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a b s t r a c t

Determination of pore pressure (PP), a key reservoir parameter that is beneficial for evaluating
geomechanical parameters of the reservoir, is so important in oil and gas fields development. Accurate
estimation of PP is also essential for safe drilling of oil and gas wells since PP data are used as the input
for safe mud window determination. In the present study, empirical equations along with machine
learning methods, namely random forest algorithm, support vector regression (SVR) algorithm, artificial
neural network (ANN) algorithm, and decision tree (DT) algorithm, are employed for PP prediction
applying well log data. To this end, 2827 data records collected from three wells (Well A, Well B, and
Well C) drilled in one of the Middle East oil fields are used. The dataset of Wells A and B is used for
models’ training, validating, and testing, while Well C dataset is applied for evaluating the models’
generalizability in PP prediction in the field under study. To construct the predictive algorithms, 12
input variables are initially considered in the study. A feature selection analysis is conducted to find
the most influential input variables set for developing PP predictive models. The results obtained
suggest that the 9-input-variable set is the most efficient combination of inputs used in the ML models
construction. Among all the four ML algorithms proposed, the DT algorithm presents the most accurate
predictions for PP, delivering R2 and RMSE values of 0.9985 and 14.460 psi, respectively. Furthermore,
the model generalization analysis results reveal that the 9-input-variable DT model developed can
be used for PP prediction throughout the field of study since it presented an excellent accuracy
performance in predicting PP when applied to Well C dataset.
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1. Introduction

Pore pressure (PP) is one of the essential parameters in differ-
ent processes of drilling and exploration, including well
design, well stability analysis, and mud program design (Hu et al.,
2013; Yu et al., 2020; Bahmaei and Hosseini, 2020; Zhang et al.,
2020). Accurate determination of PP helps in selective production
and injection, hydrocarbon migration path mapping, and preven-
tion of drilling mud loss during drilling (Mousavipour et al., 2020;
Ahedor et al., 2020). Inaccurate estimation of PP can cause severe
problems during drilling operation such as loss of drilling mud
into the formation being drilling, which may result in the kick of
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he formation fluid in the well and finally well blowout that will,
n turn, cause Irreparable damages to the drilling rig and well
rew (Zhang et al., 2020; Mahetaji et al., 2020; Maddahi et al.,
020).
The pore pressure, also called the formation pressure, is the

ressure of the fluids inside the formation pore, resulting from
he hydraulic potential (Oloruntobi et al., 2020). In a drilling
peration, pore pressure is regarded as a safe pressure only if
he hydrostatic pressure of the drilling fluid in the wellbore falls
etween the formation pressure and formation fracture pres-
ure (Darvishpour et al., 2019; Richards et al., 2020). Formation
ressure can be classified in two forms: (i) natural pressure
i.e., drilling mud hydrostatic pressure exceeds the formation
ressure and less than the fracture pressure of the formation)
ii) abnormal pressure (i.e., drilling mud pressure is less than the
ormation pressure) (Bahmaei and Hosseini, 2020; Li et al., 2012).

.1. Literature review

In recent years, various methods have been employed by many
esearchers to predict and estimate the PP accurately, discussed
s follows:
The first study made on the prediction of PP was presented by

erzaghi in 1943, in which an empirical equation was developed
o estimate the PP. He designed an experiment to examine the
ffect of rock compaction on overburden pressure. According to
he theory proposed, the overburden pressure was neutralized by
he PP exerted by the vertical stresses, and all the effects of stress,
ncluding changes in the elastic wave velocity, were considered as
ffective stresses.
Hottmann and Johnson, in 1965, conducted a study to predict

P, considering the properties of shales and the deviation in
ound velocity recorded by sonic logs (Hottmann and Johnson,
965).
In 1943, Terzaghi et al. developed a relationship displaying

hat overburden pressure is a function of the PP and effective
tress in the rock matrix (see Eq. (1)) (Terzaghi, 1943). Hav-
ng effective stress available and estimating overburden pressure
hrough Eq. (2), PP can be estimated using Eq. (1).

over = Seff + PP (1)

over =

∫ h

0
ρgh dh (2)

Where Sover stands for overburden stress, Seff represents effective
stress, PP denotes PP and ρ is bulk density, g denotes gravitational
acceleration, and h signifies depth.

Biot Willis also proposed an empirical relationship (see Eq. (3))
between overburden pressure, effective stress, and PP, consid-
ering a coefficient called Biot, which represents changes in the
volume of the pore fluid to those of the total rock volume. Biot
coefficient equals 1, where the fluid can readily flow through the
pores in the rock. It should be noted that Boit’s equation is valid
only for homogeneous rocks, and applying the Biot coefficient to
heterogeneous rocks leads to a great deal of error (Biot and Willis,
1957).

PP =
Sover − Seff

β
(3)

Where PP represents the PP, β signifies the Biot coefficient, and
Sover and Seff represent the overburden and effective stresses,
respectively.

In addition to these studies, other empirical models to predict
PP have been developed using shear wave velocity, resistance,
and compression log data (Eaton, 1975; Bowers, 1995; Yoshida
et al., 1996). In 1975, Eaton proposed two empirical models
for predicting PP using compressional pressure wave logs, shear
2234
wave, and resistivity logs (Eqs. (4) and (5)) (Yoshida et al., 1996;
Shen et al., 2017; Farsi et al., 2021a).

PP = Sover − (Sover − Shyd)
(

∆n

∆t

)q

(4)

PP = Sover − (Sover − Shyd)
(
Rt

Rn

)q

(5)

Where Sover represents overburden stress, Shyd denotes hydro-
static pressure gradient stress, ∆n signifies sonic log measured in
shale based on compressional log, ∆t stands for sonic log mea-
ured in shale based on compressional log, and Rn and Rt denote
esistivity log in normal pore pressure profile and resistivity log,
espectively.

