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Abstract
In this note we prove a new characterization of the derangement sets of Ferrers

graphs and present a bijection between the derangement sets and Fk-Callan

sequences. In particular, this connection reveals that the boolean numbers of the

complete bipartite graphs are the D-relatives of poly-Bernoulli numbers.

Keywords Boolean number � Complete bipartite graphs � Ferrers graphs � Poly-
Bernoulli numbers
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1 Introduction

The study of graph invariants plays crucial role in graph theory. Invariants are the

tools to classify graph families according to the particular property. Sometimes,

invariants reveal structural (hidden) connections between graph families or relations

to families of other combinatorial objects. The most studied invariants, as for

instance, the chromatic number, has a simple definition. However, there are also

useful invariants that are based on more complicated concepts. The boolean number
is such an invariant, its definition involves the so-called boolean complex associated

to a given simple graph [3, 10–12]. Though the definition of the boolean numbers is

of topological nature it turned out that they are in close relation to several graph

theoretical issues. For instance, it can be obtained as special value of the bivariate

chromatic polynomials [4]. Jonsson and Welker [10] revealed the strong connection

to acyclic orientations. From our results in the special case of Ferrers graphs, it

follows that the boolean number of a Ferrers graph is equal to the Crapo’s beta

invariant, which is defined as a certain value of the derivative of the chromatic
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polynomial of the graph and counts the number of acyclic orientations with a unique

sink and unique source [7]. We note here that since chromatic polynomials appear in

several contexts we also suspect that the boolean numbers could be treated with

techniques from these areas, as from the theory of hyperplane arrangements [7].

However, in this paper we focus on a more direct (elementary) approach that was

introduced by Ragnarsson and Tenner [12]. Ragnarsson and Tenner [12] defined the

derangement set of a graph and showed that the boolean number of the graph is

equal to the cardinality of this set. They presented a recursive algorithm that

constructs the derangement set of a graph depending on the particular linear

ordering of its vertex set.

It is always an important fundamental question what we can say about the

invariant of some well-known basic or special ‘‘interesting’’ graph families as

complete graphs, bipartite complete graphs, path graphs, bipartite graphs, etc. The

boolean number of the complete graph, Kn, for instance, is the number of

derangements of ½n� ¼ f1; 2; . . .; ng [15, A000166], as shown in [6, 11, 13]. The

special graph family, the family of the so-called Ferrers graphs, graphs associated
to a given Ferrers shape, gives rise to interesting cases. We think that these results

are beautiful examples how different ideas and aspects in mathematics fit at a point

together.

For Ferrers graphs associated to staircase shapes Ragnarsson and Tenner [12]

described a linear ordering and gave a bijective proof to show that the derangement

set of a Ferrers graph of the staircase shape is the set of permutations of alternating

excedances. This proof gives a combinatorial explanation of the result in [3] stating

that the boolean numbers of Ferrers graphs with staircase shapes are the median

Genocchi numbers [15, A005439]. Note that the median Genocchi numbers count

also the number of regions of a certain hyperplane arrangements as shown by Hetyei

[8]. Our work provides a connection between these two seemingly independent

results.

One of the aims of our note is to point out that this is a special case of a general

correspondence between the boolean numbers of Ferrers graphs and the number of

Fk-Callan sequences [2]. Another goal is to highlight that the boolean numbers of

the complete bipartite graphs, for which Claesson et al. [3] derived a formula, is also

a known number array, the D-relatives of poly-Bernoulli numbers [1, 15, A272644].

We characterize the derangement set of general Ferrers graphs based on the

canonical labelings [2, 14] and the algorithm of Ragnarsson and Tenner [12]. This

characterization implies that the cardinality of the derangement set of a graph

associated to a general Ferrers shape, Fk, is the same as the number of Fk-Callan

sequences.

