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This paper deals with the analysis of the robustness stability and robust performance of
the pitch rate stability augmentation system. Dynamics of the fuselage elastic bending
motion will be considered for additive uncertainty. The purpose of the authors is to
analyze if the given controller is able to stabilize the aircraft motion when its true
dynamics is taken into account during controller gain selection.

1. Introduction

This paper summarizes some of the methods available for robustness analysis of the
single input – single output (SISO) and multi input – multi output (MIMO) control
systems. Two methods of uncertainty modeling will be presented. The goal of the
authors was to analyze if the flight control system’s controller is able robustly stabilize
the system.

The paper is organized the following manner. In Section 2 dynamic performances of
the SISO control systems are derived. Section 3 is for the derivation of the dynamic
performances of the MIMO control systems. In Section 4 we deal with uncertainty
modeling. Conditions and main equations of robust stability are presented in Section 5.
Mathematical model of the elastic motion and the aircraft longitudinal motion are given
in Section 6. In this section basic data for analysis of the longitudinal stability
augmentation are also given. Section 7 and 8 are for time and frequency domain
analysis of the pitch rate damper. Results of computer simulation of the robustness
analysis are given in Section 9. This paper ends with some closing remarks, conclusions
and references.

2. Dynamic performances of the SISO systems

In this section, we will describe basic equations of the SISO control systems. The
block diagram of the SISO control system can be seen in Figure 1:1, 11
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Figure 1. Block diagram of the SISO control system

In Figure 1 r(s) represents the reference signal, d(s) is the external disturbance, n(s)
is the sensor noise, G(s) is the transfer function of the plant, K(s) is the transfer function
of the controller, u(s) is the input vector, and, finally, y(s) is the output signal. Using
Figure 1 the output signal y(s) can be derived as:
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In Eq. (2.1) let us introduce the following substitutions: )()()( sss *./   – open

loop transfer function, 
)s()s(1

1
)s( *.6 �  – sensitivity transfer function,
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*.7 �  – closed loop complementary transfer function (closed loop

transfer function).
Using the transfer function given above it is evident that

�76  � )s()s( (2.2)

For achieving the prescribed reference signal tracking ability, the sensitivity transfer
function S(s) must have small value in the given frequency domain, i. e., the open loop
transfer function is large. For achieving the necessary noise suppressing ability, the
sensitivity transfer function S(s) has small value in the frequency domain, in which the
external disturbance d(s) acts.

Sensor noises are said to be well damped if the closed loop transfer function T(s)
has small values in the given frequency domain, i. e., the open loop transfer function
must have small value.

Bode diagrams of the sensitivity transfer function, S(s), and the closed loop
complementary transfer function, T(s), can be seen in Figure 2.
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Figure 2. Bounds for )j(S Z  and )j(T Z

In low frequency domain )j(S Z  must be kept small, while in high frequency

domain its absolute value goes to unity. In low frequency domain )j(T Z  must be kept

unit value, in high frequency domain it is bounded for good noise suppressing ability.
For the SISO control system these simultaneous requirements determine the shape

of the open loop Bode diagram as illustrated in Figure 3. In low frequency domain, in
which the reference signal and the disturbance act, open loop gain must be kept large.

Figure 3. Desirable shape of the open loop system bode diagram
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In high frequency domain open loop gain must be small for good noise suppressing
ability. For the control of the gain and phase margins at the crossover, frequency slope
of the Bode plot must be – 20 dB/decade.

3. Dynamic performances of the MIMO systems

The automatic flight control system is the MIMO one and the state space method
must be applied for its analysis and design. In this case all input signals are vectors. In
the MIMO control system we deal with the so-called transfer function matrices. For the
evaluation of the size of matrices there is widely applied the matrix singular value
method. For the MIMO control system Eq. (2.1) may be rewritten in following manner:
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The sensitivity and the closed loop sensitivity transfer function matrices can be
determined as follows:
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Nominal performance criterions for the SISO and the MIMO control systems are
summarized in Table 1. Subscript ’m’ denotes the largest singular values of the
matrices.

