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Investigation of the human behavior is in the focus of attention of researchers since
many decades. This problem is actual and important also present day. Main purpose of
the author is to summarize theoretical backgrounds dealing with mathematical
modeling of the human pilot behavior. Second interesting topic being investigated is to
give some approximated models of the human pilot applying Padé approximation
method. Importance of this paper is in derivation and application of higher order Padé
approximants to model human pilot behavior. This new approach allows to model pilot
behavior more precisely than before with applying the common first order
approximants. The lower and higher order approximants will be analyzed both in time
and in frequency domain. A new MATLAB embedded m-file is created by the author to
analyze pilot mathematical models.

1. Introduction

Early pioneers of mathematical modeling of the pilots’ behavior were McRuer and
Krendel.1 Scientific results of theirs glorious artwork affect research work of many
scientists involved into mathematical modeling of human behavior since many years.
This report deals with mathematical modeling of human pilots, with analysis of the
pilot’s behavior both in single input-single output and multi input-multi output
automatic flight control systems. Regarding1 mathematical model of the human pilots
depends also on the feature of signals to be followed by the pilot. Authors are
emphasizing importance of problems of precise navigation tasks such as offensive and
defensive air-to-air combat, air to ground weapon delivery, formation flight etc.
Authors introduced term of paper pilot, which means mathematical model of the pilot
as ‘element’ of the automatic flight control system and widely applied in automatic
flight control systems’ analysis and preliminary design.1

In this paper mathematical handbook of Korn and Korn is cited as main source for
mathematical backgrounds of the problems of approximating time delay.2

Textbooks of Аslanyan3 and, Krasovsky et al.4 deal with many aspects of the
automatic flight control systems. One of the problems outlined in3,4 is summary of the
mathematical models applied for deriving human pilot behavior. In these books the so-
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called pilot-in-the-loop analysis problem is discussed in detail using Bode method
based on classical control theory.

McLean5 in deals with conventional and modern mathematical modeling of the
human pilot behavior making difference between aircraft and helicopter pilots. In
Reference 5 time delay of human pilot is approximated by first order Padé
approximation, which may be unsatisfactory and time delay may be approximated by
higher order approximants of Padé-series.5

Dorf and Bishop derived mathematical model of human operator, which has more
extended applicability. In this mean, human operator models can be applied for any
kind of drivers (e.g.m car, motorcycle, ship, train, aircraft etc.). Obviously, the only
common thing these models are coinciding is the feature of the mathematical models,
while their parameters are different.6

Finally, author of this paper leans on his preliminary scientific papers dealing with
conventional and modern mathematical methods applied for modeling human pilot
behavior,8 derivation critical parameters of the human pilot acting in the closed loop
flight control system,9 and, derivation of the complex set of critical parameters of the
human pilot in the aircraft lateral motion flight control systems.10

Computer aided simulation was executed by using MATLAB computer package
supplemented with Control System Toolbox.11,12,13

2. Padé approximation of the time delay

Let us consider dynamical system given in Figure 1. Transfer function of G(s) represents
dynamical system consisting of time delay of τ, and transfer function of G0(s), which is
supposed to be strictly proper and stable. The problem of approximation of the time delay
can be formulated as follows: approximate original transfer function of

)()( 0 sGesG sτ−= (2.1)

by an approximated transfer function of

)()()(ˆ 0 sGsPsG d= , (2.2)

where Pd(s) = Nd(s)/Dd(s) is a rational approximation of time delay of τ. In other words,
we want to find transfer function of Pd(s) so that closed loop behavior of )(ˆ sG  matches
input-output behavior of the original system represented by G(s).
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Figure 1. The model matching error problem

To measure the error of approximation e(s) we will apply the same input u(s) to
both of transfer functions of G(s), and )(ˆ sG , respectively. By comparing output signals

of y(s) and )(ˆ sy  one can derive how )(ˆ sG  approximates G(s). In other words, how

Pd(s) approximates time delay defined by e–sτ. In control theory this problem is

formulated as the so-called model matching problem.2,7 The model-matching error
(MME) can be derived using following equation:
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In equation (2.3) 
2