Moreover, we present a bijection between the derangement sets and the

corresponding Fk-Callan sequences. Further correspondences to certain fillings of

Ferrers shapes (lonesum fillings, C-free fillings, etc) follow from our bijection. In

particular, this bijection connects the derangement sets of a graph, i.e., the boolean

numbers of Ferrers shapes to several combinatorial objects, including EW–tableaux,

LE–tableaux, acyclic orientations, abelian sandpile models, [2, 14] etc.

The outline of the paper is as follows. Since we addressed this note also to

readers who are not familiar with all the details in the different areas, we want to
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keep this note self-contained as far as it is possible. For these reasons, in Sect. 2 we

recall the necessary definitions and concepts about the boolean number. In Sect. 3,

we consider first complete bipartite graphs, because the key ideas are easy to follow

in this special case. Finally, after understanding the case of the complete bipartite

graphs the generalization to Ferrers graphs which we work out in Sect. 4 is almost

straightforward.

2 Preliminaries

2.1 The Boolean Complex and the Boolean Number of a Graph

Given a finite simple graph G ¼ ðV ;EÞ, let the following equivalence relation

defined on the set of words on V without repetition: w and w0 are equivalent if w0 can
be obtained from w by applying a sequence of commutations tt0 ! t0t such that t and
t0 are not adjacent in G, i.e. ðt; t0Þ 2 E. We denote the equivalence class of w by [w]
and the set of the equivalence classes by BðGÞ. Further, we order the set BðGÞ by
saying that ½v� � ½w� if there are representatives v0 2 ½v� and w0 2 ½w� such that v0 is a
subword of w0. (A subword of a word x1. . .xr is a word xj1 . . .xjs such that

1� j1� � � � � js� r.) With this order BðGÞ is a poset, the boolean poset of G. The

boolean poset is a ranked poset, whose rank is given for each [w] by the length of a

representative word w 2 ½w�. The boolean complex is defined as the regular cell

complex, DðGÞ, that has BðGÞ as its face poset. The geometric realization jDðGÞj is
obtained the usual way by taking for each k-cell in DðGÞ a geometric simplex and

gluing the simplices together according to the face poset. jDðGÞj is isomorphic to

the wedge sum of ðn� 1Þ-spheres [11, 12].

jDðGÞj ’
_bðGÞ

i¼1
SjVðGÞj�1:

The number of the spheres, bðGÞ, is called the boolean number of G. One approach

to determine the boolean number is the recursive definition of these numbers [11].

The initial conditions are as follows: the boolean number for a graph with no edges

is 0, while the boolean number of the graph containing two vertices adjacent by an

edge, K2, is 1.

For graphs with at least three vertices it holds:

bðGÞ ¼ bðG� eÞ þ bðG=eÞ þ bðG� ½e�Þ: ð1Þ

The graph operations G� e, G/e, G� ½e� are defined as usual. Given a graph

G ¼ ðV;EÞ and an edge e 2 E G� e is the graph obtained from G by deleting the

edge e, G/e is the graph obtained from G by contracting the edge e and deleting all

redundant edges, and G� ½e� is the graph obtained from G by deleting the vertices

incident to e.
It is easy to see, for instance, that bðGÞ ¼ 0 holds for any graph that contains an

isolated vertex. This recursion was used in [3] to compute the boolean numbers for

Ferrers graphs.
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2.2 Acyclic Orientations

The poset BðGÞ can be also seen as the poset of acyclic orientations on induced

subgraphs. An orientation of G ¼ ðV;EÞ is an assignment of a direction to each

edge (i, j) denoted by i! j or j! i. An orientation of G is acyclic if it doesn’t

contain coherently directed cycles. An induced subgraph is the graph on a subset

V 0 � V of vertices of G with all the edges from E that are on V 0. To an acyclic

orientation one can associate a word w on the vertices of the underlying vertex set:

we arrange the vertices in an order such that each edge points forward. To an

injective word w (a word such that each letter of the groundset appears at most once)

we can associate the acyclic orientation on the induced graph with vertex set of the

elements of the word and edges a! b if a precedes b in the word w. The authors in
[10] showed that this defines a poset isomorphism between the boolean poset of a

graph and the poset of acyclic orientations on induced subgraphs. Moreover, BðGÞ is
shellable and the boolean number is equal to the number of some maximal elements.

