Békési Bertold mérnök főhadnagy főiskolai oktató Repülő szakág tanszék

A NAVIGÁCIÓS FELADATOK MEGOLDÁSI LEHETŐSÉGEI AZ ORTODRÓMIKUS KOORDINÁTA RENDSZERBEN

A repülés a korai időszakától kezdődően szinte elképzelhetetlen navigáció nélkül. A repülőtechnika fejlődése és a megoldandó repülési feledatok maguk után vonták a léginavigáció fejlődését is. A navigációs módszerek egyre pontosabbak, a navigációs feladatokat megvalósító eszközök egyre összetettebbek lettek. A navigációs feladatokat a földrajzi -, csillagászati- és ortodrómikus koordináta rendszerben egyaránt végre lehet hajtani. Mivel napjainkban a legtőbb repülést az ortodrómikus koordináta rendszerben hajtják végre, ezért ezen koordinátaroszer bemutatásával foglalkozom. Az ortodrómikus koordináta rendszer előnye a nagytávolságú repüléseknél jelentkezik mivel így a legrővidebb úton érhető el az adott cél, repülőtér, fordulópont, stb. Az alkalmazás előnye ezen oknál fogva a gazdaságossága, mert nagytávolságú repüléseknél jelentős üzemanyag-megtakarítás érhető el, ami napjainkban nem elhanyagolható szempont.

Bevezetés

A repülőgépek legfontosabb irányítási és tájékozódási műszere az iránytű. A mágneses iránytű minden pillanatban lehetővé teszi a mágneses géptengelyirány meghatározását. A legegyszerűbb, legrégebben alkalmazott iránytű típus a folyadékos mágneses iránytű volt. Ennek az iránytű típusnak sokféle hibája van, ezért helyette a mágneses táviránytűt alkalmazták. A folyadékos iránytűt azonban tartalék iránytűként használták, mivel semmiféle táplálást nem igényel, és a legkorszerűbb repülőgépeken is megtaláljuk. Szinte a folyadékos mágneses iránytűvel egyidőben alkalmazták a pörgettyűt is iránytartásra, melyet kezdetben kézzel kellett a mágneses iránytű által mutatott irányra beállítani. Hamarosan azonban már a folyadékos, majd az indukciós iránytű vezérelte a giroszkópot, és az így létrejőtt stabilizált giromágneses irány sokkal pontosabb iránytartást tett lehetővé.

A hatvanas években már olyan pörgettyűket tudtak készíteni, melyek óránként egy-két fokos pontossággal tartották az irányt, ezért ekkor jelentek meg a korszerű irányrendszerek, melyek lehetővé tették az ortodrómán történő repülést, a hely és irány-meghatározást csillagászati módon, valamint a földrajzi irány kiválasztását. Napjaink korszerű pörgettyűi az inerciális navigációs rendszerekben egy századfoknyi pontosságúak, azaz száz órán keresztül egy foknyi eltéréssel tartják az irányt.

1. Az ortodrómikus irányszög és távolság

Ortodrómának nevezzük a két ponton áthaladó gömbi főkör rövidebb ívét. Az ortodróma a két pont között a legrővidebb távolság (1.ábra), melyet induló szögével és távolságával határozunk meg. Az ortodróma a meridiánokat különböző szögek alatt metszi. Az ortodrómikus útirányszög (OUI) a meridiánok összehajlása (konvergenciája) miatt minden meridiánnal változik. Az ortodróma induló és érkező szöge a meridián konvergencia értékével különbözik egymástól, tehát a meridián konvergencia azzal a szöggel egyenlő, amelyet a kiinduló és végponton áthaladó meridiánokhoz húzott érintők egymással bezárnak. Ismerve két adott pont földrajzi koordinátáit, meghatározhatjuk a meridián kenvergencia értékét.[2]

1.ábra Ortodróma,loxodróma, meridián konvergencia

A gyakorlatban kielégítő pontosságot nyújt a következő képlet, melynek segítségével a meridián konvergencia értékét a közepes szélességre határozzuk meg:

$$\omega = \Delta \lambda \sin \frac{\varphi_1 + \varphi_2}{2} \tag{1}$$

ahol:

ω - meridián konvergencia egész és tized fokokban

Δλ - hosszúságkülönbség egész és tized fokokban

 $\sin \frac{\varphi_1 + \varphi_2}{2}$ - a közepes földrajzi szélesség szinusza

Az ortodróma bármely pontján meghatározható az útirányszög ha ismerjük az induló szöget és az adott pont koordinátáit. Minden ortodrómán vagy meghosszabbításán megtaláljuk azt a pontot, ahol az ortodróma a meridiánnal 90°-os szöget zár be. Ez az ortodróma vertexe és az ortodróma számításánál van jelentősége. Megjegyzendő, hogy a repülési magassággal nő az ortodróma hossza is, a növekedés azonban olyan csekély mértékű, hogy a gyakorlati navigációban elhanyagolható.

1.1 Ortodrómikus koordináta rendszer

Az ortodrómikus koordináta rendszert négyzetrácsos koordináta rendszernek (grid) is nevezik és a földrajzi koordináta rendszerből származtatják áthelyezett pólusokkal, párhuzamos meridiánokkal (2.ábra)

A földrajzi északi irány (É) és a hálózati északi irányok (H) különbsége a meridián konvergencia

Az ortodrómikus szélesség és feltételezett egyenlítő síkja (ortodrómikus félkör) és a földfelület egy adott pontjának az ortodrómikus meridiánnal határolt ívhossza. Az ortodrómikus hosszúság a kezdő ortodrómikus meridián és egy adott pont közötti ortodrómikus szélesség ívhossza. A kezdő ortodrómikus hosszúság kijelölését a feladat jellege határozza meg. Kezdő délkörként általában a Greenwich-it jelölik.[2]

1.2 Az ortodrómikus helyzetvonal

A repülőgép helyzetvonalának nevezzük annak a vonalnak a vetületét a földfelületen, amely a repülőgép tartózkodási helyét határozza meg adott időpontban, egy vagy több földi ponthoz viszonyítva. Egy helyzetvonal önmagában nem határozza meg a repülőgép pontos helyét, ehhez két vagy több helyzetvonal metszéspontja szükséges, azonban az így kapott helyzet nem pont, hanem terület, melynek nagysága az alkalmazott navigációs rendszer pontosságától függ. A legújabban kifejlesztett földi é fedélzeti berendezések műszaki paraméterei olyanok, hogy a keletkező hiba elhanyagolható.

Ortodróma a repülőgép helyzetvonala, ha a rádióhullámok által meghatározott irányt követünk, akkor a rádióhullámok a nagykör mentén terjednek.

1.3 Az ortodróma számítása

Az ortodrómát induló szögével és távolságával határozzuk meg. A kiinduló és érkezési pont koordinátáit ismerve meghatározható az induló szög, az ortodrómikus távolság, a vertex és bármely más közbeeső pont koordinátája. Az ortodróma induló (és érkező) szögének és az ortodrómikus szakasz távolságának számítása többféle módszerrel lehetséges.[2.,3]

- a., Matematikai úton, szögfüggvények és gömbi trigonometriai képletek segítségével. Napjainkban ezt a feladatot számítógéppel oldják meg. A pontosság érdekében helyesbítést alkalmaznak a vonatkozó referencia ellipszoidra is.
- b., Navigációs számítótárcsán (speciális tárcsa).
- c., Térképen mérve (figyelembe véve a vetítési módot).
- d., Földgömbön lemérve.

Az ortodrómikus irányszög és távolság egyik gyakorlati meghatározását az alábbi képlet mutatja be:

a., Ha csak az ortodrómikus távolságot kell meghatározni:

$$\cos S^{\circ} = \sin \varphi_1 \sin \varphi_2 + \cos \varphi_1 \cos \varphi_2 \cos(\lambda_2 - \lambda_1)$$
 (2)

ahol: So - távolság fokokban és percekben

φ,, λ, - az induló pont koordinátái

φ,, λ, - az érkezési pont koordinátái

A távolságot fokokban kapjuk. A fokokat ívpercre átszámítva nyerjük az ortodrómikus távolságot.

b., Ha az ortodrómikus irányszöget és távolságot is meg kell határozni:

I.
$$ctg\alpha = \cos\varphi_1 tg\omega_2 \csc(\lambda_2 - \lambda_1) - \sin\varphi_1 ctg(\lambda_2 - \lambda_1)$$
 (3)

Az α ismeretében számítható a távolság:

II.
$$\sin S^{\circ} = \cos \varphi_2 \csc \alpha \sin(\lambda_2 - \lambda_1)$$
 (4)

Ha az ortodrómát a térképen szerkesztik és az adott vetületen az ortodróma egyenessel nem ábrázolható, kiszámítják a közbeeső pontok koordinátáit. Ezeket a pontokat felviszik a térképre, majd a pontokat összekötve megkapják az ortodróma útvonalát.

2. Az irányszögek fajtái és meghatározási módjai

A repülés során a repülőgép irányításához feltétlenül szükség van a repülőgép irányszögének (\psi\) ismeretére. Irányszögnek nevezzük a repülőgép hossztengelyének a vízszintes síkra eső vetülete és valamilyen, a fölfelszínen megadott irány által bezárt szöget.[1]

Attól függően, hogy milyen megadott irányt használunk fel az irányszög meghatározásához, különböző szögekről beszélünk. Ha az irány-meghatározás a földrajzi hosszúsági kör (meridián) északi irányához képest történik, akkor valós irányszöget kapunk. Ha a mágneses hosszúsági kör északi irányát használjuk fel az irány-meghatározáshoz, akkor mágneses irányszöget kapunk. Az iránymeghatározás történhet bármilyen, a Föld felszínén képzeletben elhelyezett egyeneshez viszonyítva is. Ezt a képzeletbeli egyenest ortodrómának, a hozzá képest meghatározott irányszöget ortodróm irányszögnek hívjuk.

Tehát összefoglalva az alábbi irányszögeket különböztetjük meg:

- valós (ψ_∗)
- mágneses (\psi_*)
- ortodróm (v)

A repülőgép irányszögének meghatározására használt eszközt iránytűnek hívjuk. A méréshez felhasznált elv alapján a következő iránytűfajtákat különböztetjük meg:

- mágneses iránytű, amely a föld mágneses terét használja fel a mágneses irányszög meghatározásához
- giroszkópikus iránytű (pörgettyűs féliránytű), amely a pörgettyű azon tulajdonságát használja fel, hogy az főtengelyének helyzetét a térben megőrzi
- csillagászati, melynek elve égitestek helyzetének bemérésén alapul
- rádiótechnikai iránytűk, amelyek földi rádióállomásokat vagy műholdakat bemérve határozzák meg a repülési irányt

A fenti iránytűfajtákon kívül beszélhetünk még komplex irányszögrendszerekről, amelyek a fenti elvek közül néhányat együttesen használnak fel az irányszögek meghatározásához.

Az iránytű érzékelő eleme a "pólus" irányát (β) határozza meg (3.ábra). Az iránytű működési elve alapján a "pólus" lehet a Föld mágneses vagy földrajzi pólusa, az égitest vagy a rádióadó földrajzi helye. Így az irányszög megállapításához ismernünk kell a megadott irány és a "pólus" által bezárt A

szöget. Ha a megadott irány megegyezik a meridiánnal, akkor égitest földrajzi helye esetén ez a szög az égitest azimutja, rádióállomásnál annak pellingje, mágneses pólusnál a mágneses elhajlás. Ha az A szöget az ortodrómához képest adjuk meg, akkor a fenti elnevezések az "ortodróm" jelzővel egészülnek ki. A 3.ábrából látszik, hogy a repülőgép irányszöge meghatározható két szög különbségeként:

$$\psi = A - \beta \tag{5}$$

Az irány-meghatározó eszközökkel szemben támasztott követelmények közül a legfontosabbak: pontosság, megbízható működés, zavaró hatásokkal szembeni érzéketlenség.