Table 1. Nominal performance criterions for the SISO and the MIMO control systems

Low frequency domain High frequency domain

SISO MIMO SISO MIMO

Reference signal
tracking

«K(s)G(s)«»1 or
«S(s) «©1

V(K(s)G(s))»1
or

Vm(S(s))©1

Disturbance rejection
«K(s)G(s)«»1 or

«S(s) «©1
V(K(s)G(s)) »1

or
Vm(S(s)) ©1

Noise suppression

|K(s)G(s)|©1
or

|T(s)| ©�
Vm(K(s)G(s))©1

or
Vm(T(s))©�
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4. Uncertainty models applied in contol theory

Next we will discuss types of uncertainties to be considered later. Uncertainties can
be divided into two categories: structured and unstructured ones. Structured uncertainty
is the modeled one and has ranges and bounds on it. Unstructured uncertainty is the
less-known one and its frequency response lies between two bounds. Unstructured
uncertainty can be modeled in two different ways. One can discuss additive or
multiplicative uncertainties. Let the nominal system model is denoted by )s(G . The

actual true system is defined with )s(G
~

. The actual system can be modeled as sum of

nominal system plus the additive uncertainty model:1, 10

)s()s(G)s(G
~

a'� (4.1)

From Eq. (4.1) the model of the additive uncertainty can be derived as:

)s(G)s(G
~

)s(a � ' . (4.2)

Additive uncertainty can be represented using Eq. (4.1) and it can be seen in
Figure 4.

Figure 4. Additive uncertainty model

Additive uncertainty model is often used in automatic flight control system to model
aeroelastic high frequency dynamics of the aircraft fuselage. Additive uncertainty
represents absolute error in the model.

In the multiplicative uncertainty case one can find the true model of the system as:� � )s(G )s()s(G
~

m'� � (4.3)

Multiplicative uncertainty can be built using Eq. (4.3). It can be represented at the
plant input or at the plant output. Block diagram of multiplicative uncertainty can be
seen in Figure 5.
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Figure 5. Multiplicative uncertainty model
‘a’ – uncertainty at the plant input, ‘b’ – uncertainty at the plant output

Multiplicative uncertainty represents relative error in the model and it is used more
often than additive one.

5. Robust stability of control systems

Let us consider a feedback control system containing a plant and the compensator
designed for the nominal plant )s(G . The compensator robustly stabilizes the system if

the closed loop control system remains stable for the true plant )s(G
~

.

Robust stability conditions can be derived from variation of the Nyquist stability
criterion or from the so-called small-gain theorem. This theory states that, for the closed
loop stability the open loop gain )s(K)s(G  is small.6–9 The small-gain theorem

guarantees internal stability. It means that all possible closed loop transfer functions are
stable and all internal signals are bounded for bounded inputs.

From Section 2 it is known that for good command performance and for good
disturbance rejection in the low frequency domain the open loop gain must be larger
than one. Hence, the control system satisfying this theorem will have poor dynamic
performances. Inspite of this it is possible to apply the small-gain theorem for control
systems with additive and multiplicative uncertainties.

Figure 6. Feedback control system
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The small-gain theorem is mainly used for answering the following two questions.
The first is, if the given uncertainty is stable and bounded will the closed loop system be
stable for this uncertainty? The second one is, for the given control system what is the
smallest uncertainty destabilizing the closed loop control system?

Consider a system with nominal plant )s(G  and the compensator. The plant and the
compensator are supposed to be stable ones.

Using the Nyquist stability criterion the closed loop control system is stable if and
only if the following inequality holds:

)s(K)s(G  < 1. (5.1)

Left side of the inequality (5.1) can be rewritten as

)s(K)s(G)s(K)s(G d (5.2)

The closed loop stability condition can be derived from Eqs. (6.1) and (6.2).
We have for this criterion:

)s(K)s(G  < 1. (5.3)

Let us use the small-gain theorem for derivation of conditions of robust stability of
control system under multiplicative uncertainty at the plant output. Consider the
feedback system shown in Figure 7a. To derive the block diagram of the feedback
system in Figure 6 it is necessary to determine the transfer function seen by the
uncertainty. For this refer to Figure 7b and the transfer function M(s) (see Figure 7c)
between ‘input’ and ‘output’ is given by the following formula:

)s(K)s(G

)s(K)s(G
)s(M �

� � . (5.4)

The small-gain theorem states that if the transfer function (5.4) and the uncertainty
transfer function are stable the closed loop control system will be robustly stable if and
only if

)s(m' < > @ �� �� )s(K)s(G)s(K)s(G

1 , (5.5)

or, in other form,

)s(m' <
)s(T

1 . (5.6)
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Figure 7. Feedback control system with multiplicative uncertainty

Eqs (5.5) and (5.6) can be used to answer the first of the two questions posed earlier.
If the uncertainty is bounded by the given scalar J, one can have the following
inequality:

)s(T < J
1 , or )s(T J <1. (5.7)

The second question of two posed before is about finding the smallest stable
multiplicative uncertainty, which will destabilize the closed loop system. It is known

that uncertainty must be smaller than 
)s(T

1
, i. e., it must be smaller than the minimum

of 
)s(T

1
. For the minimum of the left side of Eq. (5.6) we must maximize )s(T . The

maximum of )s(T  over all possible frequencies is its peak value. The smallest

uncertainty destabilizing the feedback system is given by

rM

1
MSM  , where )j(T supM r Z 

Z
. (5.8)

In Eq. (5.8) MSM denotes the Multiplicative Stability Margin. The supremum of
)j(T Z  is equal to the maximum of the function when the maximum is attained.