ŷy −  denotes quadratic (Euclidean) norm of output error

vector of yye ˆ−=  due to quadratic (Euclidean) norm of input signal of 
2

u . The

largest possible ratio of output error energy over input energy is defined as model-
matching error. It is well-known from control theory that model-matching error can be
defined as:

∞∞
≡≡ LH MMEMMEMME , (2.4)

where

∞∞
−=

HH GGMME ˆ , (2.5)

)()(sup)(ˆ)(sup 0 ωωωω τω

ωω
jPejGjGjGMME d

j
L −⋅=−= −

∞
. (2.6)

It is obvious, that if 
∞LMME  is small, than difference between the Nyquist plots of

transfer functions of )(sG  and )(ˆ sG  is small. This observation is valid if and only if
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)(0 sG  is strictly proper and stable. Therefore, for given transfer function of )(0 sG  we

want to find a rational approximation of )(sPd  for the pure time delay derived by τse−

so that approximation error, i.e. model-matching error 
∞LMME  is smaller than a pre-

defined positive tolerance, say δ>0.
For further discussion of Padé approximation there will used following

formula:7,8,9,10
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where coefficients of equation (2.7) are defined as follows:
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2.1. Model order selection for Padé approximation

During solution of problems of control system’s analysis and design a simple question
may arise: what is the minimum order of the Padé approximation, which results in
maximum permissible approximation error? Section 2.1 is about of answering this
problem, and deals with this problem giving recommendations for its solution. The
approximation error easily can be found from equation (2.6) as given below:
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Using equation (2.9) the so-called model order selection problem can be solved via
following steps to be strictly followed:
Step 1. Using magnitude plot of )(0 ωjG  find the frequency of xω  such that

2
)(0

δω ≤jG  for all xωω ≥ , (2.10)

and for the first step, let us initialize n = 1.
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Step 2. For each set of n≥1 define
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and plot the error magnitude function using following formula:
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Step 3. Let us define

{ } [ ]xnE ωωωε
δ

,0;)(max
1

)( ∈= . (2.13)

If E(n)≤1, then stop. In this case value of n satisfies the desired error bound, in other
words:

δ≤
∞LMME . (2.14)

Otherwise, increase n by 1, and go to Step 2.
Step 4. Plot the approximation error function of

)()(0 ωω τω jPejG d
j −⋅ − (2.15)

versus frequency, and verify graphically that its peak value is less than δ.
Since transfer function )(0 sG  is strictly proper algorithm given above will pass

Step 3 eventually for some finite n≥1. At each step of iteration we must draw the error
function of ε(ω) defined by equation (2.12) and check whether its peak is less than pre-
defined scalar of δ. For high precision calculus it is regarded to take into consideration
tolerance of δ= (10–4–10–2). On the contrary, it is well-known from theory of automatic
control systems that, for instance, settling time is defined for envelope of ±2%, or of
±5%due to steady-state value of step response function denoted by )(∞ssx . From these
thoughts it is evident that mathematical requirements and requirements coming from
control theory may conflict and accuracy may be defined making some compromise,
which is common and widely used during solution of control system design problems.
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3. Mathematical models of the human pilot

This section basically follows1,3,4,5 and preliminary research papers of the author.8,9,10

The simplest mathematical model of human operator – supposing single reference
signal tracking – can be derived using Figure 2:3,4,5
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where xin is the signal to be tracked by the operator, xout is the response signal of the
pilot, Kp is the pilot gain, and finally, τ is the pure time delay.

Figure 2. Mathematical model of the pilot behavior

From equation (3.1) it is easily can be seen that the human operator behaves as a
proportional (P) controller with time delay (TD).8,9,10 For more simplicity let us denote
equation (3.1) as P-TD-model.