3. Ortodróm irányszög meghatározás

3.1 Csillagászati irány-meghatározó eszközök

A vízszintes csillagászati iránytűk működési elve a ψ valós irányszög (4/a.ábra) meghatározásán alapszik az (5) összefüggés alapján, ahol:

A - az égitest azimutja (a C égitest iránya és az északi irány közötti szög)

 β - az égitest irányszöge (az égitest iránya és a repülőgép hossztengelyének vízszintes vetülete által bezárt szög)

Az égitest irányszögének mérése irányadó segítségével történik (4/b.ábra), amely automatikusan végzi az irányszög mérését.

4.ábra

Az égitest azimutjának meghatározását számító egység végzi. Az azimut a repülőgép és az égitest koordinátáinak (φ hosszúság, λ szélesség, δ deklináció és $t_{\rm gr}$ óraszőg) függvényeként kerül meghatározásra. Az égitest azimutját meghatározó számító egység modellezi az éggőmb legfontosabb íveit és irányait. Egy lehetséges megoldás blokkvázlata látható az 5.ábrán.

5.ábra

A csillagászati iránytű bemérőfeje az égitestre van állítva. A $\Delta\beta$ irányszögeltérést követő rendszer egyenlíti ki. A megoldóegység a repülőgép és az égitest koordinátáit az azimut értékével összekapcsoló egyenleteket megoldva számítja az azimut értékét, majd meghatározásra kerül a csillagászati irányszög:

$$\overline{\psi} = \overline{A} - \overline{\beta}, \ \overline{A} = A + \Delta A, \ \overline{\beta} = \beta + \Delta \beta$$
 (6)

ahol: ΔA, Δβ - az azimut és az irányszőg meghatározásakor fellépő hibák.

A csillagászati iránytű lehetővé teszi az ortodrómán történő repülést is, a vízszintes csillagászati iránytű nem változó jelei mellett. Ebben az esetben az A azimut helyett az égitest adott időpillanatban a kezdeti útvonalpontban lévő A_0 azimutja kerül meghatározásra; a β szög helyett pedig β_0 . A β_0 szög megadja az égitest irányszögét a kezdeti útvonalpontban lévő, az ortodrómához képest ugyanolyan hossztengely helyzettel rendelkező repülőgépre, mint amilyen a hossztengely helyzete az adott pontban. Akkor az ortodrómán történő repülésnél, hasonlóan az előzőekhez:

$$\psi_a = A_a - \beta_a \tag{7}$$

Az ilyen csillagászati iránytűk ψ_0 jelzései állandóak maradnak az ortodrómán való repüléskor, és egyenlőek lesznek az ortodróma kezdeti útvonalszögével (OKU).[2.,3]

Tehát az ortodrómán történő repülés feltétele:

$$\psi_{\bullet} = OKU \tag{8}$$

vagy oldalszél esetén:

$$\psi_{\circ} = OKU - \beta_{\bullet}$$
 (9)

ahol: β, - az elsodródási szög

Így ennél a módszernél a repülés során a kezdeti útvonalpontban történő irányszög meghatározást imitáljuk. Ezért a ψ_0 irányszög meghatározása az ortodrómaval állandó, a kezdeti útvonalszöggel megegyező szöget bezáró iránytól kiindulva történik.

A ψ_0 szög meghatározásához folyamatosan szükséges A_0 kiszámítása és β_0 mérése. A_0 meghatározásához a számító egységbe elegendő bevezetni a kezdeti útvonalpont φ_0 , λ_0 koordinátáit. A β_0 szög közvetlen mérése akkor lehetséges, ha a repülőgép hossztengelye az ortodróma sikjában van, a mérőrendszer tengelye pedig a repülőgép szimmetriasikjában hátrafelé

$$\varepsilon = \frac{S}{R} \tag{10}$$

szöggel ki van térítve, ahol:

S - az ortodrómán megtett út

R - a Föld sugara

Az ε szög megfelel a repülőgép által az ortodrómán megtett ívnek.

3.2 Pörgettyűs elven működő irány meghatározó eszközök

A pörgettyűs féliránytű három szabadságfokú pörgettyű, amely külső keretének tengelye függőleges, a forgórész tengelye pedig helyesbítő nyomatéksegítségével a vízszintes sikban kerül megtartásra. A berendezés működési elve a pörgettyű inerciális tulajdonságain alapul. A pörgettyűs

féliránytűk alkalmazása történhet mind önálló műszerként, mind komplex műszerrendszerek adójaként. A gyakorlatban a pörgettyűs féliránytűket az ortodróm irányszög meghatározására használják.