Reviewing the results presented in most of the articles in
hich empirical model proposed for prediction of the param-
ters involved in the oil and gas industry, it was found that
hese equations provide accurate predictions for the parameter
f interest only for the field, the data of which are used in the
evelopment of the empirical equations (i.e., empirical models
re a field-specific) (Abad et al., 2021a; Naveshki et al., 2021). To
vercome this issue, recently, many studies have been performed
o develop predictive models for forecasting diverse parameters
ithin the oil and gas industry applying artificial intelligence
echniques (Hazbeh et al., 2021a). In the following, some of the
ntelligent predictive models having been developed in the recent
ecade are reviewed.
In 2010, Wang et al. conducted a study on the prediction of the

P, where they used three methods: trend line method (TLM), the
riginal Fillippone formula method (OFFM), and hybrid genetic
lgorithm without a mutation rate (HGANM) (Wang et al., 2010).
nalyzing the prediction results for the three methods used, it
as found that the proposed HGANM method provided the best
rediction performance accuracy.
Later in 2013, the Propagation Artificial Neural Network

BPANN) method was used by Hu et al. to predict the PP based
n the data gathered from 5 wells within two different fields. The
tudy’s outcome showed a considerable degree of error involved
n the predictions made by the model, where the average error
eported for the model was 7.15% (Hu et al., 2013).

Abidin, in 2014, used ANN algorithm technique for the pre-
iction of PP. The prediction performance accuracy of their intel-
igent model was adequately high, where the reported error for
P predictions was equal to 5.0048% (Abidin, 2014).
In 2017, Haris et al. employed the probabilistic neural network

PNN) method to predict PP applying bulk density, Vp/ Vs ratio,
-impedance (Zp), and S-impedance (Zs) as input parameters
o the predictive model. Their results displayed the PNN model
roposed delivered a high degree of prediction performance ac-
uracy, where the PNN model’s precision was 98% higher than
elationships developed based on seismic data (Haris et al., 2017).

In 2018, Rashidi and Asadi utilized a set of drilling data,
echanical specific energy (MSE), and drilling efficiency (DE),
ollected from three wells drilled a sandstone reservoir in Iran to
redict the PP of the formation applying an ANN. Analyzing the
esults of the proposed ANN proved that the model proposed can
ake accurate predictions. They also stated that the predictive
NN might be applied for real-time PP prediction while a well is
eing drilled (Rashidi and Asadi, 2018).
Karmakar and Maiti, in 2019, based on 357 well log data

ecords, developed predictive models applying Bayesian neural
etwork (BNN) optimized by the Scaled Conjugate Gradient (SCG)
nd Hybrid Monte Carlo (HMC) to predict the PP in well U1343E
ocated at Bering Sea slope region of the IODP. The outcome of
heir study showed that the BNN model presents a high degree
f accuracy in PP prediction by delivering reduction error (RE)
round 0.98 (Karmakar and Maiti, 2019).
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In 2020, four inelegant predictive models, namely gradient
oosting machines (GBM), support vector machine (SVM), mul-
ilayer perceptron (MLP), and random forest algorithm, were
mployed by Yu et al. to predict the PP. Comparison of the
roposed models’ prediction accuracy results displayed that the
F algorithm outperformed the other three models in terms of
rediction performance accuracy (Yu et al., 2020).
Recently, in 2021, Abdelaal et al. based on 3100 drilling data

ecodes, developed three models such as support vector ma-
hines, functional networks, and random forest to predict PP
uring the drilling operation. The proposed model used four input
ariables, including the rate of penetration (ROP), mud flow rate
Q), standpipe pressure (SPP), and rotary speed (RS). Comparing
he prediction results of the models proposed showed that the RF
lgorithm was the best model among all four models in terms of
rediction accuracy (R = 0.98 and AAPE = 2%) (Abdelaal et al.,
021).
The present paper aims to develop four intelligent predic-

ive models for predicting PP by petrophysical data. The four
ewly configured algorithms developed include Random Forest
RF) algorithm, support vector regression (SVR) algorithm, arti-
icial neural network (ANN) algorithm, and decision tree (DT)
lgorithm. The models are developed based on a combination
f 9 input variables with the highest degree of influence on
he PP, conducting a sensitivity analysis. The input variables in-
olved in the development of the predictive models include (LLS),
omputed gamma ray (CGR), shear-wave velocity (Vs), neutron
orosity (NPHI), sonic compression transit time (DT), spectral
amma-ray (SGR), photoelectric absorption factor (PEF), deep
esistivity (ILD), and bulk density (RHOB). To the best knowledge
f the authors, the DT algorithm has never been applied for
P prediction so far. So, this is the first-ever made DT model
mployed for predicting PP. After training and testing, a com-
rehensive comparison is performed on the statistical indicators
sed for the models’ prediction accuracy performance to find the
est predictive model in terms of precision of predictions.

. Methodology

In computer language, the term Artificial Intelligence (AI) is
eferred to as the intelligence of machine; where in most research
ork, this tool is called as knowledge and design of intelli-
ent factors that resemble the natural intelligence of human
inds (Legg and Hutter, 2007; Russell and Norvig, 2002). In other
ords, AI is a tool that can present similar behaviors as those
f intelligent human behaviors, including understanding complex
ituations, simulating human thought processes and reasoning
ethods, and acquiring knowledge and reasoning to solve prob-

ems (Poole et al., 1998; Shamshirb et al., 2020; Hassanpouryouzb
t al., 2021).
Nowadays, AI algorithms are widely utilized for solving var-

ous challenges of engineers in different sectors of science and
echnology (Choubineh et al., 2017; Ghorbani et al., 2017, 2019,
020; Ranaee et al., 2021; Farsi et al., 2021b; Hazbeh et al., 2021b;
hamshirb et al., 2019). The origin and main ideas of AI algo-
ithms could be sought in philosophy, linguistics, mathematics,
sychology, neuroscience, physiology, control theory, probability,
nd optimization (Lieder and Griffiths, 2020). They have found
umerous applications in computer science, engineering, biology,
edicine, social sciences, etc. (Abad et al., 2021b; Rajabi et al.,
021; Shamshirb et al., 2021).
In the present study, four intelligent algorithms are employed