More complicated mathematical model of human operator including ability of the
pilot to predict any kind of events can be derived using Figure 3:1,3,4,5

Figure 3. Mathematical model of the human pilot behavior
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where Tp is prediction time constant. From equation (3.2) it is easily can be derived that
the human operator behaves as a proportional-differential (PD) controller with pure
time delay (TD).8,9 For simplicity and further discussion let us denote mathematical
model of equation (3.2) as PD-TD-model.
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Next let us take into consideration dynamic model of the muscular acting system of
the human operator. Block diagram of the human operator for this particular case can be
seen in Figure 4.

Figure 4. Mathematical model of the pilot behavior

Using Figure 4 transfer function of the pilot can be derived as it given below:
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where 1T  is time constant of the pilot muscular system. From equation (3.3) it easily
can be derived that mathematical model of the human operator is proportional-
differential (PD) first order (1O) controller having pure time delay (TD).5,6,8,9,10 For
further discussions let us denote equation (3.3) as PD-1O-TD-model. Using Figure 4,
the following equation can be derived:
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Doing some simple arrangements in equation (3.4) one can write that:
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Input signal x(t) of the time delay term of τ can be found using following formula:
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For approximation of time delay of τ, in equation (3.3)–(3.5) we will use 1st order
Padé approximants. One can write that
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Modern mathematical representation of human operator can be given using its state
space representation.5,6,7,8 During derivation of this dynamical model let us choose
state variables as they are given below:

xxx out +=1 , (3.8)

xx =2 . (3.9)

Using equations (3.3)–(3.9) state and output equations of human pilot – defined on
Figure 4 – can be found as follows:1,8,9,10
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Finally, by considering the neuro-muscular sensing, processing and, actuating
system of the human operator, the block diagram of Figure 5 can be given:1,8,9,10

Figure 5. Mathematical model of the human pilot behavior

Using Figure 5, the following transfer function of human pilot can be derived:1,9,10
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In equation (3.12) the second order term of
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defines the simplified mathematical model of the neuro-muscular system of human
pilot.1 It is easy to derive that the second order proportional-differential term of
equation (3.12)
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may be rewritten in the following state space model:
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From equation (3.12) it is easily can be derived that mathematical model of the human
pilot is proportional-differential (PD) second order (2O) term having pure time delay
(TD).1,8,9,10 For further discussions let us denote equation (3.12) as PD-2O-TD-model.

Let us introduce following state variable

xxx out +=3 . (3.17)

Pure time delay of τ in equation (3.12) can de approximated using first order Padé
approximants. Now one can write that
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Let us substitute equation (3.18) into equation (3.12), and convert this mathematical
model into time domain one. After several mathematical manipulations one can get
following state and output equations:1,8,9,10
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For further theoretical and practical discussions of issues on this scientific topic
interested reader can refer to.1,5,6,8,9,10
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4. Time domain analysis of the human pilot model

One of the most important form of activity of human pilot is reference signal tracking.
Many flight tasks (e.g. semi-automated landing, refueling, air-to-air combat, air-to-
ground weapon delivery, terrain following, formation flight, aerobatic close formation
flight etc.) are in close relationship with this kind of activity. There are some typical
input signals to be followed by the pilots, such as step signal, ramp signal, and, much
other kind of pure or transformed periodical signals (e.g. saw tooth, square signals etc.).
In this paper author chose for the time domain analysis the step input function, the ramp
input signal, and finally, the square signal.1,5,7,11,12,13

It is well-known from the previous sections that there are several possible
mathematical models of human pilot to be used during computer simulation. In this
paper we will apply dynamical mathematical model defined by equation (3.3), which is
represented in Figure 4. For computer simulation let us use the following parameters of
mathematical model of human pilot defined by equation (3.3):

s5.0;s4.0;s1;10 1 =τ=== TTK pp . (4.1)

During computer simulation from possible set of order of approximation there were
chosen strongly heuristically the 1st, the 4th, and the 7th orders of approximations.
Figure 6 shows step responses of human pilot having approximated mathematical
model of time delay. The input signal of human pilot to be followed by him is
xin(t) = 1(t).11–13

From Figure 6 it is obvious that increase of order of approximation result in bigger
amplitudes of the output signal. However, in the time delay zone increase of the order
of the approximation results in oscillations with higher frequencies having less
amplitudes. It means that error of approximation decreases as its order increases.