Hence, the boolean number is the number of certain acyclic orientations of the graph

G.

Green and Zaslavsky showed [7] that the number of acyclic orientations of a

graph with a specified u0v0 edge such that u0 is the unique source and v0 is the

unique sink is the derivative of the chromatic polynomial evaluated at 1 with an

appropriate signing. This expression, v0ðG; 1Þ, is called the Crapo’s beta-invariant
of G.

2.3 The Bivariate Chromatic Polynomial

Based on the recursive property of the boolean number (1) one can show that it is

the evaluation of certain graph polynomials [3].

Dohmen et al. [4] introduced a generalization of the chromatic polynomial, the

bivariate chromatic polynomial P(G; x, y). P(G; x, y) counts the number of

colorings of G using y proper and x� y improper colors. Two adjacent vertices

can only be colored by an improper color but not by a proper color.

Let aij be the number of independent partitions (such that there are no edges

between vertices contained in the same block) of G with exactly i singletons and j
blocks containing two or more vertices. Then

PðG; x; yÞ ¼
Xn

i¼0

Xn

j¼0
aij

Xi

k¼0

i

k

� �
ðx� yÞkðyÞiþj�k;

where ðyÞn ¼ yðy� 1Þ � � � ðy� nþ 1Þ.
The boolean number is given by the bivariate polynomial evaluated at x ¼ 0 and

y ¼ �1 [3].

bðGÞ ¼ ð�1ÞnPðG; 0;�1Þ:
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2.4 Derangement Set of Graphs

Ragnarsson and Tenner [12] present an algorithm that constructs a set of

permutations to a given finite simple graph G, DðGÞ, the derangement set of the
graph G such that

bðGÞ ¼ jDðGÞj:

We recall the definition of the algorithm. Let t denote the maximal vertex of G.

• If V ¼ f1; 2g with an edge between them, then DðGÞ ¼ fð12Þg.
• If t is an isolated vertex, then DðGÞ ¼ ;.

Let e ¼ fs; tg be the maximal edge of the graph, where t is the maximal vertex and

s is the maximal vertex adjacent to t. The recursive step is defined on operations on

the maximal edge.

Deletion: Since G� e has the same vertex set as G, the permutations associated

to these graphs are the same.

Simple Contraction: Let x be the vertex in G/e that is obtained by contracting e.
Given a permutation p associated to the vertex set of G/e, let p� be the

permutation on the vertex set of G such that we replace x by st in this order in the

cycle notation of p.
Extraction: The vertex set of G� ½e� is a subset of the vertex set of G, i.e.,

VðG� ½e�Þ ¼ VðGÞ n fs; tg. Given a permutation p on the vertex set of G� ½e�, a
permutation pþ ðstÞ on the vertex set of G is given by applying p to any element

of the vertices of G� ½e� and the transposition (st) to the elements s and t.

The recursive step is the following: If t is not an isolated vertex, e ¼ fs; tg is the
maximal edge, and G has at least three vertices, then set:

DðGÞ :¼ DðG� eÞ [ fp� : p 2 DðG=eÞg [ fpþ ðstÞ : p 2 DðG� ½e�Þg:

The recursive step and the initial conditions of the algorithm coincide with those for

the boolean number. Another useful characterization of DðGÞ is also given in [12].

