2
, z2 |f(~e z)|

2
}

≤ r20

for some positive r0 ∈ C by Lemma 6.17. since f(~et) is also limited as f(~et) ∈ BC .
By inequality (6),

|f(1 + t, x, y, z)− ~et|
2
≤ 2 |f(1 + t, x, y, z)− f(~et)|

2
+ 2 |f(~et)− ~et|

2
.

There is a positive r1 ∈ C such that |f(~et)− ~et|
2
≤ r21 because f(~et) ∈ BC .

Therefore,

|f(1 + t, x, y, z)− ~et|
2
≤ 2r20 + 2r21 ≤ (2max{r0, r1})

2.

Since 2max{r0, r1} ∈ C, we have f(1 + t, x, y, z) ∈ BC , which is what we wanted to
prove. �

Given any set Trf of transformations, we will write LinTrf for the set of transfor-
mations in Trf which are linear, i.e.

LinTrf
def

= {f ∈ Trf : f is linear}.

In particular, if C is a cloud we will be interested in the following sets of linear
transformations:

LinEucl
↑
Q
(C)

def

=
{
f ∈ LinEucl

↑
Q
: f(~et) ∈ BC

}
,

LinGal
↑
Q
(C)

def

=
{
f ∈ LinGal

↑
Q
: f(~et) ∈ BC

}
,

LinPoi
↑
Q
(C)

def

=
{
f ∈ LinPoi

↑
Q
: f(~et) ∈ BC

}
.

We will also refer below to the following sets of affine transformations:

Eucl
↑
Q
(C)

def

= TranQ ◦ LinEucl↑
Q
(C),

Gal
↑
Q
(C)

def

= TranQ ◦ LinGal↑
Q
(C),

Poi
↑
Q
(C)

def

= TranQ ◦ LinPoi↑
Q
(C),

where TranQ is the set of translations.

Proposition 6.20. Let C be a cloud. Then

LinEucl
↑
Q
(C) =

{
f ∈ LinEucl

↑
Q
: f [BC ] = BC

}
,

LinGal
↑
Q
(C) =

{
f ∈ LinGal

↑
Q
: f [BC ] = BC

}
,

LinPoi
↑
Q
(C) =

{
f ∈ LinPoi

↑
Q
: f [BC ] = BC

}
.

Proof. Let f ∈ LinEucl
↑
Q
∪ LinGal

↑
Q
∪ LinPoi

↑
Q

and let C be a cloud. It is enough to
show that

f(~et) ∈ BC ⇐⇒ f [BC ] = BC .
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If f ∈ LinPoi
↑
Q
, then

f(~et)t = f−1(~et)t and |f(~et)s|
2
=

∣
∣f−1(~et)s

∣
∣
2

because f(~et)t = ~et⟐1 f(~et) = f−1(~et)⟐1 ~et = f−1(~et)t, |~ps|
2
= p2t − ‖~p‖21,µ for

every ~p ∈ Q4 and ‖f(~et)‖
2
1,µ = ‖~et‖

2
1,µ = ‖f−1(~et)‖

2
1,µ by Proposition 3.4.. Thus

|~et − f(~et)|
2
= (1− f(~et)t)

2 + |f(~et)s|
2

= (1− f−1(~et)t)
2 + |f−1(~et)s|

2 =
∣
∣~et − f−1(~et)

∣
∣
2
.

If f ∈ LinEucl
↑
Q
∪ LinGal

↑
Q
,

|~et − f(~et)|
2
=

∣
∣f−1(~et)− f−1(f(~et))

∣
∣
2
=

∣
∣f−1(~et)− ~et

∣
∣
2

because f−1 is linear and preserves the Euclidean distance of ~et and f(~et) by
Propositions 3.2. and 3.3..

So |~et − f(~et)|
2
=

∣
∣f−1(~et)− ~et

∣
∣
2
in all three cases. Thus f(~et) ∈ BC if and

only if f−1(~et) ∈ BC and hence LinEucl↑
Q
(C), LinGal↑

Q
(C) and LinPoi

↑
Q
(C) are closed

under taking inverse. Therefore, it is enough to show that

f(~et) ∈ BC ⇐⇒ f [BC ] ⊆ BC .

Hence, by Proposition 6.19., it is enough to show that f(~et) ∈ BC implies that

|f(~ex)|
2
, |f(~ey)|

2
, |f(~e z)|

2
are limited.