Figure 7 shows the ramp responses of the human pilot mathematical model. The
input signal of the human pilot to be followed by him is xin(t) = t.

From Figure 7 it is easily can be seen that increase of the order of approximation
results in decrease of the error of the approximation: in the time delay zone magnitude
of the output signal xout(t) decreases as order of the approximation is increases while
output signal is more and more oscillatory.

Finally, let us analyze the human operator behavior when he is tracking the
periodical signal. For this kind of analysis author had chosen the square signal with
frequency of f = 0.3 Hz, i.e. with period time of T = 1/f = 1/0.3 s. Results of the computer
simulation can be seen in Figure 8.



R. SZABOLCSI: Modeling of the human pilot time delay using Padé series

AARMS 6(3) (2007) 415

Figure 6. Step responses of the human operator
‘—’ 1st ‘– –’ 4th ‘….’ 7th orders of approximation

Figure 7. Ramp responses of the human operator
‘—’ 1st ‘– –’ 4th ‘….’ 7th orders of approximation
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Figure 8. Transient responses of the human operator
‘—’ 1st ‘– –’ 4th ‘….’ 7th orders of approximation

From Figure 8 it is easily can be determined that increase of order of approximation
results in less amplitudes in output signal. In time delay zone output signal becomes
more oscillatory as order of approximations increases.

5. Frequency domain analysis of the human pilot

During frequency domain analysis typical input signal of the human pilot is the
sinusoidal function changing over some frequency range. Figure 9 shows the response
of the human pilot to the harmonic sinusoidal input signal with unity gain.11,12,13

From Figure 9 it is obvious that pilot gain for each order of approximation is very
close to each other. In the high frequency range the phase angle radically decreases as
order of approximation is increases.11,12,13
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Figure 9. Bode diagrams of the human operator
‘—‘ 1st ‘– –‘ 4th ‘….’ 7th orders of approximation

6. Time domain comparision of the human pilot mathematical models

In the practice a question of ‘what kind of the mathematical model of the pilot activity to
use for control system analysis and design?’ may arise. From theory of automatic flight
control systems it is evident that pilot-in-the-loop problem can be characterized with
multi-loop feature. For instance, during semi-automated landing of the aircraft several
flight parameters must be controlled by pilot such as airspeed, vertical speed, height of
the flight, distance from runway threshold, glide path angle, angular deflection
measured from runway centre line etc. From this follows that increase of number of
flight parameters results in decreasing of complexity of the pilot model to be applied
during analysis and design of the automatic flight control systems.1,5,8,9,10

Let us analyze behavior of human pilot model for several form of its mathematical
model while supposing that time delay is approximated by 2nd order Padé-series.
During computer simulation mathematical models defined by equations (3.1), (3.2),
(3.3) and (3.12) were applied. Results of computer simulation can be seen in Figures 10
to 12. Figure 10 shows step responses of the human pilot behavior, when there was
applied to the pilot input the sudden step change in input, say, xin(t) = 1(t).
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Figure 10. Step responses of the human pilot
‘—’ P-TD ‘– –’ PD-TD ‘–.–.’ PD-1O-TD ‘…’ PD-2O-TD Models

Figure 11 shows ramp responses of different pilot models having ramp input of
xin(t) = (t).

Figure 11. Ramp responses of the human pilot
‘—’ P-TD ‘– –’ PD-TD ‘–.–.’ PD-1O-TD ‘…’ PD-2O-TD Models
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Figure 12 shows transient responses of different human pilot mathematical models
induced by applying square periodical signal with unity gain and frequency of 0.3 Hz.