Let p be a permutation written in standard cycle form, i.e. written as a product of

cycles, the least element of a cycle in the first place and the cycles arranged from

left to right in increasing order of the minimum elements of the cycles. For instance,

p ¼ ð14Þð2573Þð6Þ. For a vertex t of G, let kpðtÞ be the first element appearing to the

left of t that is smaller than t, i.e.

kpðtÞ ¼ p�‘ðtÞ with ‘ ¼ minfi : p�iðtÞ� tg:

Further, let qpðtÞ the set of elements obtained by starting at t and moving to the right

until reaching a smaller element than t, i.e.
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qpðtÞ ¼ ft; pðtÞ; p2ðtÞ; . . .; pk�1ðtÞg with k ¼ minfi : piðtÞ� tg:

For instance, for the smallest element t in the cycle qpðtÞ is the entire set of the

elements in the cycle and kpðtÞ ¼ t. In our example kpð5Þ ¼ 2 and qpð5Þ ¼ f5; 7g.

Theorem 1 ([12]) Let G be a finite simple graph and let p be a permutation on its
vertex set. Then p 2 DðGÞ if and only if for every vertex t of G the vertex kpðtÞ is
adjacent to a vertex in qpðtÞ.

3 The Complete Bipartite Graphs

3.1 Applications of General Results

First, we apply the known facts recalled in the previous section to complete bipartite

graphs.

Claesson et al. [3] presented the following formula for the boolean numbers of

complete bipartite graphs using the recursive relation (1):

bðKn;kÞ ¼
Xn

i¼0
ð�1Þnþii!ik nþ 1

iþ 1

� �
: ð2Þ

However, it is not mentioned there that this number sequence is the so-called D-

relatives of poly-Bernoulli numbers. The D-relatives of poly-Bernoulli numbers,

Dn;k, were introduced in [1] as the number of lonesum matrices of size n� k without

all-1 rows and all-1 columns. A matrix is called lonesum if it is uniquely recon-

structible from its row sum and column sum vectors. The first few values are given

in Table 1.

The interested reader finds a detailed description about the combinatorial

properties of the D-relatives of poly-Bernoulli numbers such as combinatorial

interpretations and different formulas in [1]. A connection that is not mentioned

there is given in [9].

Here we recall the exponential generating function given by

X1

n¼1

X1

k¼1
Dn;k

xn

n!

yk

k!
¼ 1

ex þ ey � exþy
;

and a closed formula: for n	 1 and k	 1

Table 1 D-relatives of poly-

Bernoulli numbers
n, k 1 2 3 4 5

1 1 1 1 1 1

2 1 5 13 29 61

3 1 13 73 301 1081

4 1 29 301 2069 11581

5 1 61 1081 11581 95401
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Dn;k ¼
Xminðn;kÞ

i¼0
ði!Þ2

n

i

� �
k

i

� �
:

It is known that Dn;k enumerates the acyclic orientations of the complete bipartite

graph Knþ1;kþ1 with an edge u0v0 where u0 is a unique source and v0 is a unique sink
[1]. Hence, the D-relatives of poly-Bernoulli numbers are equal to the Crapo’s beta

invariant of the complete bipartite graphs, i.e.

Dn;k ¼ ð�1Þnþkv0ðKnþ1;kþ1; 1Þ:

Simple calculations show that Dn;k is also an evaluation of the bivariate chromatic

polynomial. The bivariate chromatic polynomial of the complete bipartite graph is

PðKn;k; x; yÞ ¼
Xn

m¼0

n

m

� �
ðx� yÞn�m

Xm

j¼0

m

j

� �
ðyÞjðx� jÞk:

Substituting x ¼ 0 and y ¼ �1, we obtain the formula (2). Hence, we have

bðKn;kÞ ¼ PðKn;k; 0;�1Þ ¼ Dn;k:

We summarize these facts in the following theorem.

Theorem 2 The boolean number of the complete bipartite graph Kn;k is the number
of acyclic orientations of Knþ1;kþ1 having a specified edge u0v0 where u0 is a unique
sink and v0 a unique source. Hence,

bðKn;kÞ ¼ ð�1Þnþkv0ðKnþ1;kþ1; 1Þ:

In particular, we have

bðKn;kÞ ¼ Dn;k:

3.2 Derangement Sets of Complete Bipartite Graphs and Callan Sequences

We now show how the identity bðKn;kÞ ¼ Dn;k can be seen based on the

interpretation of the boolean number as the derangement set of a graph.