If f ∈ LinGal
↑
Q

or f ∈ LinEucl
↑
Q
, |f(~ex)|

2
= |f(~ey)|

2
= |f(~e z)|

2
= 1. Hence they

are limited.
To complete the proof in the last remaining case, let f ∈ LinPoi

↑
Q
. We will prove

that for every i ∈ {x,y, z}, |f(~e i)|
2
≤ |f(~et)|

2
. To prove this, let i ∈ {x,y, z} and

let

~p = f(~et) and ~q = f(~e i).

Then pt · qt − ~ps · ~q s = f(~et)⟐1 f(~e i) = ~et ⟐1 ~e i = 0, p2t − |~ps|
2
= ‖f(~et)‖

2
1,µ =

‖~et‖
2
1,µ = 1 and q2t − |~q s|

2
= ‖f(~e i)‖

2
1,µ = ‖~e i‖

2
1,µ = −1 by definition of Poincaré

transformations and Proposition 3.4.. Consequently,

pt · qt = ~ps · ~q s, |~ps|
2
= p2t − 1, and |~q s|

2
= q2t + 1.

Therefore, by the Cauchy-Schwarz inequality,7

(pt · qt)
2 = (~ps · ~q s)

2 ≤ |~ps|
2
· |~q s|

2
= (p2t − 1) · (q2t + 1) = (pt · qt)

2 − q2t + p2t − 1.

Thus (pt · qt)
2 ≤ (pt · qt)

2 − q2t + p2t − 1. This is equivalent to q2t ≤ p2t − 1, which

is equivalent to q2t + (q2t + 1) ≤ p2t + (p2t − 1), which is equivalent to q2t + |~q s|
2
≤

p2t + |~ps|
2
. Thus |~q |

2
≤ |~p |

2
, i.e. |f(~e i)|

2
≤ |f(~et)|

2
. Now |f(~et)|

2
is limited because

f(~et) ∈ BC . Therefore, |f(~ex)|
2
, |f(~ey)|

2
and |f(~e z)|

2
are limited, too. �

7 The Cauchy-Schwarz inequality over R has several elementary proofs, many of which
remain valid over arbitrary ordered fields.
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Lemma 6.21. Suppose pt, px, rt, rx ∈ Q satisfy p2t + p2x = r2t − r2x = 1, and let q
be any value in Q. Then there exist f ∈ EuclQ, g ∈ GalQ and h ∈ PoiQ such that

f(~et) = (pt, px, 0, 0),

g(~et) = (1, q, 0, 0),

h(~et) = (rt, rx, 0, 0).

Proof. Let f be the linear transformation that takes ~et, ~ex, ~ey, ~e z to (pt, px, 0, 0),
(−px, pt, 0, 0), ~ey, ~e z, respectively. Let g be the linear transformation that takes ~et,
~ex, ~ey, ~e z to (1, q, 0, 0), ~ex, ~ey, ~e z, respectively. Let h be the linear transformation
that takes ~et, ~ex, ~ey, ~e z to (rt, rx, 0, 0), (rx, rt, 0, 0), ~ey, ~e z, respectively. Then,
using Propositions 3.2., 3.3., and 3.4., it is easy to check that f ∈ EuclQ, g ∈ GalQ
and h ∈ PoiQ. �

Theorem 6.22. Let C be a cloud. Then

Triv
↑
Q
<Eucl

↑
Q
(C) ⊂ Eucl

↑
Q
,

Triv
↑
Q
<Gal

↑
Q
(C) < Gal

↑
Q
,

Triv
↑
Q
<Poi

↑
Q
(C) < Poi

↑
Q
.

Moreover, there is a subcloud C′ ⊂ C such that

Triv
↑
Q
<Eucl

↑
Q
(C′) < Eucl

↑
Q
(C) ⊂ Eucl

↑
Q
,

Triv
↑
Q
<Gal

↑
Q
(C′) < Gal

↑
Q
(C) < Gal

↑
Q
,

Triv
↑
Q
<Poi

↑
Q
(C′) < Poi

↑
Q
(C) < Poi

↑
Q
.