o predict the pore pressure, which are RF, SVR, ANN, and DT.
he theoretical descriptions of these algorithms are provided in
he following.
2235
Fig. 1 displays the workflow schematic used in this study,
n which the steps taken for construction, evaluation, and com-
arison of the prediction accuracy achieved by the intelligent
lgorithms used to predict pore pressure are presented. As shown
n Fig. 1, the first five steps are allocated to dataset preparation,
here the collected data are first sorted and filtered to remove
he outlier data. Next, the minimum and maximum values for
ach variable are specified, and then the data are normalized
ithin a numerical range between +1 and −1, applying Eq. (6).

l
i =

(
dli − dminl

dmaxl − dminl

)
∗ 2 − 1 (6)

here dli stand for the value of the attribute for Ith data, dminl

nd Tdmaxl represent the minimum and maximum values of
ttribute l among the entire data points within the dataset, re-
pectively.
Subsequently, the dataset with normalized data is divided into

hree smaller sets of data, including training (70% of the entire
ata points in the dataset), testing (15% of the entire data points
n the dataset), and validation (15% of the entire data points in
he dataset).

After that, the statistical accuracy parameters (APR, AAPR, STD,
MSE & R2) are calculated for measured values of pore pressure
calculated by Eaton’s method, which was appeared to be realistic
ased on verification made based on the limited RFT PP data) and
hose predicted by the four artificial intelligence algorithms and
mpirical models considered in this study, and the best model in
erms of prediction accuracy is found. Finally, the best algorithm
iscovered is then employed for the prediction of pore pressure
sing a new dataset gathered to form a different well to test its
eneralizability.

.1. Decision tree algorithm

One method of machine learning (ML) widely used to evaluate
atasets is the DT (Larestani et al., 2022; Lorena and de Carvalho,
007). In this ML method, a set of data is organized in a hierar-
hical structure consisting of nodes and strings, the data of which
re then classified and prepared by a set of rules for a numerical
rocess (i.e., regression) (Lorena and de Carvalho, 2007). One
f the issues with the DT algorithm is that it sometimes takes
roblem when classifying data. To solve a class-type problem,
class label is given to each tree’s leaf, which is assigned to

pecific leaves according to data classification rules (Larestani
t al., 2022). To construct a DT learning algorithm, the input vari-
bles (or attributes) and target variables are first distinguished.
ext, the data are assigned to ‘‘child’’ nodes based on the defined
ules. By splitting further, each child node will act like a parent
ode from which more layers and nodes will be developed (Osei-
ryson, 2004). In the DT method, first, the entire set of data is
plit into two subsets, which are decision (child) nodes building
he decision tree’s second layer. Then, the decision nodes are
urther split into sub-nodes, which build extra layers of decision
odes. This splitting process continues till reaching a final layer
ontaining leaf (terminal) nodes. The data are classified by the
ecision tree, and the tree continues to develop until all the data
ecodes are assigned to the correct leaf.

Ease of preparation and interpretation is one of the essential
dvantages of the DT algorithm. In addition, there is less need
or data preparation and processing in the construction of the
lgorithm since the missing or outlying data are filtered by the
lgorithm. However, the DT model highly suffers from a lack of
eneralizability (i.e., when the model trained is utilized to another
ndependent dataset, it is usually not able to classify these data
ecords within the dataset fully). Another disadvantage of this
lgorithm is that the increased number of layers and nodes may



G. Zhang, S. Davoodi, S.S. Band et al. Energy Reports 8 (2022) 2233–2247

P
f
d
s
f

2

b
1
w
r
2
c
s
d
m
t
a

u
i
f

Fig. 1. Schematic of workflow chart used to predict pore pressure.
Table 1
Control parameters of the DT regression model developed to
predict PP.
Control parameters Value

Maximum depth 105
Criterion gini
Splitter best
Objective function Mean squared error
Example prediction time 0.011478 (s)

cause overfitting and decreased level of accuracy (Terzaghi, 1943;
Biot and Willis, 1957).

In this study, the DT module of scikit-learn is codded by
ython, where the ‘‘gini’’ criterion is employed to determine the
eature’s importance and ‘‘best’’ splitter is used for making a
ecision on which features and threshold value to in making each
plit (see Table 1). The developed DT regression model is applied
or predicting pore pressure.

.2. Support vector regression algorithm

The Support Vector Machine (SVM) algorithm was proposed
y Cortes and Vapnik based on statistical learning theory in
995 (Moosavi et al., 2021). This algorithm is one of the most
idely utilized algorithms in various fields to solve classification,
egression, and time-series prediction problems (Ahmad et al.,
020). For regression performing, this algorithm first employs
ore functions for mapping nonlinear vectors to higher dimen-
ions, then builds a hyperplane in the feature space. Finally, it
ivides the data into two classes to create support vectors that
aximize the distance between the hyperplane and classes for

he subset used for training (Rui et al., 2019). In the present study,
n SVR algorithm is proposed to predict PP.
In the SVR, the parameters [xi] ∈ X = Rh and yi ∈ X = R are

sed to specify the input and output variables, respectively, while
= 1, 2, 3, . . . , h. The predictions for this ML model are obtained
rom a regression function y = f (x), and the output values are
2236
Table 2
Control parameters for the SVR to predict PP.
Control parameters Status

Kernel function RBF
ε range 0.2
C range 105000
Cross-validation Not applied
γ range (RBF) 0.045

approximated by an objective learning function (Eq. (7)).

f (x, w) = wZ(x) + b (7)

Where; f (x, w) = objective learning function of SVR, Z(x) =

Feature mapping to high-dimensional space, w ∈ R = vector of
weight, b ∈ R = bias (threshold). To keep the presented work
concise, the potential readers can refer to previous publications
to read more about the SVR model theory (Barjouei et al., 2021;
Shao et al., 2020; Smola and Schölkopf, 2004).