We characterize the derangement set of the complete bipartite graphs, DðKn;kÞ.
For convenience, we ‘‘color’’ the labels in [n] red and the labels in fnþ 1; . . .; nþ
kg blue. We refer to these elements as red elements and blue elements, respectively.

Lemma 3 A derangement w 2 DðKn;kÞ is characterized by the following two
properties:

(a) Each cycle is an alternating sequence of blocks of red elements and blocks of

blue elements, always starting with a red block and ending with a blue block.

(b) In a red block the elements are increasing and in a blue block the elements are

in decreasing order.
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Proof First, we show that if w 2 DðKn;kÞ, then (a) and (b) are true. The crucial

observations about the algorithm are the following. The cycles of a permutation are

created in the extraction step. The order of the elements in a cycle is determined in

the simple contraction step. Namely, during a simple contraction step the label of

the new vertex is created by gluing together the labels of the contracted vertices in a

certain order (smaller label first). Two elements in a derangement can only follow

each other if in any contraction step during the algorithm they are glued together.

Considering these facts in the special case of a complete bipartite graph, a simple

case analysis shows that only sequences with the properties (a) and (b) can arise. Let

(s, t) denote the maximal edge of the actual graph (that is arisen in any step starting

from a complete bipartite graph). Then the vertex x ¼ st that is created by

contracting the edge (s, t) can obtain one of the following labels.

• If s ¼ r, i.e. s is a red vertex, and t ¼ b, i.e. t is a blue vertex, then st ¼ rb, since
we always write the smaller label first.

• If s ¼ ri and t ¼ rj. . .bj, i.e. t has a label that starts with a red element and ends

with a blue element and ri\rj, then st ¼ rirj. . .bj.

• If s ¼ ri. . .bi and t ¼ rj and ri\rj, then st ¼ ri. . .birj.

• If s ¼ ri. . .bi and t ¼ rj. . .bj, then st ¼ ri. . .birj. . .bj. It is necessary that ri\rj,

since s\t and the first element determines the order of a label in the actual

graph.

• If s ¼ ri. . .bi and t ¼ bj, then st ¼ ri. . .bibj. Note that bi [ bj because the

recursion is always on the maximal vertex of the actual graph, hence, it is not

possible that a greater bi is not visited yet as bj is considered.

On the other hand, let w be a permutation with the above characterization.

According to Theorem 1 it is sufficient to show that for each t kwðtÞ is adjacent to
one of the elements of qwðtÞ. This means in our terminology to show that there is an

element of qwðtÞ colored differently than kwðtÞ. We claim that kwðtÞ is always red.
Assume t is red. Since the red elements in a block are in increasing order kwðtÞ ¼ t,

if t is the least element in the block or kwðtÞ ¼ w�1ðtÞ (the first (red) element to the

left of t). In both cases kwðtÞ is red. Assume now that t is blue. Let B be the block

that contains t and R the red block directly to the left of B. Since the blue elements

are in decreasing order in the block there are no elements in B to the left of t that is
smaller than t. Hence, the first element that is smaller than t is in R. Note that all red
elements are smaller than any blue elements.

We have to show now that there is a blue element in qwðtÞ for all t. If t itself is
blue, we are done, since qwðtÞ contains t. If t is red, let say in a block Ri, then there is

no smaller element in Ri to the right of t, and even not in Bi, in the blue block

followed directly by the red block Ri. The first smaller element can be in Riþ1 or to
the left of t in Ri. In both cases Bi is contained in qwðtÞ, so we are done. h

Next, we recall the definition of the so-called Callan sequences that decode

acyclic orientations of complete bipartite graphs in a natural way.
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Definition 4 A Callan sequence ðR1;C1ÞðR2;C2Þ. . .ðRm;CmÞ for some m 2 N0 is a

sequence, where R1, R2, . . ., Rm is an ordered partition of f1; 2; . . .; ng and C1, C2,

. . ., Cm is an ordered partition of fnþ 1; . . .; nþ kg.