Proof. To prove the first part of the theorem, it is enough to show that

LinTriv
↑
Q
<LinEucl

↑
Q
(C) ⊂ LinEucl

↑
Q
,

LinTriv
↑
Q
<LinGal

↑
Q
(C) < LinGal

↑
Q
,

LinTriv
↑
Q
<LinPoi

↑
Q
(C) < LinPoi

↑
Q
,

because Trf = TranQ ◦ LinTrf for each of the relevant transformation groups Trf.
Since LinGal

↑
Q

and LinPoi
↑
Q

are groups, we have

LinGal
↑
Q
(C) ≤ LinGal

↑
Q

and LinPoi
↑
Q
(C) ≤ LinPoi

↑
Q

by Proposition 6.20.. By Lemma 6.21., there are g ∈ LinGal
↑
Q

and h ∈ LinPoi
↑
Q

such
that g(~et) = (1, 1, 0, 0) and h(~et) =

(
5
3 ,

4
3 , 0, 0

)
. Clearly for such g and h, we have

g 6∈ LinGal
↑
Q
(C) and h 6∈ LinPoi

↑
Q
(C) because (1, 1, 0, 0),

(
5
3 ,

4
3 , 0, 0

)
6∈ BC . Therefore,

LinGal
↑
Q
(C) < LinGal

↑
Q

and LinPoi
↑
Q
(C) < LinPoi

↑
Q
.

Since LinEucl
↑
Q

does not form a group, we need to adopt a different approach to

prove that LinEucl↑
Q
(C) is a group. Let f, g ∈ LinEucl

↑
Q
(C). Then f◦g ∈ LinEuclQ and

f−1 ∈ LinEuclQ. By Proposition 6.20., we have (f ◦g)[BC ] = BC and f−1[BC ] = BC .
Thus we have (f ◦g)(~et)t > 0 and f−1(~et)t > 0 because (f ◦g)(~et) ∈ BC , f

−1(~et) ∈

BC and C ⊆ E . Hence f ◦ g ∈ LinEucl
↑
Q
(C) and f−1 ∈ LinEucl

↑
Q
(C). Consequently,

LinEucl
↑
Q
(C) is a group and LinEucl

↑
Q
(C) ⊆ LinEucl

↑
Q
. Hence LinEucl↑

Q
(C) ⊂ LinEucl

↑
Q

as LinEucl↑
Q

is not closed under composition.
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LinTriv
↑
Q
is a subgroup of LinEucl↑

Q
(C), LinGal↑

Q
(C) and LinPoi

↑
Q
(C) because f(~et) =

~et for every f ∈ LinTriv
↑
Q
.

To prove that LinTriv
↑
Q

is a proper subgroup of these groups, let ε ∈ C be such
that ε > 0. Let

pt =
2ε+1

2ε2+2ε+1 , px = 2ε2+2ε
2ε2+2ε+1 , rt =

2ε2+2ε+1
2ε+1 , rx = 2ε2+2ε

2ε+1 .

and notice that p2t+p2x = r2t −r2x = 1, because (2ε2+2ε+1)2−(2ε2+2ε)2 = (2ε+1)2.

By Lemma 6.21., there exist transformations f ∈ LinEucl
↑
Q
, g ∈ LinGal

↑
Q

and

h ∈ LinPoi
↑
Q

such that

f(~et) = (pt, px, 0, 0), g(~et) = (1, ε, 0, 0), h(~et) = (rt, rx, 0, 0).

It now follows, by Proposition 6.18., that f(~et), g(~et), h(~et) ∈ BC . To see this,
note that 0 < ε2 < ε < 1, whence

• 1− 2ε < 1− 2ε2 < 1− 2ε2

2ε2+2ε+1 = 2ε+1
2ε2+2ε+1 = pt and pt < 1;

• 0 < px and px = 2ε2+2ε
2ε2+2ε+1 < 2ε2 + 2ε < 4ε,

so that 1− 2ε < pt < 1 and 0 < px < 4ε. Similarly,

• 1 < rt =
2ε2+2ε+1

2ε+1 < 2ε2 + 2ε+ 1 < 1 + 4ε;

• 0 < rx = 2ε2+2ε
2ε+1 < 2ε2 + 2ε < 4ε

whence 1 < rt < 1 + 4ε and 0 < rx < 4ε.
Therefore, f ∈ LinEucl

↑
Q
(C), g ∈ LinGal

↑
Q
(C) and h ∈ LinPoi

↑
Q
(C), but f, g, h 6∈

LinTriv
↑
Q

because f(~et)s 6= (0, 0, 0), g(~et)s 6= (0, 0, 0) and h(~et)s 6= (0, 0, 0). Thus

LinTriv
↑
Q

is a proper subgroup of groups LinEucl↑
Q
(C), LinGal↑

Q
(C) and LinPoi

↑
Q
(C).