Overcoming the complexity of computation involving high-
dimensional space, a suitable Kernel function is required to be
defined. Any function which is able to satisfy Mercer’s condition
can be applied as the Kernel function. Generally, polynomial,
sigmoid, radial basis function (RBF), and linear are the four most
commonly used Kernel functions in SVR (Vapnik, 2013). It should
be mentioned that the kernel functions can affect the prediction
performance of the SVR. In this paper, the radial basis function is
applied for the SVR developed to predict PP. This kernel function
is used because of its key feature that helps avoid noises in the
training data (Hashemitaheri et al., 2020). Table 2 lists the control
parameters for the SVR developed to predict pore pressure.

2.3. Random forest algorithm

The random forest algorithm can be considered an extended
version of the DT algorithm since this algorithm builds multi-
ple decision trees to examine (Hidayat and Astsauri, 2021). This
algorithm is a supervised learning approach that is appropriate
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Table 3
Control parameters values for the regression RF algorithm
developed for PP prediction.
Control parameters Value

Maximum depth 1050
Random state 0
Number of decision trees 1050
Objective function Mean squared error
Example prediction time 5.42314 (s)

for both applications, regression and classification, based on the
two subsets of testing and training data points for which the
dependent and independent variables are known (Zhou et al.,
2020; Grape et al., 2020). This algorithm constructs multiple deci-
sion parallelly trees, each of which uses relatively few layers and
nodes. Similar to the DT algorithm, the likelihood of overfitting
in the random forest method is slight, as it works on the basis
of individual decision trees. Moreover, without compromising
the accuracy of the decision, this algorithm reduces prediction
results’ variance and bias by evaluating predictions made by all
the decision trees in a collective manner (Ahmad et al., 2018).

Random forest ML models are trained by bootstrapping the
ubsets of data points from the entire dataset. The subsets with
ootstrapped data points can be applied for developing an un-
runed regression or classification decision tree. This model does
ot use all input variables (M) to construct each tree as splitting
andidates; rather, it randomly selects a small, randomly chosen
umber of the input variables available for each tree and then uti-
izes them in splitting. Multiple trees are iteratively constructed
n this approach until a defined number of trees (M) are reached.
or solving the regression problem, output variable predictions
re obtained by aggregating the predictions (i.e., bagging) from
ll the single regression trees constructed. The processing of
agging decreases the individual trees’ complexity and likely
educes the overall likelihood of the model to overfit the training
ubset. Eq. (8) defines the prediction function of the random
orest algorithm.

ˆM
RF (x) =

1
M

M∑
k=1

Ri(x) (8)

here F (X) represents random forest prediction function, M
tand for the number of independent regression trees, x repre-
sents the vector of input variable, and Ri(x) is prediction made by
a single tree for the ith data point.

To determine the error associated with the random forest
model, an out-of-bag (OOB) error analysis is conducted progres-
sively as the forest containing individual trees is built. OOB is
obtained by unchosen data points (i.e., OOB subset) as a test to
the Mth tree once it gets trained through the bagging process.
More details on the estimation prediction accuracy of the rela-
tive importance dependent variables can be found in previous
studies (Abidin, 2014; Ahmad et al., 2018). In this research, the
Scikit Learn Random Forest Regressor is applied to establish the
regression RF algorithm to predict PP. The control parameters of
the RF algorithm developed are listed in Table 3.

2.4. Artificial neural network algorithm

ANN is one of the most widely used intelligent techniques in
diverse areas of science and engineering that helps with solving
complex classification and regression problems (Shahbaz et al.,
2019). This algorithm is highly reputed of the black box system
because of its hidden layer of regression-like computation. Multi-
hidden-layer perceptron (MLP) and feed-forward neural network
that contains only one hidden layer are the two most commonly
2237
used types of ANN. In this study, an ANN is constructed for PP
prediction, which has a single hidden layer (Belhaj et al., 2021).

In ANN, the information is adjusted by the bias and weight
vectors and sent from one layer’s neurons to the next layer’s
neurons. The processing of information is conducted in the hid-
den layer’s neurons, and the signal processed is adjusted using
an activation function and sent forward to the out layer. The
activator function for the ANN is given in Eq. (9).

f (x) = f

(∑
i=1

Wijxi + bj

)
(9)

Where; f (x) resents activator function, bj stands for bias in the
hidden layer, xi signifies the ith input variable, wi represents the
weights of the connection between the jth neuron and the ith
input.

To enhance the prediction performance of neural network,
a backpropagation algorithm is typically used in the training
process of the network to adjust the values of weights and bias
assigned to the hidden layer. It is provided through the minimiza-
tion of the mean squared error (MSE) between the predicted and
measured values collectively for all the records of data within the
subset used for training, as given in Eq. (10).

ErrorMSE =
1
S

m∑
i

(ŷi − yi)2 (10)

here; S represents the total number of available data records in
he subset used for training, yi stands for the predicted value for
nput variable for the data record i, and ŷi denotes the measured
alue for the input variable for the data record i.
In ANN training, applying alternative optimization for back-

ropagation can improve the network’s convergence efficiency
nd prediction performance. For this purpose, a variety of opti-
izers such as Momentum, RMSprop, Adagrad, Adam, Nesterov
ccelerated Gradient, and Adadelta have been applied so far.
n the present study, RMSprop, an enhanced gradient-based al-
orithm, is employed as an optimizer. In this optimizer, the
stimated gradient is steadily divided by the rolling average of
radient values recently obtained. The relationships given in
qs. (11) and (12) are used to update the RMSprop’s initial
earning rate for different weights (Kartal and Özveren, 2020).[
gr2
]
p = 0.9E

[
gr2
]
p−1 + 0.1gr2p (11)

τp+1 = τn −
δ√[

gr2
]
p + ϵ

grn (12)

Where; E
[
gr2
]
p represents mean gradient at iteration p, grp

stands for objective function’s gradient at iteration n, τp denotes
the objective function at iteration p, δ represents the rate of
learning, and ϵ signifies smoothing term.

