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Abstract Large-scale brain simulations require the investigation of large networks of realistic neuron mod-
els, usually represented by sets of differential equations. Here we report a detailed fine-scale study of the
dynamical response over extended parameter ranges of a computationally inexpensive model, the two-
dimensional Rulkov map, which reproduces well the spiking and spiking-bursting activity of real biological
neurons. In addition, we provide evidence of the existence of nested arithmetic progressions among peri-
odic pulsing and bursting phases of Rulkov’s neuron. We find that specific remarkably complex nested
sequences of periodic neural oscillations can be expressed as simple linear combinations of pairs of cer-
tain basal periodicities. Moreover, such nested progressions are robust and can be observed abundantly in
diverse control parameter planes which are described in detail. We believe such findings to add significantly
to the knowledge of Rulkov neuron dynamics and to be potentially helpful in large-scale simulations of the
brain and other complex neuron networks.

1 Introduction

Despite the significant progress in neuroscience dur-
ing the last years, there are still several unveiled ques-
tions and mysteries about the brain functionality. The
approximately 8.6×1010 neurons are the basic building
blocks of the complex neural network underlying the
human brain [1–4]. There exist several types of neurons
and, since the seminal work of Hodgkin and Huxley
(HH) [5], numerous models were proposed to describe
how neurons function.

Similar to the HH model, neuron models are usually
based on continuous-time differential equations, or on
a discrete-time dynamics, i.e. on discrete maps. Among
the continuous-time models, one can mention those
based on the HH model [6,7], or models taking into
account other approaches such as the consideration of
relaxation oscillators, emphasizing on bursting behav-
iors [1,2,8]. The ability to reproduce bursting behavior
is one of the main aspects required for realistic neuron
models [9–11], independently if governed by differential
equations [12–17] or by maps [18–27].

Discrete-time single-neuron models producing realis-
tic response properties of real-life neurons were recently
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used to study spatiotemporal patterns of activity
observed in sensory processing, memory formation and
other cognitive tasks [1–4]. The popularity of using
maps as neuron models is the fact that maps are com-
putationally very inexpensive while providing realistic
representations of biological neurons. Many applica-
tions of single-neuron models already exist, but it seems
that a systematic study of their response as a func-
tion of the control parameters lack. Map-based models
are easier to treat and analyze and have been used to
describe specific situations, especially when consider-
ing coupled elements characterized by chemical [28,29],
electrical [30,31] or both aspects [32–35]. The topol-
ogy of neural networks is also an essential player in
their dynamical behavior, as reported for, e.g., scale-
free [32], global [36], mean-field [37], small world [38],
and Apollonian [39,40] networks. The specific coupling
is an essential issue in what concerns both synchroniza-
tion of neural networks [22,41–44], and other dynamical
aspects [45].

The purpose of this paper is to explore the control
parameter space of one of the most popular and suc-
cessful discrete model for neurons, namely a map pro-
posed by Rulkov [21]. This model reproduces well many
neural behaviors such as emergent bursting from non-
bursting cells [19], spiking-bursting [21] and the origin
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of chaos [46], the birth of self-sustained subthreshold
oscillations [47], patterns of bursting [48], spatiotem-
poral chaos ordering [49], or synchronization features
in two neurons [28,50], in large one-dimensional neu-
ral networks [42] and two-dimensional lattices [22], and
also in scale-free [35,43,51] and in small-world net-
works [52,53]. The great interest in Rulkov’s model lies
in the fact that it can reproduce quite well the spik-
ing and spiking-bursting behaviors observed in real-life
neurons [20,21].

Complementing results presently available, we report
a detailed and systematic fine-scale characterization of
the shape, size, and organization of the stability phases
observed in the parameter spaces of Rulkov’s neuron
model. This is done in two ways, by characterizing sta-
bility phases with standard Lyapunov exponents, and
by using the periodicities computed in discrete time
which constitutes a similar technique to that of the so-
called isospike diagrams [54–62], namely by construct-
ing phase diagrams based on the number of spikes of
periodic oscillations associated with periodic phases.
As described below, we find Rulkov’s neuron model
to display stability phases organized in an exceed-
ingly complex way, where periodic regions are abun-
dantly observed in distinct control parameter planes.
Despite the overall complexity, it is possible to rec-
ognize extended stability phases exhibiting an ordered
organization that obeys simple rules.