For the MIMO feedback system the size of the smallest destabilizing multiplicative
uncertainty can be derived as follows:> @ > @)j(T

1
)j(m ZV Z'V . (5.9)
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Using the same approach the conditions of robust stability under additive
uncertainty can be determined. Transfer function seen by the uncertainty is given by

)s(K)s(G

)s(K
)s(M �

� � . (5.10)

The feedback system will be robustly stable if takes place the following inequality:

)s(a' < > @ �� �� )s(K)s(G)s(K

1 , (5.11)

or in other manner

)s(a' <
)s(S)s(K

1 . (5.12)

If the additive uncertainty is stable and bounded by

)s(a' < J
1 . (5.13)

The closed loop robust stability can be guaranteed if

)s(S)s(K < J
1

, or )s(S)s(K J <1. (5.14)

The Additive Stability Margin (ASM) can be defined by

)j(S)j(Ksup

1
ASM ZZ 

Z
. (5.15)

For the MIMO feedback system the size of the smallest additive uncertainty

destabilizing the feedback system can be derived as follows:> @ > @)j(S)j(K

1
)j(a ZZV Z'V . (5.16)

It is easily can be seen that for protection against destabilizing multiplicative
uncertainties MSM must be large, the complementary sensitivity must be small. It leads
to good noise suppression but conflict with reference signal tracking and disturbance
rejection. The transfer function of ASM is that of determining control energy.
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6. Mathematical model of the elastic aircraft

In this section we will describe mathematical model of the elastic aircraft. There are
many scientific papers and textbooks dealing with principle of aeroelasticity.2,4,5 Two
main methods are available for deriving mathematical model of the elastic aircraft. The
first one is the state space method. The second one is the transfer function method. In
this work we will focus our attention to the transfer function method.

In general, elastic motion of the aircraft fuselage generated by angular deflection of
the elevator can be defined using following formula:5

)( 
2

 )(
1

22
s

ss

sK
s E

i iii

i
ZE

GZ�Z[� Z ¦f
 

, (6.1)

where )s(EG  represents angular deflection of the elevator, iK  is the gain of the ith
elastic degree of freedom, iZ  is the natural frequency and, i[  is the damping ratio of
the ith elastic degree of freedom, respectively. Let us consider parameters of the 1st and
the 2nd overtones of the fighter fuselage bending motion given as follows:5
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It is supposed that the longitudinal motion control system is affecting only the short
period motion. The simplified mathematical model of the longitudinal motion of the
aircraft is given by:2,3,5 � �
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In Eq. (6.15) – for the flight conditions H=1000 m and M=0.4 – let us consider the
following parameters of the aircraft:

5,0 ; s 5 ; s 2T ; s 5,1A 11  [ Z  D�DT� (6.4)

The resulting output signal of the pitch rate gyro can be determined as a sum of the rigid
and elastic aircraft output signals defined by eqs (6.1) and (6.3):

)s()s()s(
RE ZZz Z�Z Z (6.5)

7. Time domain analysis of the longitudinal stability augmentation system

Let us consider the aircraft model defined by eqs (6.2) and (6.4). Eigenvalues and
dynamic performances of the aircraft are as follows:
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s/rad5 ,5.0 ,i33.45,22,1  Z [r� O (7.1)

Dynamic performances of the uncontrolled aircraft are different from the desired
ones given above. Aircraft damping ratio during its controlled flight must be between
0,6 and 0,8 [12]. For providing desirable dynamic performances the pole placement
must be used. Pole placement is realized using state feedback by the pitch rate, which is
available for measurement. The pitch rate damper is built using sensor, controller and
hydraulic actuator. In conventional stability augmentation systems the pitch rate sensor
is the electro-mechanical device. Sensor dynamics can be represented as the
proportional second order term. Assuming high natural frequency of the pitch rate gyro
it can be modeled as a simple proportional term with unity gain sK . The compensator
is supposed to be proportional term and denoted by cK . During analysis of the pitch
rate it is supposed that hydraulic actuator has fast response to input signals without any
time delay. The block diagram of the longitudinal stability augmentation of the elastic
aircraft can be seen in Figure 10.

Figure 10. Longitudinal motion stability augmentation system

The uncontrolled and the controlled aircraft was analyzed in the time domain. The
result of the computer simulation can be seen in Figure 11.