Figure 12. Transient Responses of the Human Pilot
‘—’ P-TD ‘– –’ PD-TD ‘–.–.’ PD-1O-TD ‘…’ PD-2O-TD Models

Figures 10 to 12 clearly show that if to add the D-term to the proportional (see
equation (3.1)) it will result in more oscillatory system (see equation (3.2)) with large
amplitudes (dashed line on the figures). Introducing 1st order term to equation (3.2) will
result in more damped system reducing oscillatory feature (dash-dot line on Figures 10
to 12). Application of the 2nd order term of equation (3.12), in comparison with system
defined by equation (3.3), results in more oscillatory behavior (dotted line on Figures
10 to 12). Using method shown above human pilot model behavior can be compared
also for higher orders of the Padé-approximation.

Other interesting question, which arises from here, can be formulated in the
following manner: ‘what is the number of the flight parameters generating need to
reduce complexity of the applied mathematical model?’ The answer to this question
cannot be formulated easily. However, the general rule of reducing complexity of the
mathematical model while number of flight parameters increase must be
applied.1,5,8,9,10
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7. Numerical example of derivation of the minimum order of the Padé
approximation

Section 2.1. of this paper dealt with selection of model order to be applied for Padé
approximation. There is given a strict mathematical method to derive the order
necessary to apply for mathematical modeling of the time delay. Using Figure 1 let us
apply other method for model order selection based upon comparison of Nyquist-
diagrams of system of G(s), which is a transfer function representing the dynamical
system with real time delay, and )(ˆ sG , which demonstrates approximated
mathematical model of the time delay. Present section deals with derivation of the
minimum order of the Padé series necessary to apply for given accuracy.

Let the approximation accuracy is defined to be as follows:

δ ≤ 0.002. (7.1)

For further discussions we will apply P-1O-TD mathematical model of the human
pilot. In this particular case transfer function of the pilot can be defined as follows:1,3,4,5
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Frequency response function easily can be derived by substituting s = jω in equation
(7.2):6,7
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In equation (7.3) introduce following terms:
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which is real part of frequency response function of G(jω), and,
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which is imaginary part of G(jω).
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Approximated mathematical model of human pilot can be given as:
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Frequency response function of the approximated system of )(ˆ sG  can be derived by

substituting s = jω:6,7
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Transforming frequency response function )(ˆ ωjG  to its complex algebraic form

yields to following equation:
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Real part of )(ˆ ωjG  can be written as:
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and, imaginary part of )(ˆ ωjG  is as follows:
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Order of the Padé approximation, of course starting with the first, must be increased
until following inequalities take place:
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δωω ≤− )()( .APPRTD PP , (7.11)

and
δωω ≤− )()( .APPRTD QQ . (7.12)

The order of Padé approximation, which results in inequalities (7.11)–(7.12) is
minimum order to be used for analysis and design purposes.

To demonstrate a numerical example let us have following pilot model to be
approximated:

ssp

in

out
p e

s
e

sT

K

sx

sx
sGsY 5.0

1 4,01

10

1)(

)(
)()( −−

+
=

+
=== τ (7.13)

This mathematical model was approximated by linear model of )(ˆ ωjG  defined by

equation (7.6). Nyquist plots for both systems derived by G(jω) and )(ˆ ωjG  were found

and plot in Figure 13.
For Nyquist diagrams frequency range was chosen to be ω= (0–10)rad/s, which

represents range of the possible input signals of the human pilot. In Table 1. solid lines
show Nyquist plots of G(jω), which is model of human pilot having time delay of τ. In
Figure 13 the dotted lines show Nyquist plots of )(ˆ ωjG , which is approximated

mathematical model of the human pilot. From Table 1. it is evident that any increase of
order of the Padé approximation results in decrease of the error of the approximation.
Approximation errors were calculated and put in Figure 14.

Table 1. Approximation errors

Differences ( P∆ , Q∆ )Order of Padé approximation

)()(∆ . ωω APPRTD PPP −= )()(∆ . ωω APPRTD QQQ −=

n = 1 4.7642 3.3276
n = 2 1.5617 0.4369
n = 3 0.2317 0.0297
n = 4 0.0204 0.0012
n = 5 0.0012 3.1697 10–5.
n = 6 4.5377 10–5 5.8809 10–7
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Figure 13. Nyquist plots of systems of G(jω) and )(ˆ ωjG .