As it is known, Lyapunov stability diagrams merely
divide the control parameter space into just two phases:
chaotic and non-chaotic. In sharp contrast, periodic-
ity and isospike diagrams discriminate the nature of
all individual phase, thereby providing a really detailed
control parameter plane characterization of the oscilla-
tions supported by the equations of motion. As illus-
trated below, isospike diagrams are compelling to char-
acterize stability phases and reveal exciting features
that are not visible with Lyapunov exponents. For
detailed surveys comparing the Lyapunov and isospike
characterization of stability phases see, e.g. Refs. [63,64]
and references therein.

Section 2 introduces Rulkov’s model briefly. Section 3
presents high-resolution stability diagrams for different
slices of the parameter space of the model, focusing in
the stability regions which exhibit different patterns of
periodicity, i. e., nested families of arithmetic progres-
sions of oscillatory phases. Finally, Sect. 4 presents our
conclusions and some perspectives opened up by our
findings.

2 Model and methods

The two-dimensional map of Rulkov is governed by the
following equations [21]:

xn+1 = f(xn, yn), (1)
yn+1 = yn − μ(xn + 1 − σ), (2)

where

f(xn, yn) =

{
α/(1 − xn) + yn, if xn ≤ 0 ,
α + yn, if 0 < xn < α + yn ,
−1, if xn ≥ α + yn .

(3)

In the above expressions, x and y are the fast and
slow dynamical variables, respectively. The map is con-
trolled by three parameters, namely σ, α and μ.

Several earlier works reported parameter planes for
the Rulkov model considering μ = 0.001, depicting
bifurcation diagrams for the plane (σ, α). Such dia-
grams record the boundaries between regions of silence,
spiking and bursting, and spiking regimes [21]. From
such diagrams it is also possible to identify some chaotic
points [46], or to delimit a region in which irregu-
lar (chaotic) spiking and spiking-bursting are possi-
ble to determine by the lines σth = 2 − √

α/(1 − μ)
and Lts, obtained numerically [42]. Another issue is
to determinate well-defined chaotic phases [22], as
shown here in Fig. 1a, or to demarcate the some of
the above regions using the concept of Neimar-Sacker
bifurcation [24].

The aforementioned aspects are shown in Fig. 1 for
μ = 0.001. Thus, the delimitation of the regions of reg-
ular and chaotic behavior is made with Lyapunov expo-
nents, in Fig. 1b, or with the number of spikes per burst,
in Fig. 1c. In this paper, we use the computation of peri-
odicities that also permits us to describe the dynami-
cal behavior of the Rulkov map with the advantage to
distinguish the dynamical behavior of both variables
x and y. In Fig. 1d, the parameter plane is described
in terms of such periodicities corresponding to the fast
variable x. This type of diagram was previously used in
Refs. [54–56,65,66].

We start by focusing on the spiking behavior, either
as a burst of spikes or as tonic spiking. To study bursts
of spikes, we consider a point in a region of the α × σ
plane where such bursts are typical. To this end we
fix α = 18.7 and σ = 0.1, and compute the periodic-
ities, say px and py, in both fast and slow variables,
as well as the number ns of spikes per burst. Using
time series, Fig. 2a–d illustrate typical bursting behav-
iors recorded in the fast variable x, and the periodic
features of both variables of the neuron when vary-
ing μ. We also show the corresponding phase planes,
Fig. 2e–h, for representative values of μ. It is clear that
the periodicities px and py have the same value, which
plummets with the increase of μ. Similar behavior is
observed in the number ns of spikes per burst. From
Fig. 2 is easy to compute the periodicity of x and y by
subtracting two consecutive numbers corresponding to
minima for the burst of spikes (x-variable), or in the
maxima of the slow variable y. It is noticeable that the
periodicities for both variables coincide as they should.
In Fig. 2a–d the periodicities are 20,506, 415, 24, and 5,
respectively.
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Fig. 1 Illustrative phase diagrams for μ = 0.001. a
Diagram identifying all the regions mentioned by several
authors, cited in the text, i.e., fixed point (silence) with
stationary regime depicted in inset (a1) for the parameter
values (σ, α) = (−0.8, 4.0); burst of spikes shown in inset
(a2) for (σ, α) = (0.0, 5.0), periodic spikes illustrated in
inset (a3) for (σ, α) = (0.6, 4.0), and chaotic spiking cor-
responding to the black regions. The time series shown in
the insets correspond in all the cases to the last values of
series with n = 50, 000. b Phase diagram based on Lyapunov

exponents. Colors indicate chaotic behavior (positive expo-
nents), while black and white correspond to regular behavior
(negative exponents). c Diagram discriminating phases as in
(a): silent (white), periodic spiking (pink), chaotic (black),
and the spiking bursting (where the color code indicates the
number of spikes per burst). d Typical phase diagram used
in this work showing supplementary the periodicities of the
regions where burst of spikes and spiking occur. The color
code is related to the periodicities of the dynamical variables