The structure of the ANN developed consists of an input layer
with the same number of neurons as in the hidden layer, a single
hidden layer that has 600 neurons, an output layer that contains
a neuron to predict the target variable. Table 4 lists the value of
control parameters for the developed ANN.

2.5. Feature selection method

The prediction performance and computation time for ML
models can be improved by using the most effective input vari-
ables in pp modeling (Abad et al., 2022). The involvement of a
large number of potential input variables in training ML models
dramatically affects the speed and accuracy of the models. As
a result, To overcome this issue, a feature selection analysis is
recommended to be conducted (Wahab et al., 2015). Filtering,
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Table 4
Control parameters of the developed ANN for predicting PP.
Control parameters Status

Number of hidden layers 1
Number of neurons in the hidden layer 600
Activation function used input to hidden
layer

SELU (Scaled Exponential
Linear Unit)

Objective function minimized for training
subset

MSE

Activation function used hidden to output
layer

SELU

Optimization algorithm RMSprop
Patience (number of iterations) 30
Minimum delta 0.02%
Number of iterations 240
Learning rate 0.015

packing, and embedding are three common methods for feature
selection analysis, among which the wrapping method is re-
garded to be more effective and precise (Jain and Zongker, 1997;
Shah et al., 2020; Fu et al., 2020). This method uses a hybrid
genetic algorithm (GA) with simple multilayer perceptron (MLP)
(MLP-GA) to predict PP, reducing the cost function of mean square
error (MSE) or root mean square error (RMSE) (Farsi et al., 2021a;
Salehi et al., 2020; Jotheeswaran and Koteeswaran, 2020). For a
dataset including N initial input features, the warping method,
irst, categorizes all the initial input features into sets with one,
wo, . . . , n features. Then, the target parameter is predicted by
he model used for feature selection for each set of features, and
he RMSE value associated with the target parameter prediction
s estimated and reported for each feature set. Finally, the set of
eatures that provides the most accurate prediction for the target
arameter is selected as the most efficient set of input features
o be used in predictive model training (Table 6).

.6. Error parameters

To evaluate and compare the algorithms’ performance in PP
rediction, the following statistical error indicators, namely rel-
tive error (RE), average relative error (ARE), absolute average
elative error (AARE), mean squared error (MSE), coefficient of
etermination (R2), root mean squared error (RMSE); the objec-
ive function of the ML models), and standard deviation (STD) are
pplied in this study (see Eqs. (13)–(20))

elative error (RE):

E =
PP(Measured) − PP(Predicted)

PP(Measured)
× 100 (13)

Average relative error (ARE):

ARE =

∑n
i=1 REi

n
(14)

Absolute average relative error (AARE):

AARE =

∑n
i=1 |REi|

n
(15)

Coefficient of Determination (R2):

R2
= 1 −

∑N
i=1(PPPredictedi − PPMeasuredi)2∑N

i=1(PPPredictedi −

∑n
I=1 PPMeasuredi

n )2
(16)

Mean Square Error (MSE):

MSE =
1
n

n∑
i=1

(PPMeasuredi − PPPredictedi)
2 (17)

Root Mean Square Error (RMSE):

RMSE =
√
MSE (18)
2238
Fig. 2. Calculated PP measured PP Vs. data by RFT tool.

Standard Deviation (STD):

STD =

√∑n
i=1(Di − Dimean)2

n − 1
(19)

Dimean =
1
n

n∑
i=1

(PPMeasuredi − PPPredictedi) (20)

3. Data collection, feature selection, data description

3.1. Data collection

This paper uses data collected from three wells A, B, and C,
drilled in one of the oil fields in the Middle East. 988 data records
are collected for Well A at depth interval from 3257 to 3454 m,
905 data records are collected from Well B at the depth interval
from 3194 to 3375 m, 934 data records are collected from Well C
at the depth interval from 3204 and 3390 m. It should be noted
that the data recording distance for all three wells A, B, and C
is 0.2 m. The initial dataset provided contains data records for
one output variable (PP) and 12 input variables. The Initial input
variables used for PP modeling are laterolog shallow (LLS), cor-
rected gamma ray (CGR), shear-wave velocity (Vs), uncorrected
spectral gamma-ray (SGR), sonic compression transit time (DT),
bulk density (RHOB), the photoelectric absorption factor (PEF),
neutron porosity (NPHI), deep resistivity (ILD), caliper (CALL),
hole size (HS), and compression-wave velocity (Vp). In this article,
pore pressure was calculated by Eaton’s formula, which appeared
to be realistic based on the limited repeat formation tester (RFT)
data (see Fig. 2).

3.2. Feature selection

After the MLP-GA algorithm was constructed to be used in
feature selection analysis, all the data records of Well A and Well
B were unified on a data set (1893 data records). Then, the whole
data records were provided to the MLP-GA algorithm. After that,
dividing the input variables into different combinations of vari-
ables as well as considering evolution criteria (minimum value
of RMSE), PP was estimated by MLP-GA algorithm, and the best
combination of input variables (in terms of performance accu-
racy) with most effective parameters was detected and selected
to be used in PP modeling.

Table 5 shows the indicators for all the input variables. As

displayed in Fig. 3, the set of input variables containing nine
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Table 5
Indicators of each feature to
predict PP.
Features Label

NPHI H1
HS H2
ILD H3
RHOB H4
CGR H5
LLS H6
CALL H7
SGR H8
PEF H9
Vs H10
DT H11
Vp H12

Fig. 3. RMSE values obtained by each set of features (the dataset of two wells
A and B is considered).

features (H1, H3, H4, H5, H6, H8, H9, H10, and H12) is the most
efficient combination of input variables among all 12 sets of
features analyzed in terms of prediction performance accuracy.
Consequently, this 9-variable set is selected as input to be further
involved in the development of ML models for PP prediction in
this study.