Finally, let C′ be any cloud that does not contain ε. As we saw in the proof of
Corollary 6.16. we can take, e.g., C′ = Cε2 . To complete the present proof, it only
remains to prove that Eucl

↑
Q
(C′), Gal↑

Q
(C′) and Poi

↑
Q
(C′) are proper subgroups of

Eucl
↑
Q
(C), Gal↑

Q
(C) and Poi

↑
Q
(C), respectively. Moreover, to prove this, it is enough

to show that f(~et), g(~et), h(~et) 6∈ BC′ .
We have

px =
2ε2 + 2ε

2ε2 + 2ε+ 1
>

2ε

2ε2 + 2ε+ 1
>

2ε

2
> ε

and similarly

rx =
2ε2 + 2ε

2ε+ 1
>

2ε

2ε+ 1
>

2ε

2
> ε.

Thus px, rx 6∈ C′ as ε 6∈ C′. Hence, by Proposition 6.18., f(~et), g(~et), h(~et) 6∈ BC′ .
�

Changing the units used to express spatial distance is represented by the following
space scaling bijections. Given any λ > 0, we write Sλ : Q

4 → Q4 for the map:

Sλ : (t, x, y, z) 7→ (t, λx, λy, λz),

and note that S−1
λ = S 1

λ
.

Proposition 6.23. For every c > 0,

Sc ◦ Eucl
↑
Q
◦ S−1

c
= cEucl

↑
Q
,

Sc ◦ Triv
↑
Q
◦ S−1

c
= Triv

↑
Q
,

Sc ◦ Poi
↑
Q
◦ S−1

c
= cPoi

↑
Q
,

Sc ◦ Gal
↑
Q
◦ S−1

c
= Gal

↑
Q
.
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Proof. Since for all T ∈ TranQ and c > 0, there is T ′ ∈ TranQ such that Sc ◦ T =
T ′◦Sc , it is enough to check the statements for linear transformations. For all c > 0
and ~p ∈ Q4,

‖Sc~p‖
2
c
= c2‖~p‖21 and ‖Sc~p‖

2
c,µ = c2‖~p‖21,µ.

Therefore, if L ∈ LinEucl
↑
Q
, then by Proposition 3.2.,

∥
∥
∥ScLS 1

c

~p
∥
∥
∥

2

c

= c2
∥
∥
∥LS 1

c

~p
∥
∥
∥

2

1
= c2

∥
∥
∥S 1

c

~p
∥
∥
∥

2

1
=

∥
∥
∥ScS 1

c

~p
∥
∥
∥

2

c

= ‖~p‖2
c
.

Thus, by Proposition 3.2., ScLS
−1
c

∈ LincEuclQ. If we compose any orthochronous
transformation from left or right with Sλ, we get an orthochronous transformation.
Therefore, we also have ScLS

−1
c

∈ LincEucl
↑
Q
. Therefore, Sc ◦Eucl

↑
Q
◦S−1

c
⊆ cEucl

↑
Q
.

Similarly, by Proposition 3.2., if L ∈ LincEucl
↑
Q
, then

c2
∥
∥
∥S 1

c

LSc~p
∥
∥
∥

2

1
=

∥
∥
∥ScS 1

c

LSc~p
∥
∥
∥

2

c

= ‖LSc~p‖
2
c
= ‖Sc~p‖

2
c
= c2‖~p‖21.

So S−1
c

LSc ∈ LinEucl
↑
Q

and thus S−1
c

◦ cEucl
↑
Q
◦ Sc ⊆ Eucl

↑
Q
, which is equivalent to

cEucl
↑
Q
⊆ Sc ◦ Eucl

↑
Q
◦ S−1

c
. Consequently,

Sc ◦ Eucl
↑
Q
◦ S−1

c
= cEucl

↑
Q
. (7)

An analogous proof based on Proposition 3.4. using ‖ . . . ‖2
c,µ in place of ‖ . . . ‖2

c

shows that

Sc ◦ Poi
↑
Q
◦ S−1

c
= cPoi

↑
Q
.