Figure 3 presents fittings of the periodicities and of
the number ns of spikes as a function of μ, showing that
the dependence of px and ns with μ follows a power-
law of the form px(ns) = apx(ns)μ

bpx(ns) +cpx(ns), where
bpx(ns) ≈ −1 (see Fig. 3a–b for such dependences). Con-
sequently, the relationship between ns and px(y) is lin-
ear as depicted in Fig. 3c. It is noteworthy mention-
ing that the literature, e.g. Refs. [21,47], systematically
considers the limit μ → 0, where bursts with many
spikes are abundant.

One of the main points of this work is getting the
parameter diagrams to study the dynamical behavior
of a neuron model. As shown in Fig. 2a–d, the time
series of both variables x and y have the same peri-
odicity. Thus, the phase diagrams α vs. σ built using
the periodicities of each one of the variables are sim-
ilar. Henceforth, for simplicity, we focus on the peri-
odicities related to the slow variable y. Indeed, as it is
explained in Sect. 3, the phase diagrams of Fig. 4 consti-
tute the heart of the paper because the main results are
extracted for the diagrams shown therein. The details
of the coloring are explained afterward.

We report a new bifurcation scenario, denoted as
a nested period-increasing scenario where each period
can be obtained from a linear combination of a basis
of two periods indicated by p1,0 and p0,1. The above-
mentioned basal periodicities expressions constitute a
shorthand notation explained in detail in Sect. 3.

3 Results and discussion

As mentioned, for regular behaviors the periodicities of
x and y coincide. Thus, one may use indistinctly x or
y to study neuron periodicities. In Fig. 1 we presented
phase diagrams for μ = 0.001, the original value con-
sidered by Rulkov and in subsequent literature. Here,
we consider the dynamics on the α × σ control param-
eter plane, focusing in the periodic phases observed for
μ = 0.25, a value for which the neuron displays partic-
ularly a plethora of intricate dynamical behaviors.

Figure 4 shows stability diagrams obtained by record-
ing over extended regions of the control parameter
plane σ×α. Panel (a) shows a stability diagram record-
ing py, the periods observed in the slow variable y,
while panel (b) shows the corresponding representa-
tion using standard Lyapunov exponents. Manifestly,
the periodicity diagram displays much more informa-
tion than the Lyapunov diagram, which is only able
to discriminate periodicity from lack thereof. Figure 4a
contains sub-windows with rich patterns, for instance
the four regions inside boxes A, B, C, and D, which are
shown magnified in Fig. 4c–f.

In order to explain the meaning of our representation
describing the periodicities found in the parameter dia-
grams, we use henceforth the color code located in the
lower part of Fig. 4, where each color represents the
maximum prime number of the periodicity factored.
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Fig. 2 Top row: time series illustrating bursting behaviors
(burst of ns spikes) for both x (the fast variable, in black),
and y (the periodic behavior of the slow variable, in gray)
for a μ = 10−5 with 20,506 spikes, b μ = 0.0005 with 415

spikes, c μ = 0.009 with 24 spikes, and d μ = 0.25 with 5
spikes. Bottom row: e–h, return maps for the same values
of μ

(a) (b) (c)

Fig. 3 Scaling laws for a the periodicity of the fast variable px and b the number of spikes ns as a function of the parameter
μ. c Linear relationship between px and ns. The values of the parameters are (σ, α) = (0.1, 18.7)

For instance, the color representing p = 35 = 5 · 7 is
7, but this color might also represent periodicities of
14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126,
140, . . .; and the color representing p = 132 = 2 · 2 ·
3 · 11 is 11, but this color might also represent peri-
odicities of 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, . . ..
Prime factors larger than 131 are represented in black.
This convention guarantees that an individual color will
represent the multiples of each prime number from 2 to
127. Chaos is represented in blue in this color code and
stationarity (fixed point) in white.