A Callan sequence uniquely determines an acyclic orientation of Knþ1;kþ1 with an
edge u0v0 where u0 is a unique source and v0 is a unique sink as follows. Let U
denote the vertex class with nþ 1 vertices, and V the vertex class with k þ 1

vertices. Label one vertex from U by u0 (as the unique source) and the other vertices

from U by f1; 2; . . .; ng, while one vertex from V by v0 (as the unique sink) and the

other vertices by fnþ 1; nþ 2; . . .; nþ kg. Assign the edges ðu0; viÞ as u0 ! vi for

all i and the edge ðui; v0Þ as ui ! v0 for all i. Further, given the Callan sequence

ðR1;C1ÞðR2;C2Þ. . .ðRm;CmÞ, assign the edges between u! v with u 2 Ci and v 2
Rj if and only if i� j.

We now describe the bijection between Callan sequences and derangements

associated to Kn;k.

Given a Callan sequence r ¼ ðR1;C1ÞðR2;C2Þ. . .ðRm;CmÞ, we call the pairs

ðRi;CiÞ for � i�m the Callan pairs. Given a Callan pair ðRi;CiÞ, let RiCi denote

the number sequence that we obtain by recording the elements of the set Ri in

increasing order followed by the elements of the set Ci written in decreasing order.

For example, if , then . Let ri

denote the least element of Ri and let p denote the function that maps the least of the

ri’s to 1, the second least to 2, and so on. So, pðr1; r2; . . .; rmÞ is a permutation of

f1; 2; . . .;mg. Write pðr1; . . .; rmÞ in standard cycle notation. Finally, extend this

permutation to a permutation of ½nþ k� by replacing each ri with the sequence RiCi.

We denote this map by /. It is clear that the so obtained permutation /ðrÞ ¼ p has

the characterization (a) and (b), hence, it is a derangement associated to Kn;k.

The inverse of the bijection is straightforward. For the sake of completeness we

describe it. Let p 2 DðKn;kÞ be given in standard cycle notation. Each cycle is an

alternating sequence of blocks of red and blocks of blue elements, always starting

with a red block and ending with a blue block. Identify the red-blue block pairs with

the least element, the first red element. There is a permutation given in cycle

notation of these elements. Record the red-blue block pairs in the one-line notation

of the permutation of the least elements that was given in cycle notation. The result

of this process is a Callan sequence.

Example 5 Let the Callan sequence be

The least red elements are: , and the corresponding permutation is

pð2; 4; 1; 5Þ ¼ 2314; in cycle notation (123)(4). So we have

/ðrÞ ¼ p ¼ ð1 3 10 2 7 8 13 11 4 6 14 9Þð5 15 12Þ:
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4 Ferrers Graphs

In this section we show that our bijection can be applied for the more general case of

Ferrers graphs.

4.1 Previous Results

The boolean numbers of Ferrers graphs were derived in [3] using the recursion (1).

Our bijection proves that the boolean number is equal to the Crapo’s beta invariant

of the graph, i.e. to the number of acyclic orientations with a unique sink and a

unique source in this case also.

Ferrers graphs were introduced in [5]. A Ferrers graph is the bipartite graph on

the vertex partition U ¼ fu1; . . .; ung and V ¼ fv1; . . .; vkg such that

• if ðui; vjÞ is an edge then so is ðup; vqÞ for 1� p� i and 1� q� j, and
• ðu1; vkÞ and ðun; v1Þ is an edge.