Since Sλ takes vertical lines to vertical lines for any λ, elements of Sc ◦Triv
↑
Q
◦S−1

c

take vertical lines to vertical ones. On the other hand, Sc ◦ Triv
↑
Q
◦ S−1

c
⊆ cEucl

↑
Q

by Triv
↑
Q

⊆ Eucl
↑
Q

and (7). Therefore, by Lemma 5.14., Sc ◦ Triv
↑
Q
◦ S−1

c
⊆ Triv

↑
Q
.

Analogously, S−1
c

◦ Triv↑
Q
◦ Sc = S 1

c

◦ Triv↑
Q
◦ S−1

1

c

⊆ Triv
↑
Q
. Consequently,

Sc ◦ Triv
↑
Q
◦ S−1

c
= Triv

↑
Q
.

Assume L ∈ LinGal
↑
Q
. Let ~p = (pt, px, py, pz) ∈ Q4. Then, we have that

(ScLS
−1
c

~p)t = pt

since (L~q )t = qt and (Sc~q )t = qt for any ~q ∈ Q4. If pt = 0, then

∣
∣ScLS

−1
c

(0, px, py, pz)
∣
∣
2
=

∣
∣
∣ScL

(

0,
px
c
,
py
c
,
pz
c

)∣
∣
∣

2

= c2
∣
∣
∣L

(

0,
px
c
,
py
c
,
pz
c

)∣
∣
∣

2

since L
(
0, px

c
,
py

c
, pz

c

)

t
= 0 as L ∈ LinGalQ and |Sc~q |

2
= c2 |~q |

2
for every ~q ∈ Q4

with qt = 0. Then

c2
∣
∣
∣L

(

0,
px
c
,
py
c
,
pz
c

)∣
∣
∣

2

= c2
∣
∣
∣

(

0,
px
c
,
py
c
,
pz
c

)∣
∣
∣

2

= |(0, px, py, pz)|
2

since L ∈ LinGalQ. Consequently,

pt = 0 =⇒
∣
∣ScLS

−1
c

~p
∣
∣
2
= |~p |

2
.
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Therefore, by Proposition 3.3., ScLS
−1
c

∈ Gal
↑
Q

and analogously S−1
c

LSc =

S 1

c
LS−1

1

c

∈ Gal
↑
Q
. Therefore,

Sc ◦ Gal
↑
Q
◦ S−1

c
= Gal

↑
Q
.

�

For every c > 0 let us introduce the following sets of affine transformations:

cEucl
↑
Q
(C)

def

= Sc ◦ Eucl
↑
Q
(C) ◦ S−1

c
,

cGal
↑
Q
(C)

def

= Sc ◦ Gal
↑
Q
(C) ◦ S−1

c
,

cPoi
↑
Q
(C)

def

= Sc ◦ Poi
↑
Q
(C) ◦ S−1

c
.

Theorem 6.24. Let C be a cloud. Then there is a subcloud C′ ⊂ C such that

Triv
↑
Q
<cEucl

↑
Q
(C′) < cEucl

↑
Q
(C) ⊂ cEucl

↑
Q
,

Triv
↑
Q
<cGal

↑
Q
(C′) < cGal

↑
Q
(C) < Gal

↑
Q
,

Triv
↑
Q
<cPoi

↑
Q
(C′) < cPoi

↑
Q
(C) < cPoi

↑
Q
.

Proof. Immediate from Theorem 6.22. and Proposition 6.23.. �

Proof of Thm.4.5.. By Theorem 6.24., there are strictly descending countably
infinite chains of subgroups such that

Triv
↑
Q
< . . . < GE

i < . . . < GE
1 < GE

0 ⊂ cEucl
↑
Q
,

Triv
↑
Q
< . . . < GG

i < . . . < GG
1 < GG

0 < Gal
↑
Q
,

Triv
↑
Q
< . . . < GP

i < . . . < GP
1 < GP

0 < cPoi
↑
Q
.