Using the above convention, we computed several
phase diagrams, not shown here, for both periodicities
px and py and μ = 0.25. We found that these phase
diagram pairs are very similar in almost all regions,
with the same periodicities. Consequently, we arbitrar-
ily selected the slow variable y to study the period-

icities in parameter regions where nested periodicities
sequences are abundant, as in Fig. 4a.

In Fig. 4a there exist interesting regions that are
framed and zoomed-in Fig. 4c–f showing in greater
detail representative sequences of nested periodicities.
A projection of a line of Fig. 4c for a fixed value of
the parameter α allows us to perform a detailed anal-
ysis of the distribution of periodicities and detect the
importance of what we called primary periodicities. The
period-adding behavior is illustrated by using an α-
interval of Fig. 4d when σ = −1.2. Another interesting
aspect related to the existence of accumulation points
is observed in Fig. 4e, f; these points might be deter-
mined when σ and α are suitably varied simultaneously,
as explained later on. However, the most relevant aspect
of all these regions is that they permit describing the
sequences of periodicities constituting arithmetic pro-
gressions following a single rule explained afterward.
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Fig. 4 Phase diagrams for μ = 0.25 showing a periodici-
ties measured in the variable y, denoted as py. b Lyapunov
stability diagrams with black and white and colored regions
indicating regular and chaotic behavior, respectively. c–f
Magnification of the boxes A, B, C, and D indicated in (a).

The color code at the bottom characterizes the periodicities.
Each color represents the greatest prime factor of the peri-
odicity. The stationary (fixed point) and the chaotic phases
are also represented

In what follows, we analyze each of the phase dia-
grams that give essential information regarding the
dynamical behavior of the neuron. For example, for
α = 25.0375 indicated by a green line in Fig. 4c, we
obtain the bifurcation features shown in Fig. 5: (a) a
bifurcation diagram exhibiting the main periodicities
where we observe that the sequences of period cascades
are pretty different from the typical period-doubling
cascades, (b) a bifurcation diagram in terms of Lya-
punov exponents where one sees the regular (negative
exponents) and chaotic (positive exponents) behaviors,
and (c) a diagram of periodicities px that illustrates

the details of a rich dynamical behavior where it is
possible to identify some regularities on the period
sequences.

Since there are many possible sequences of arith-
metic progressions, we start by considering the region
labeled 1 in Fig. 5c and amplified in Fig. 6a. This region
exhibits many sequences of arithmetic progressions,
seven of them are represented with different colors in
Fig. 6b, employing the multipliers k and l accompany-
ing to the basic periodicities p1,0 = 15 and p0,1 = 16,
respectively. When terms of individual sequences over-
lap, they can be distinguished by the color related to the
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(b)(a) (c)

Fig. 5 Bifurcation diagrams for the σ-interval of Fig. 4c,
along the line α = 25.0375, represented in three distinct
ways: a the dynamical behavior of x, b The largest Lya-

punov exponents represented by λ, c the px periodicities.
Panel c contains five σ-intervals with U -shaped patterns
that will serve to study the periodic sequences in more detail

Table 1 Main terms and recurrence equations for the sequences indicated in Fig. 6b

Sequence Main terms (k, l) = pn Recurrence equation

A (Fig. 6c) (0, 1) = 16, (0, 3) = 48, (0, 5) = 80, (0, 7) = 112, . . . pn = (2n − 1)p0,1 = (2n − 1)(p + 1)
B (Fig. 6d) (1, 1) = 31, (1, 2) = 47, (1, 3) = 63, (1, 4) = 79, . . . pn = p1,0 + np0,1 = (n + 1)p + n
C (Fig. 6e) (2, 3) = 78, (2, 5) = 110, (2, 7) = 142, (2, 9) = 174, . . . pn = 2p1,0 + (2n + 1)p0,1 = (2n + 3)p + 2n + 1
D (Fig. 6f) (1, 3) = 63, (2, 7) = 142, (3, 11) = 221, (4, 15) = 300, . . . pn = np1,0 + (4n − 1)p0,1 = (5n − 1)p + 4n − 1
E (Fig. 6g) (1, 4) = 79, (2, 7) = 142, (3, 10) = 205, (4, 13) = 268, . . . pn = np1,0 + (3n + 1)p0,1 = (4n + 1)p + 3n + 1
F (Fig. 6h) (1, 3) = 63, (2, 5) = 110, (3, 7) = 157, (4, 9) = 204, . . . pn = np1,0 + (2n + 1)p0,1 = (3n + 1)p + 2n + 1
G (Fig. 6i) (1, 2) = 47, (2, 3) = 78, (3, 4) = 109, (4, 5) = 140, . . . pn = np1,0 + (n + 1)p0,1 = (2n + 1)p + n + 1