3.3. Data description

Performing the feature selection analysis, nine variables,
namely corrected gamma ray, neutron porosity, photoelectric
index, deep resistivity, shear-wave velocity, Laterolog shallow,
spectral gamma-ray, and bulk density, were employed as input
for PP modeling. The data collected from two wells, A and B
(carbonate reservoir), are applied to construct the four ML mod-
els. The statistical parameters corresponding to the input and
output variables involved in PP modeling for all the datasets
(wells A, B, C, and the total dataset) are provided in Tables 7 and 8,
respectively. It should be highlighted that the PP data are verified
applying well test data.

4. Result and discussion

For developing the four ML algorithms (RF, SVR, ANN, and DT),
data records gathered from well A and well B was unified in a
dataset, where 70% of data records was used for algorithms train-
ing, 15% of the data points was used for testing the algorithms.
The remaining 15% was used for validation. Ensuring that all the
training and validation records are involved in the evaluation, a 8-

fold cross-validation is performed on the validation and training

2239
Fig. 4. Predicted values versus calculated PP (using Eaton’s formula) for the
four ML algorithms developed for the total subset (the entire 1893 data records
collected from wells A and B).

subsets. Tables 9–12 list the values of the statistical errors deliv-
ered in predicting PP by each of the four algorithms developed
for the training, validation, testing, total subsets, respectively.

Based on the results listed in Tables 9 to 12, it is evident that
the prediction accuracy delivered by the DT algorithm is much
higher than those of the other three algorithms (SVR, RF, and
ANN). The excellent performance of DT in prediction PP could be
attributed to its outstanding feature that eliminates the outrange
data. From the results presented in Tables 9–12, it can be seen
that DT performs high accuracy predictions, where the RMSE
value was equal to 14.33, 16.42, 14.53, 16.46 psi for the training,
testing, validation, and total subsets, respectively. Outperforming
the other three algorithms in terms of the accuracy of prediction,
the DT algorithm was recognized as the best for PP prediction in
the present study.

Fig. 4 illustrates the values of the PP predicted by the four
ML algorithms versus the measured PP values for the total subset
(the entire data records collected from wells A and B). It is clear
from Fig. 4 that the DT algorithm archives higher PP prediction
accuracy in comparison to the SVR, ANN, and RF algorithms.

To visually compare the evaluated algorithms’ performance in
PP prediction, the cross plot of the PP predicted and measured
values for each algorithm is displayed in Fig. 5. Looking closely at
Fig. 5, it is evident that the most accurate predictions for PP are
achieved by the DT algorithm, and the accuracy of the predictions
delivered by the algorithms with respect to R2 values can be
ordered as DT > RF > SVR > ANN.

Fig. 6 shows the relative error of the PP predicted values
obtained by the four ML algorithms (ANN, SVR, RF, and DT). The
results displayed in Fig. 6 suggest that the relative error achieved
by the DT algorithm is much lower than those of the other algo-
rithms evaluated (0.49 < RE% < 0.49). It needs to be highlighted
that the improved accuracy obtained by the DT algorithm is
because of its ability to consider all the possible outcomes of a
decision and conclude each path. This creates a comprehensive
analysis of the consequences along each branch and node and
identifies decisions that need further analysis.

Fig. 7 displays the RMSE values versus 100 in iterations for the
PP predictions obtained by the four ML algorithms (ANN, SVR, RF,
and DT). As it can be seen from Fig. 7, the DT algorithm presents
a high degree of convergency from the outset, where, at iteration
5, it shows a promising accuracy (RMSE = 14.50 psi) from the
outset. However, the RMSE values for SVR, ANN, and RF, in the
beginning, are very high (low prediction accuracy), and then they
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Table 6
Results of feature selection method performed using data records of two wells A and B (1893 data records).
Number of combination
features

Features RMSE (psi)

1 H10 122.1249
2 H10, H12 95.3524
3 H4, H12, H10 81.5487
4 H12, H3, H10, H4 72.3655
5 H6, H4, H10, H12, H3 65.1785
6 H8, H3, H6, H4, H10, H12 60.3248
7 H5, H10, H8, H12, H4, H3, H6 56.6555
8 H9, H8, H12, H6, H3, H4, H10, H5 53.3476
9 H1, H6, H3, H8, H4, H10, H12, H5, H9 (Best combination) 51.9215

10 H11, H9, H4, H10, H12, H5, H8, H3, H6, H1 53.7845
11 H2, H4, H1, H5, H10, H8, H9, H6, H11, H12, H3 56.0024
12 H7, H11, H12, H1, H3, H2, H8, H9, H5, H10, H4, H6 58.6315
Fig. 5. Cross plot of the calculated PP (using Eaton’s formula) versus predicted values of PP for the four artificial intelligence algorithms (ANN, SVR, RF, and DT) for
ll records of data collected from wells A and B (1893 data).
onverge rapidly, and the performance accuracy of the algorithms
mproves. Comparing the convergence speed of the algorithms
valuated shows that the DT algorithm provides a better high
onvergence speed in finding a solution than the SVM, RF, and
NN algorithms.