Tegyük fel, hogy a repülőgépnek A pontból a B pontba kell átrepülnie (6.ábra). E két ponton keresztül húzzunk körívet (a Föld felszínével párhuzamosan), ez a körív az ortodróm egyenlítő. Az ortodróm egyenlítő központjából annak síkjára merőlegesen meghúzott tengely a földgömbőt P_1 és P_2 pontokban metszi, ezek az ortodróm pólusok.[1]

Legyen a repülőgép tartózkodási helye adott pillanatban az O pont, ez legyen a ξ_0, η_0, ζ_0 ortodróm koordináta rendszer középpontja. Az ortodróm koordinátarendszer ζ_0 tengelye legyen a valódi függőlegessel megegyező. A η_0 tengely az O ponton áthaladó vízszintes sík és az ortodróm délkör $(O_1, P_1, O_1, P_2$ sík) metszési vonala, a ξ_0 tengely az előző tengelyekre merőleges, és olyan irányú, hogy jobbsodrású koordinátarendszert kapunk. A repülési sebesség ξ_0, η_0, ζ_0 tengelyekre eső vetületeit jelőljük $V_{t_0}, V_{t_0}, V_{t_0}$

A repülőgép helyzete az ortodróm koordinátarendszerben, vagyis az A pontból az egyenlítő mentén megtett út (a földrajzi hosszúság analógiájára) - S, az adott

ortodrómától való oldaleltérést az ortodróm délkör ívén (a földrajzi szélesség analógiájára) - δ (az ábrán nincs jelölve).

Az ortodróm egyenlítőn való repülésnél az ortodróm délkör $(O_1, P_1, O_1, P_2$ sík) elfordulásának szögsebesség vektora a P_1, P_2 egyenessel megegyező irányú, abszolút értéke pedig:

$$\frac{dS}{dt} = \frac{V_{4s}}{R} \tag{11}$$

A vektornak a ζ_0 tengelyre eső vetülete zérus, mivel a P_1, P_2 egyenes az ortodróm egyenlítő sikjára merőleges. Az ortodróm délkörnek a repülőgép Föld körüli mozgásából eredő relatív szögsebessége nulla. Az ortodróm délkör átvitt szögsebességének meghatározásához elegendő megkeresni a Föld napi forgásából eredő ζ_0 tengelyre eső szögsebesség összetevőit, amelynek értéke a 6.ábrára felírva:

$$\omega_{z_0} = \omega_F \sin \varphi$$
 (12)

A valós irány meghatározását végző azimutálisan szabad pörgettyű eltérését:

$$\omega_{g} = -\left[\omega_{F} \sin \varphi + \frac{V_{E}}{R} I g \varphi\right] \tag{13}$$

és az ortodróm irányszög meghatározását végző azimutálisan szabad pörgettyű eltérését:

$$\omega_x = -\omega_F \sin \varphi \tag{14}$$

összehasonlítva látható, hogy a pörgettyűs féliránytű pontosabban jelzi az ortodróm irányt mint a földrajzi irányt.

Ha a pörgettyűs féliránytű skáláját, vagy a pörgettyű főtengelyét folyamatosan $\omega_F \sin \varphi$ szögsebességgel forgatjuk, a kezdeti időpillanatban pedig az adott ortodróma irányába állítjuk be, akkor az azimutálisan szabad pörgettyű alkalmassá válik az ortodróm irányszög jelzésére.