classification of the sequence to which the terms belong.
To avoid the apparent messiness in Fig. 6b, we repre-
sent each arithmetic progressions separately in Fig. 6c–
i, adopting the same colors assigned in Fig. 6b. The
basis of our analysis of arithmetic progressions is the
fact that every sequence consists of specific linear com-
binations of two elementary periodicities, p1,0 and p0,1,
the smallest ones found in a particular region exhibit-
ing the U -shape patterns. Consequently, the n-th term
of every arithmetic progression might be written as

pn = pk,l = kp1,0 + lp0,1, (4)

where k = k(n) and l = l(n). This simple equation may
be used to summarize all arithmetic progressions seen in
Fig. 6c–i. The corresponding expressions are collected
in Table 1.

One last property is the fact that in Eq. (4), and
for every σ-interval considered, we always find p0,1 =
p1,0 + 1. Consequently, we have:

pn(k(n), l(n)) = (k + l)p1,0 + l . (5)

Thus, there is only a single fundamental periodicity,
namely p1,0 that can be denoted simply by p. This sit-
uation is manifested strongly in the case considered in
Figs. 8 and 9. The result expressed by Eq. (4) might be
visualized considering a small interval of α along the
line σ = −1.2, as indicated on the rightmost region of
Fig. 4d.

In this α-interval, three periodicities are present:
px1 = 14 (red), px2 = 27 (brown), and px3 = 13 (cyan).
From Fig. 4d, note that there is an obvious relation-

ship px2 = px1 + px3 among the period-addings. To
illustrating this relation, in the top row of Fig. 7 we
present return maps for some representative values of
α, namely, 19.57, 19.77, and 19.97 when σ = −1.2. For
each one of these values, the periodicities correspond to
14, 27, and 13 as stated above. We note the shape of
the return map with periodicity 27 is a sort of “sum” of
the return maps with periodicities 14 and 13. A similar
situation occurs for the time-series shown in the bottom
row of Fig. 7.

It is interesting to see the ordering sequences of the
structures that have p1,0 = 11 as their main periodicity
manifested in the right part of Fig. 8a with an arith-
metic progression given by pn = np1,0. As illustrated in
Fig. 8b, there is also a “secondary” sequence of periodic
regions described by the progression pn = (2n + 1)p1,0.
On the other hand, in the left part of Fig. 8a, the
sequence of structures follows an arithmetic progres-
sion given by pn = np1,0 + p0,1, where p0,1 = 12. A
remarkable feature observed is the existence of a myr-
iad of accumulation points whose trends are enhanced
when viewed in Fig. 9, a phase diagram constructed
with Lyapunov exponents. In this figure, white regions
correspond to periodic phases with main periodicity
p1,0 = 11, while colors represent chaotic phases. The
arrows indicate the trends towards some of the accu-
mulation points in the diagram.

Finally, Fig. 4f shows several sequences of periodicity
regions which follow arithmetic progressions and are
dominated by a primary periodicity p0,1 = 13 such as
those located in the central part of the phase diagram:

pn = 26, 39, 52, 65, · · · = (n + 1)p0,1 = (n + 1)(p + 1),
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 6 Sequences of arithmetic progressions. a Region 1 of
Fig. 5c and the main periodicities, where two sub-regions
with the U -shape pattern appear. b The magnification of
region 1 of (a), labeling seven sequences identified by colors

and the periodicities pn(k(n), l(n)), where k(n) and l(n) are
multipliers of the basic periodicities p1,0 = 15 and p0,1 = 16.
Description of the sequences and periodicities in panel b: c
A, d B, e C, f D, g E, h F, and i G
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Fig. 7 Return maps (top row) and time series (bottom
row) of three different points of the rightmost part of the
parameter plane of Fig. 4d, where μ = 0.25, and σ = −1.2.