Groups GE
i ’s, G

G
i ’s, and GP

i ’s satisfy assumptions (i) and (ii) of Theorem 5.12.,
and by Lemma 5.14., they also satisfy assumption (iii). Let ME

i = M(GE
i ), M

G
i =

M(GG
i ) and MP

i = M(GP
i ). Then, by Theorem 5.12. and Proposition 5.11., the

various ME
i , M

G
i and MP

i satisfy the statement of Theorem 4.5.. �

§7. Open questions

According to Theorem 4.6., whenever Q is an ordered field and G is a group for
which either

Triv
↑
Q
< G ⊂ cEucl

↑
Q
, or

Triv
↑
Q
< G ≤ Gal

↑
Q
, or

Triv
↑
Q
< G ≤ cPoi

↑
Q
,

there exists a model M of Borisov′s Axioms over Q such that WM = G.
By Corollary 4.9., if Q = R, there are no groups strictly between Triv

↑
Q

and

cEucl
↑
Q

(Gal↑
Q
, cPoi

↑
Q
). Contrary to this, if Q is a non-Archimedean field, then
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there are groups G1, G2, and G3 such that

Triv
↑
Q
< G1 ⊂ cEucl

↑
Q
,

Triv
↑
Q
< G2 ≤ Gal

↑
Q
, and

Triv
↑
Q
< G3 ≤ cPoi

↑
Q
.

Moreover, there are infinitely many such groups by Theorem 6.24.. These groups
were constructed from clouds in a very specific way. It is natural to ask whether
all the groups strictly between Triv

↑
Q

and cEucl
↑
Q

(Gal↑
Q
, cPoi

↑
Q
) can be constructed

from clouds the same way. More precisely, does the following hold?

Question 1 Suppose G1, G2, and G3 are groups satisfying

Triv
↑
Q
< G1 ⊂ cEucl

↑
Q
,

Triv
↑
Q
< G2 < Gal

↑
Q
, and

Triv
↑
Q
< G3 < cPoi

↑
Q
.

Do there exist clouds C1, C2, and C3 such that

G1 = cEucl
↑
Q
(C1),

G2 = cGal
↑
Q
(C2),

G3 = cPoi
↑
Q
(C3)?

Even if the answer to Question 1 turns out to be negative in general, it would
be interesting to discover whether such clouds exist for specific classes of ordered
fields, e.g., the class of real closed fields.
It is also worth noting how the consequences of Borisov’s assumptions sometimes

change when we replace R with other ordered fields, and sometimes remain the
same.
For example, according to Borisov’s Theorem, when Q is the field R there are

only two possibilities for the set of spacetime worldview transformations: either
W = Gal

↑
R
, or W = cPoi

↑
R
for some c > 0. As explained on page 12, however, this

result remains valid if we replace R with any other Archimedean field, provided
every positive number has a square root.

Question 2 It remains an open question whether the existence of square roots is
actually necessary in this situation.

On the other hand, while Theorem 4.7. shows that Borisov’s Theorem remains
valid if omit Axiom III, nonetheless as explained in Remark 4.8., if we simply retain
the assumption of square roots without requiring Q to be R, we can show instead
that either

Triv
↑
Q
< W ⊂ cEucl

↑
Q

or

Triv
↑
Q
< W ≤ Gal

↑
Q

or

Triv
↑
Q
< W ≤ cPoi

↑
Q

for some c > 0,

and this remains true even if we replace BA4 with the more general assumption
that the worldlines of inertial motions according to inertial observers are lines (but
not necessarily of finite slope).
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Question 3 Once again, it remains an open question if these results remain valid
if we omit the assumption that positive numbers have square roots.
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Madarász, J. X., Székely, G., & Stannett, M. (2020). Groups of worldview
transformations implied by isotropy of space. arXiv:2007.14261.

Nelson, E. (1987). Radically Elementary Probability Theory. Princeton University
Press. Available online: http://www.math.princeton.edu/~nelson/books/

rept.pdf.
Odom, B., Hanneke, D., D’Urso, B., & Gabrielse, G. (2006). New measurement of

the electron magnetic moment using a one-electron quantum cyclotron. Phys.
Rev. Lett. 97, 030801.

Perlis, D. (2016). Taking physical infinity seriously. In Omodeo, E. G. &
Policriti, A., editors, Martin Davis on Computability, Computational Logic,
and Mathematical Foundations, pp. 243–254. Cham: Springer International
Publishing.

Stannett, M., & Németi, I. (2014, Apr). Using Isabelle/HOL to verify first-order
relativity theory. Journal of Automated Reasoning 52(4), 361–378.
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