From Figure 11 it can be seen that the uncontrolled aircraft transient response has
large overshoot and response time. The controlled rigid aircraft has faster response
without overshoot. Dynamic performances of the closed loop system were determined
and they are as given by:

s/rad92.7 ,s/rad757.0 ,1 ,92.7 ,757.0 212121  Z Z [ [� O� O . (7.2)

The closed loop perturbed control system was analyzed in the time domain. Results
of the computer simulation can be seen in Figure 12. From Figure 12 it can easily be
seen that the first and the second overtones lead to oscillation of the pitch rate step
response.



R. SZABOLCSI, P. SZEGEDI: Robustness of the automatic flight control systems

264 $$506 1(2) (2002)

Figure 11. Pitch rate step responses.
Solid: uncontrolled aircraft, dash and grid: controlled aircraft

Figure 12. Pitch rate responses.
Solid: rigid aircraft, dash and grid: elastic aircraft
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8. Frequency domain analysis of the longitudinal stability augmentation system

Robust stability analysis gives answer to question if controller is able to stabilize the
true plant? Firstly, let us analyze the frequency domain behavior of the additive
uncertainty. Bode diagram of the additive uncertainty represented by the high frequency
dynamics of the aircraft elastic motion can be seen in Figure 13.

Uncertainty gain has resonance peak at 10 and at 20 rad/s developed by the D-term
in the numerator of Eq. (6.1). Both in low and in high frequency domain the uncertainty
gain is small.

The additive uncertainty affects the frequency domain behavior of the open loop
stability augmentation system. Results of the computer simulation can be seen in
Figure 14.

Form Figure 14 it can be seen that at the resonance frequencies of 10 and 20 rad/s
the gain and the phase angle have peaks in their values. The open loop gain and the
phase angle are increased only at the resonance frequency and in its vicinity.

Figure 13. Additive uncertainty Bode diagram
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Figure 14. Bode diagram of the open loop perturbed system

9. Robustness analysis of the longitudinal stability augmentation system

Basic equations of robustness analysis of the control systems were summarized in
Section 5. The sensitivity transfer function S(s) and the closed loop complementary
transfer function T(s) were derived. Their frequency domain behavior was analyzed and
it can be seen in Figure 15.

From Eq. (5.16) it is evident that the closed loop system can be said robustly stable
if inverse of the sensitivity transfer function larger than the additive uncertainty gain.
This condition was analyzed and the closed loop system was tested for this inequality.
Results of the computer simulation can be seen in Figure 16.

From Figure 16 it is evident that inverse of the sensitivity transfer function – for the
unity gain of the sensor – due to second overtone of the aircraft elastic motion is less
than the additive uncertainty gain. It means that the closed loop control system of the
pitch rate damper is robustly unstable. If to consider only the first elastic overtone the
closed loop pitch rate damper is robustly stable. Because of the dynamic performances
of the first and the second overtones i. e., the gains, damping ratios and natural
frequencies in flight control systems it is regarded to take into account both of them
simultaneously. In some cases the output electrical signal of the pitch rate sensor is
filtered using passive or active filters.
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Figure 15. The sensitivity and the closed loop complementary transfer functions.
Solid: ‘S’, dash and dot: ‘T’

Figure 16. The inverse sensitivity transfer function and the additive uncertainty gain.
Dash and dot: ‘inv[1+Ks(s)S(s)]’; solid: ‘Additive Uncertainty Gain’
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10. Summary and conclusions

The paper dealt with dynamic performances of the SISO and MIMO feedback
systems and its main equations. The sensitivity and closed loop sensitivity transfer
functions have been involved to determine the desirable shape of the open loop Bode
diagram. Shapes of these functions were determined so as to meet dynamic
performances of the feedback system. Two kinds of uncertainties were presented for
determination if controller is able robustly stabilize the true plant with given
uncertainty. For derivation of smallest uncertainty destabilizing the closed loop control
system the multiplicative and additive stability margins also were determined. Basic
equations of the aircraft elastic motion and its transfer function were derived. The high
frequency dynamics generated by elevator angular deflection have been involved as
additive uncertainty. The closed loop control system of the aircraft longitudinal stability
augmentation system was analyzed for the 1st and the 2nd overtones of the fuselage
elastic motion. The transient behavior, Bode diagrams and the dynamic performances
were derived and analyzed. The robust stability was determined using condition for the
inverse of the sensitivity transfer function and the resulting additive uncertainty gain. It
must be stated that for the given uncertainties involved in this task for providing robust
stability it is necessary to filter the pitch rate sensor output signal.
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