The other parameters are: α = 19.57, and px = 14 in (a) and
(d), α = 19.77, and px = 27 in (b) and (e), and α = 19.97,
and px = 13 in (c) and (f)

(a) (b)

Fig. 8 Phase diagrams showing the periodicities for the boxes a C1 of Fig. 4e, and b Magnification of the box in panel
(a). Numbers mark some periodicity sequences of interest (see text). The color coding is the same used in Fig. 4

pn = 25, 38, 51, 64, . . . = p1,0 + np0,1 = (n + 1)p + n,

pn = 51, 77, 103, 129, . . .

= p1,0 + (2n + 1)p0,1 = 2(n + 1)p + 2n + 1,

pn = 62, 88, 114, 140, . . .

= (2n + 1)p1,0 + 2(p0,1 + n − 1) = (2n + 3)p + 2n,

pn = 63, 89, 115, 141, . . .

= 2p1,0 + (2n + 1)p0,1
= (2n + 3)p + 2n + 1,

pn = 24, 37, 50, 63, . . .

= 2p1,0 + (n − 1)p0,1 = (n + 1)p + n − 1,

among others, where p1,0 = p = 12. As before, we find
the existence of several accumulation points when suit-
ably varying both control parameters simultaneously.

4 Conclusions and outlook

This work reports a detailed fine-scale investigation
of the dynamical response over extended parameter
ranges of a Rulkov neuron, a computationally inexpen-
sive model which is able to reproduce the spiking and
spiking-bursting activity of real biological neurons. We
keep the neuron parameters σ and α fixed and study
the variation of μ over wide range of values. High-
resolution stability diagrams are reported for both the
standard μ = 0.001 value, and for μ = 0.25, a rich foun-
tain of complex neuron oscillations. For small values of
μ, we find oscillations with a considerable number of
spikes per burst, as well as a dramatic fall of the num-
ber of spikes, following a power-law, these quantities
when μ increases. We find that μ values different from
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Fig. 9 Lyapunov diagram showing a magnification of
Fig. 8b, illustrating the tendency of the periodic sequences
towards several accumulation points. Phases of periodic
oscillations are represented in white, colors represent phases
of chaos. As we are interested only in the distinction of reg-
ular and chaotic phases, we omit the color bar describing

the largest Lyapunov exponents of the chaotic phases. Note
that the period of the larger periodic phases are multiple of
11, the dominating period in the figure and that rules the
accumulations, similarly to what occurs in a model of an
optically injected semiconductor laser [67]

μ = 0.001, the standard value frequently considered in
the literature, allow the system to exhibit exuberant
dynamical behavior.

We report an in-depth analysis for μ = 0.25. In par-
ticular, we report the discovery of sequences of remark-
ably nested arithmetic progressions among the periodic
pulsing and bursting phases of the neuron which, can
nevertheless be expressed as simple linear combinations
of pairs of certain basal periodicities. Nested progres-
sions are robust and can be observed abundantly.

The dynamical landscape seems to be very compli-
cated and with intricate periodic regions, at least in
a first view of the periodicities distribution. Never-
theless, an analysis starting from the one-parameter
bifurcation diagram based on periodicities exhibiting
certain U -shaped distributions which allowed us to
find elementary expressions of the arithmetic progres-
sions describing the periodic regions. We found a gen-
eral equation describing such arithmetic progressions
based on two primary periodicities to express the recur-
rence equation linked to the sequences. The latter is
related to the period-increasing scenario, a feature that
seems to be usual in bifurcation diagrams of dynami-
cal systems. Remarkably, the fact that basic periodic-
ities are found to be consecutive numbers allows one
to express progressions with just one primary, or basal,
period. We also found certain “primary periodicities”
which in some cases determine accumulation points of a
sequence. Some progressions are found to depend solely
on a prime number, with the fundamental periodic-
ity related to such prime. In any case, other sequences
appear when the other primary periodicity manifests
itself.

From a mathematical viewpoint, the Rulkov map
shows a rich dynamical behavior that deserves further
study, both analytical and numerical. For instance, in
the control plane μ×σ, periodicity regions have a multi

slices-shape which seem to convergence towards fixed
points. Our findings might contribute significantly to
the better understanding of Rulkov neuron dynamics
and be potentially valuable for large-scale simulations
of the brain and other complex neuron networks.
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