Solid line: Nyquist Plot of G(jω), dotted line: Nyquist Plot of )(ˆ ωjG .

From Table 1, it is clear that for n = 4 tolerances defined by equations (7.11)–(7.12)
are very close to that of defined by equation (7.1). Next approximation applied for n = 5
results in very small deviations, which show that for the given time delay of τ = 0.5 s the
minimum order of the Padé approximation to have mismatch of δ≤0.02, of the original
system of G(jω), and the approximated system of )(ˆ ωjG , defined by equations (7.3),
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and (7.7), respectively, is n = 5. For n = 5 Padé series can be determined using equation
(2.5) to be:
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Figures 14 and 15 show errors in the real and in the imaginary parts of the frequency
response functions derived by equations (7.11)–(7.12), respectively.

Figure 14 shows deviations of the real parts of the frequency response functions of
two dynamical systems of G(jω) and )(ˆ ωjG , in increasing order of the Padé

approximation. It is easily can be stated that deviations between the time delay system
G(jω), and the approximated system )(ˆ ωjG  decreases as order of the Padé

approximation is increases.
Note that for the given order of the approximation the approximation error increases

as input signal frequency approaches to its maximum bound. In low frequency domain
the error is sufficiently less that of belonging to high input signal frequency.

Figure 15 shows deviations of the imaginary parts of the frequency response
functions of two dynamical systems of G(jω) and )(ˆ ωjG . It is easily can be seen that

any increase of the order of the approximation results in decreasing deviation of the
time delay system of G(jω), and of the approximated system of )(ˆ ωjG . For the given

order of the Padé approximation deviation increases as frequency increases and goes to
its maximum value of 10 rad/s.

From the diagrams of Figure 15 it is evident that order of the Padé approximation of
n = 5 satisfies requirement defined preliminary by equation (7.1). In other words, time
delay of equation (7.13) can be approximated by equation (7.14) within the tolerance of
d≤0.02.
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Figure 14. PTD(ω)–PAPPR(ω) vs. frequency.
Solid line: PTD(ω)–PAPPR(ω), dotted line: δ= 0.02
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Figure 15. QTD(ω)–QAPPR(ω) vs. frequency.
Solid line: QTD(ω)–QAPPR(ω), dotted line: δ= 0.02

8. Conclusions

Human operator still one of the most ‘important part’ of the automatic control systems.
They may monitor, or actively actuate in the control systems. Since he acts as ‘simple
term’ of the closed loop control system it is necessary to model his activity, and, take
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this into consideration. Modeling human pilots is important from many aspects of
aircraft maintenance both in the air and on the ground. Human pilot mathematical
model depends upon complexity of the system in which he acts, upon the level of his
training, upon his physical and psychical conditions.

In most cases as scalar tolerance δ decreases, ωx increases (see equation (2.9)) and
this forces order of approximation n to increase. Obviously, for very large values of n
the relative magnitude of c0/cn of the coefficients of transfer function of Pd(s) becomes
very large. In this case numerical difficulties may arise in computer aided analysis and
simulation process. On the other hand, as time delay τ increases, order of approximation
n also should be increased to keep the approximation error δ limited regarding pre-
defined qualitative requirements.

Regarding pade.m built-in function of MATLAB computer program it is easily can
be derived that in case of τ = 0.5 s and n≤67 program calculates well. At higher orders
of approximation, say, for n>68, program starts to fail and in the time delay zone
oscillations may appear with increased amplitudes.

In Section 2.1. author proposed method for selection of order of Padé-
approximation, which is easily can be applied for Padé series minimum order selection.
In Section 7 Nyquist-method was applied for deriving minimum order of the Padé
approximation. A numerical example was explained and for the given inaccuracy the
minimum order of the Padé approximation was found to be n = 5. This simple heuristic
method is widely applied in automatic control theory. Mathematical model given by
equation (7.14) approximating original time delay of τ = 0.5 s is quiet complicated, but
gives accurate approximation of the time delay. This It can be used with no difficulties
for preliminary design of automatic control systems and for system analysis.
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