.1. Generalization of the DT algorithm in PP prediction

The results discussed in the previous section display training,
esting, and validation for the four evaluated algorithms in re-
pect of the data points gathered from well A and Well B. In
his work, an additional set of data containing 934 data records
ollected from another well (Well C), located at the same field
s wells A and B, is considered to evaluate the capability of the
T algorithm in making precise PP predictions for general appli-
ation in the field under evaluation. Table 12 lists the statistical
2240
measures of accuracy obtained by the best-performing algorithm
(DT) applying the Well C dataset. Comparing the results reported
in Table 13 with those presented in Tables 9–12 corroborates the
substantial ability of the developed DT algorithm to predict PP
when used for another well accurately (Well C) in the field under
evaluation. Fig. 8 demonstrates the measured versus predicted
values of PP obtained by the DT algorithm trained with Wells A
and B applied to the dataset collected from Well C. The results
presented in Fig. 8 also confirm the DT algorithm’s credibility in
predicting PP in other wells drilled throughout the field under
evaluation. It is also worth noting that the proposed algorithm
can be modified and optimized by other researchers to be applied
further to predict PP in other fields.
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Table 7
Statistical parameters of selected input variables for total dataset (sum of data records in wells A, B, and C; 2827 records of data).
Wells Variables Corrected

gamma ray
Neutron
porosity

Compressional-
wave
velocity

Photoelectric
index

Deep
resistivity

Shear-wave
velocity

Laterolog
shallow

Uncorrected
spectral
gamma-ray

Bulk
density

Pore
pressure

Symbol CGR NPHI vp PEF ILD vs LLS SGR RHOB PP
Units GAPI PU km/s Barn/cm3 mmho/m km/s mmho/m GAPI g/cm3 psi

All wells A, B, and C
(2827 data points)

Mean 23.45 13.03 53.64 3.03 1226.05 246.57 209.35 45.00 2.98 5718.30
Std. Dev. 19.51 5.50 2.96 1.48 4421.68 241.40 1631.94 20.92 0.54 401.51
Variance 380.69 30.22 8.75 2.20 19544359.31 58251.17 2662282.39 437.54 0.29 161151.80
Minimum 1.06 −1.55 45.72 −0.45 0.42 57.55 0.48 12.21 1.20 4592.54
Maximum 124.27 46.67 82.91 6.33 20012.34 738.98 20003.12 146.30 3.93 6690.12
Skewness 2.05 0.92 2.09 −0.42 3.85 0.92 11.24 1.45 0.21 −0.07
Kurtosis 4.78 4.84 12.90 −0.54 13.17 −1.09 130.26 2.94 −1.12 −0.53
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Table 8
Statistical parameters of the selected input variables for the datasets collected from wells A, B, and C separately.
Wells Variables Corrected

gamma ray
Neutron
porosity

Compressional-
wave
velocity

The
photoelectric
index

Deep
resistivity

Shear-wave
velocity

Laterolog
shallow

Uncorrected
spectral
gamma-ray

Bulk
density

Pore
pressure

Symbol CGR NPHI vp PEF ILD vs LLS SGR RHOB PP
Units GAPI PU km/s Barn/cm3 mmho/m km/s mmho/m GAPI g/cm3 psi

Well A
(988 data point)

Mean 19.70 12.35 54.13 4.22 967.65 99.14 109.98 44.34 2.61 5318.17
Std. Dev. 19.37 5.24 2.76 0.72 3779.54 6.29 937.14 18.92 0.11 252.51
Variance 374.72 27.38 7.59 0.52 14270606.99 39.49 877345.44 357.43 0.01 63699.61
Minimum 1.06 1.34 47.05 2.12 0.42 79.58 0.48 14.61 2.29 4592.54
Maximum 107.90 28.24 67.30 5.63 20000.00 187.09 20000.00 143.60 2.87 6690.12
Skewness 2.51 0.11 0.30 −0.42 4.51 4.00 16.74 1.90 −0.92 0.35
Kurtosis 6.74 −0.20 0.54 0.38 19.20 46.29 304.39 5.80 1.05 1.74

Well B
(905 data point)

Mean 24.59 14.84 52.75 3.33 1563.19 369.43 270.68 38.69 2.71 5789.94
Std. Dev. 18.48 5.38 3.73 1.03 4997.27 264.19 1918.88 20.19 0.44 226.39
Variance 341.08 28.91 13.91 1.05 24945075.87 69717.49 3678039.10 407.34 0.20 51197.85
Minimum 3.31 1.92 45.72 1.26 0.45 82.48 0.53 12.21 1.20 5234.94
Maximum 110.20 46.67 82.91 6.33 20012.34 738.98 20000.00 119.30 3.49 6325.86
Skewness 1.57 1.52 3.41 0.41 3.30 −0.02 9.71 1.26 0.01 −0.13
Kurtosis 2.67 8.32 17.87 −0.45 9.14 −1.92 96.13 1.30 −0.06 −0.76

Well C
(934 data points)

Mean 26.34 12.01 53.97 1.48 1175.50 285.05 256.09 51.81 3.62 6076.42
Std. Dev. 20.03 5.46 1.96 1.05 4447.88 264.73 1890.17 21.62 0.21 260.00
Variance 400.84 29.80 3.84 1.10 19762416.72 70007.72 3568929.33 467.04 0.05 67527.30
Minimum 6.18 −1.55 48.06 −0.45 2.55 57.55 3.65 25.41 2.33 5300.99
Maximum 124.27 43.20 65.54 3.96 20002.09 712.52 20003.12 146.30 3.93 6679.28
Skewness 2.13 1.30 0.93 −0.16 3.91 0.44 9.87 1.50 −2.78 0.13
Kurtosis 5.26 6.92 2.57 −1.11 13.50 −1.76 99.36 2.58 12.85 −0.22

2242
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Fig. 6. RE valued involved in PP predictions obtained by the four ML algorithms (all 1893 data records collected for wells A and B are considered).

Fig. 7. Comparison of RMSE values reached after each iteration for PP predictions obtained by the four evaluated algorithms (ANN, SVR, RF, and DT).