Given a partition k ¼ ðk1; k2; . . .; kkÞ where k1	 k2	 . . .	 kk, the Ferrers shape Fk

is an arrangement of cells justified to the left and to the top such that Fk has k rows

with ki cells in the ith row, from top to bottom (i ¼ 1; . . .; k). The Ferrers shape can
also be given by the sequence of down and left steps of the southeast border, i.e by a

word on the alphabet fd; lg. The Ferrers shape in Fig. 1 associated to k ¼ ð4; 3; 2Þ is
decoded uniquely this way by the word dldldll. To a Ferrers graph we associate the

Ferrers shape where there is a cell in position (i, j) if and only if ðui; vjÞ is an edge in
the Ferrers graph. For convenience, we will also refer to the Ferrers graph associated

to the Ferrers shape as Fk (see Fig. 1).

A Ferrers diagram (tableau, or 0–1-filling of a Ferrers shape) is an assignment of

a 0 or a 1 to each of the cells of a Ferrers shape Fk. A Ferrers diagram is lonesum if

it doesn’t contain any of the two submatrices of the flipping pair:

F ¼
1 0

0 1

� �
;

0 1

1 0

� �� �
:

Acyclic orientations of a Ferrers graph are in natural bijection with lonesum fillings

of the Ferrers shape. Namely, the cell (i, j) contains 1 if and only if ui ! vj and the

cell (i, j) contains 0 if and only if ui  vj. Note that in this correspondence a source

1

3

5
7 6

4

2

7 6 4 2

1 3 5

Fig. 1 Ferrers shape and Ferrers graph with canonical labels
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is an all-1 row a sink is an all-1 column in the lonesum filling of the Ferrers shape.

We now consider a Ferrers shape, k ¼ ðk1; k2; . . .; knÞ, extended by an extra row and

extra column, k0 ¼ ðk1 þ 1; k1 þ 1; k2 þ 1; . . .; kn þ 1Þ. Take a lonesum filling of

Fk0 in that the first row and first column is an all-1 row and an all-1 column, but all

the other rows and columns contain at least one 0. It is clear, that in this way we

decode an acyclic orientation of the Ferrers graph associated to the shape Fk0 with a

unique sink and a unique source. In the definition of the Crapo’s beta variant the

vertices that play the role of a unique source and a unique sink are important.

However, it follows from the above argument that the number of fillings of the

Ferrers shape k with the requirement not containing any all-1 rows or columns is the

same as the fillings of the Ferrers shape k0 where only the first row and the first

column do not contain 0. In accordance, we refer to Ferrers graphs, Fk, and to the

extended Ferrers graphs Fk0 , where we always assume that the unique source and

unique sink are the vertex associated to the first row and first column of the shape

Fk0 , respectively. Hence, for convenience, we focus on Fk and when we talk about

the extended Ferrers graph Fk [ u0; v0 with a unique source and a unique sink we

mean the extension in the way described above.

We label now the rows and columns on the southeast border of a Ferrers shape Fk

with the numbers 1; 2; 3; . . . such that the top row gets label 1 and the successive

border edges get the remaining numbers in order. Let LrðFkÞ denote the set of the

elements associated to the row (which we will refer to as red elements), and LcðFkÞ
denote the set of the elements associated to the columns (which we will refer to as

blue elements). Considering the Ferrers graph, this canonical labeling means in the

terminology of colors that the vertices of U are red while the vertices of V are blue.

Also note that each red vertex is adjacent to each greater blue vertex and with no

other vertices. In the example in Fig. 1, the canonical labeling of the Ferrers shape is

and the vertex classes of the associated Ferrers graphs are

labeled by and .

Definition 6 For a given Ferrers shape Fk, we call a sequence an Fk-Callan
sequence if the sequence is ðR1;C1Þ; . . .; ðRm;CmÞ for some m 2 N0 such that

• R1; . . .;Rm is an ordered partition of the set LrðFkÞ pairwise disjoint nonempty

subsets of LrðFkÞ such that [m
i¼1Ri ¼ LrðFkÞ,

• C1; . . .;Cm is an ordered partition of the set LcðFkÞ pairwise disjoint nonempty

subsets of LcðFkÞ, such that [m
i¼1Ci ¼ LcðFkÞ,

• maxRi\minCi, for all i ¼ 1; . . .;m.

The set of Fk-Callan sequences is denoted by CallanðFkÞ.

Note that this definition is a slight modification of the definition in [2].

4.2 Generalization of the Bijection

Our bijection proves a one-to-one correspondence between the set of Fk-Callan

sequences and the set of derangements associated to the Ferrers graph Fk. We claim

this fact in the following proposition.
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Proposition 7

jDðFkÞj ¼ jCallanðFkÞj:

Proof First, we observe that for characterisation of a permutation of the set DðFkÞ
we need to augment the two properties (a) and (b) of Lemma 3 with the following

property:

(c) a red sequence can only be followed by a blue sequence of greater elements.

This is because during a simple contraction step an existing edge of the graph is

contracted, and in the case of the Ferrers graph Fk edges are only between red and

blue vertices such that the label of the red vertex is smaller than the label of the blue

vertex. All the other considerations and the case analysis are the same as in the proof

of Lemma 3.

Let now r be a Fk-Callan sequence, r 2 CallanðFkÞ. We show that w ¼ /ðrÞ is
in the set of associated derangements, w 2 DðFkÞ. We use again Theorem 1, and

show that for each t, kwðtÞ is adjacent to one of the element of qwðtÞ.
Assume first that t is blue, i.e. t 2 Ci for some i. Since the elements are arranged

in decreasing order, the first element that can be smaller than t to the left of t is red.
Moreover, kwðtÞ ¼ maxRi. Since t 2 qwðtÞ and kwðtÞ\t is a red element, t and kwðtÞ
are adjacent.

Assume now that t is red, i.e. t 2 Ri for some i. Then t is the least in the cycle

(t ¼ kwðtÞ) or there is a smaller red element to the left of t, since red elements are in

increasing order. We claim that qwðtÞ contains all the elements in Ci. Namely, in

order to find the first smaller element to the right of t we have to ‘‘pass‘‘ the

elements Ci, since the elements of Ri to the right of t are greater than t and so are all

elements in Ci because maxRi\minCi. The red element t 2 Ri is adjacent to all Ci,

so we are done. h

Example 8 Let Fk be the Ferrers shape with border ddlddldllldlddll and the Fk-

Callan sequence

Then the smallest red elements are and

pð5; 11; 1; 2Þ ¼ 3412 ¼ ð13Þð24Þ. Hence, we have

/ðrÞ ¼ p ¼ ð1 4 7 10 9 5 12 8 6Þð2 13 15 3 11 14 16Þ:

In [2] a bijection is presented between Fk-Callan sequences and lonesum Ferrers

diagrams which can be easily turned to a bijection between acyclic orientations with

an edge u0v0 where u0 is a unique source and v0 is a unique sink and Fk-Callan

sequences. Proposition 7 together with previous results [2, 12] implies the following

theorem.
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Theorem 9 The boolean number of the Ferrers graphs Fk is the number of acyclic
orientations of the extended graph Fk [ fu0; v0g with a unique source u0 and a
unique sink v0. In particular, the boolean number of Fk is equal to the Crapo’s beta
invariant of Fk [ fu0; v0g.

The special case for the Ferrers graphs with staircase shapes, FM, is an immediate

corollary. (A staircase shape is the Ferrers shape with k1 ¼ n, k2 ¼ n� 1, . . .,
kn ¼ 1.)

Corollary 10 Let FM denote the Ferrers graph with staircase shape. The boolean
number of FM is the number of acyclic orientations of FM [ fu0; v0g with the unique
source u0 and unique sink v0, and the number of the lonesum fillings of the staircase
shape M without any all-1 columns and all-1 row, i.e. the median Genocchi number.

Proof The bijections in this special case can be find explicitly in [2]. h
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