2243
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Table 9
Prediction accuracy for PP predictions by the four algorithms developed based
on training subset (1325 data records; 70% of all data collected from wells A
and B).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
ANN −0.057 1.908 143.541 2.058E+04 143.4727 0.8069
SVR −0.096 1.801 133.042 1.772E+04 133.0981 0.8312
RF 0.045 1.351 101.311 1.027E+04 101.3535 0.8951
DT −0.002 0.191 14.336 2.055E+02 14.3365 0.9980

Table 10
Prediction accuracy for PP predictions by the four algorithms developed based
on a testing subset (284 data records; 15% of all data collected from wells A
and B).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
ANN 0.115 2.870 164.232 2.701E+04 164.3352 0.7167
SVR −0.161 2.634 149.232 2.234E+04 149.4746 0.7747
RF −0.153 1.974 114.449 1.316E+04 114.7117 0.8482
DT 0.007 0.282 16.428 2.699E+02 16.4298 0.9982

Table 11
Prediction accuracy for PP predictions by the four algorithms developed based
on validation subset (284 data records; 15% of all data collected from wells A
and B).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
ANN 0.086 3.058 171.530 2.944E+04 171.5848 0.7535
SVR −0.082 2.647 148.133 2.196E+04 148.1807 0.8016
RF −0.047 2.037 116.222 1.351E+04 116.2371 0.8921
DT 0.060 0.293 16.271 2.731E+02 16.5256 0.9954

Table 12
Prediction accuracy for PP predictions by the four algorithms developed based
on the total subset (1893 data records; 100% of all data collected from wells A
and B).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
ANN −0.041 2.039 145.611 2.114E+04 145.3917 0.8359
SVR −0.068 1.886 132.973 1.770E+04 133.0242 0.8585
RF 0.032 1.420 101.657 1.033E+04 101.6480 0.9102
DT −0.001 0.202 14.470 2.093E+02 14.4669 0.9985

Fig. 8. Cross plot of calculated PP (using Eaton’s formula) versus predicted
alues of PP obtained by the DT algorithm trained using wells A and B dataset
pplying the whole dataset for well C in the field under study.
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Table 13
Statistical accuracy metrics for PP predictions achieved by the DT algorithm
trained using wells A and B dataset applied the whole dataset for well C in the
field under study.
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
DT −0.001 0.237 17.157 2.944E+02 17.1573 0.9953

5. Conclusion

Determination of pore pressure (PP), a key reservoir parameter
that is handy for evaluating geomechanical parameters in reser-
voir and drilling, is so important in oil and gas fields development.
This study presents four robust ML algorithms constructed for
predicting PP using petrophysical data. The four ML models de-
veloped include RF, SVR, ANN, and DT, which were trained, tested,
and validated with the dataset collected from two wells located
(Well A and Well B) in an oil field in the Middle East. Con-
ducting feature selection, the best combination of variables to
be used as input for predictive is recognized, that contains nine
variables, including laterolog shallow (LLS), corrected gamma ray
(CGR), shear-wave velocity (Vs), spectral gamma-ray (SGR), bulk
density (RHOB), photoelectric absorption factor (PEF), neutron
porosity (NPHI), deep resistivity (ILD), and compression-wave
velocity (Vp). Comparing the prediction performance accuracy
achieved by each algorithm evaluated, it was found that the DT
algorithm outperforms the other three predictive models in terms
of performance prediction accuracy (R2

= 0.9985 and RMSE =

14.460 psi). Finally, the generalizability of the best-performing
model, DT, is assessed by applying the DT model to an additional
dataset collected from another (Well C) in the same field for PP
prediction. The results undoubtedly proved that the DT model can
be used throughout the field under study to predict PP since it
presented a high accuracy in making PP predictions for the Well
C dataset. For future studies, the PP modeling can be integrated
with geological modeling to insight into geological parameters’
effect on PP.
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Nomenclature
ANN = Artificial neural network algorithm
ARE = Average relative error
AARE = Absolute average relative error
b = Bias
DT = Decision tree
DTCO = Compressional wave transit times
DTSM = Shear wave transit times
ET = Extra trees
FP = Fracture pressure
F(X) = Random forest prediction function
GR = Gamma-ray
LR = Linear regression
M = Number of independent regresssion trees
ML = Machine learning
MSE = Mean squared error
OOB = Out-of-bag
PHIT = Total porosity
PP = Pore pressure
RBF = Radial basis function kernel
RF = Random forest
RHOB = Density
RMSE = Root mean squared error
STD = Standard deviation
SVR = Support vector regression
w = Weight vector
x = Data variable value range
X = Value of variable x in a specific data record
Z(x) = Feature mapping to high-dimensional space
ϑ = Poisson’s ratio
ϑp = Compressional velocity
ϑs = Shear wave velocity

Appendix

The results for two alternative splits of data (80% training, 10%
alidation, and testing 10%; 60% training 20% validation, and 20%
esting) employed for all data records are presented in Tables A.1
nd A.2. These results should be compared with those presented
n Table 12 for the split of data records in 70% training, 15%
alidation, and 15% testing.

Table A.1
Prediction accuracy for PP predictions by the four algorithms developed based
on the total subset (for the split data record of 80% training, 10% validation, and
testing 10%).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
ANN −0.038 3.639 138.241 1.883E+04 137.213 0.8567
SVR −0.054 2.441 129.890 1.666E+04 129.070 0.8994
RF 0.060 1.027 98.164 9.910E+03 99.547 0.9563
DT −0.019 0.165 12.224 1.531E+02 12.375 0.9987

Table A.2
Prediction accuracy for PP predictions by the four algorithms developed based
on the total subset (for the split data record of 60% training, 20% validation, and
20% testing).
Models ARE AARE STD MSE RMSE R2

Units (%) (%) (psi) (psi) (psi) –
ANN −0.087 2.574 128.123 1.650E+04 128.447 0.8811
SVR −0.076 2.129 119.518 1.416E+04 119.001 0.9004
RF 0.052 1.954 107.451 1.151E+04 107.269 0.9462
DT −0.014 0.131 11.372 1.217E+02 11.0334 0.9993
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