3.3 A pörgettyűs féliránytű szerkezete, működése, hibái

Egy a gyakorlatban alkalmazott pörgettyűs féliránytű elektrokinematikai vázlata látható a 7.ábrán,

7.ábra Pörgettyűs féliránytű elektrokinematikai vázlata

A berendezés fő részei a pőrgettyűs adó (1), a vezérlőpult (2) és a jelzőműszer (3). A berendezés elektromos kapcsolási rajza a 8.ábrán látható. A rendszer táplálása 36V feszültségű, 400Hz frekvenciájú háromfázisú váltakozó árammal és 27V feszültségű egyenárammal történik.[1]

A rendszer legnagyobb fogyasztója a pörgettyűmotor (5), amely háromfázisú aszinkron motor, rövidrezárt forgórésszel. Az állórész tekercsei csillag kapcsolásúak. A vízszintes helyesbítő rendszer érzékelő eleme folyadékingás kapcsoló (4), végrehajtó szerve vízszintes helyesbítő motor (6), amely lefékezett üzemmódban működő, kétfázisú irányváltó aszinkron motor. A helyesbítő motor gerjesztő tekercse az A és C fázisok közötti vonalfeszültségre, a vezérlő tekercse pedig az A és B fázisok közötti vonalfeszültségre van kötve. Fordulók közben a vízszintes helyesbítő rendszer pörgettyűs elven működő helyesbítéskikapcsoló (11) segítségével kapcsolódik ki.

A pörgettyű főtengelyének megtartása azimut (oldalszög) szerint a szükséges irányban azimutális helyesbítő motor (3) segítségével történik, ami többpólusú aszinkron motor.

8.ábra A pörgettyűs féliránytű elektromos kapcsolási rajza

A motor gerjesztő tekercse az A és B fázisok közé van kötve. A motor vezérlő tekercsére A feszültség egy hidkapcsolás átlójából kerül. A hid ágai a szélességi potencióméter (15) és a helyesbítő potencióméter (14). A hid másik átlójából, A B és C fázisokról történik a hidkapcsolás táplálása. A hid kiegyenlítettségét szabályozó potencióméter (16) biztosítja. Az azimutális helyesbítő motor vezérlő tekercsére kerülő feszültség arányos a hely földrajzi szélességével (a szélességi potencióméter csúszkája adott szélességnek megfelelően kerül beállításra). A hidkapcsolás elemei a vezérlőpulton vannak elhelyezve.

A pörgettyűs féliránytű skálájának beállítása az adott kezdeti irányszögre kétfázisú, serleges forgórészű motor (2) segítségével történik. A motor gerjesztő tekercse vonalfeszültségre van kötve, a vezérlő tekercsei pedig párhuzamosan kapcsolódnak egymáshoz és kondenzátoron (7) keresztül az irányadó csúszkájával vannak összekötve. Az irányadónak négy lamellája (9) van, amelyek közé ellenállások vannak kapcsolva. A skála kezdeti beállítása két üzemmódon történhet:

- nagy sebességgel, amikor az irányadó csúszkáját az a és d lamellákra állítjuk
- kis sebességgel, a csúszka a b és c lamellákra állításával: ekkor a vezérlő tekercsek áramkörébe bekapcsolódnak a kiegészítő ellenállások és azokon kisebb áram folyik keresztül.

Az irányadó elemei szintén a pulton vannak elhelyezve. A repülőgép irányszögével arányos elektromos jel potenciométerről (1) kerül a jelzőműszerek (12) hányadosmérőire. A potencióméter a pörgettyű külső keretére, csúszkája pedig a műszerházra van erősítve.

3.3.1 A pörgettyűs féliránytű hibái

a., Módszeres hibák:

Mível a pörgettyűs féliránytű forgórésze önállóan nem tud beállni a megadott irányba, így annak helyes beállításához szükséges a Föld forgásának és a repülőgép elmozdulásának pontos meghatározása. Ellenkező esetben különböző jellegű módszeres hibák léphetnek fel.[1.,3]

Vizsgáljuk meg a diszkrét szélességi helyesbítésből eredő hibát! Tegyük fel, hogy a Föld forgásából adódó hibát φ_0 szélességen helyesbítettük, a repülés pedig φ_0 szélességen történik, akkor a pörgettyű precessziója

$$\omega_{g0} = \omega_F \sin \varphi_0 \tag{15}$$

sebességgel megy végbe, míg a Föld forgásának függőleges összetevője

$$\omega_n = \omega_F \sin \varphi_1 \tag{16}$$

lesz. A két szögsebesség különbsége határozza meg a φ , szélességen a hiba növekedési sebességét:

$$\omega_{so} - \omega_{\Omega} = \omega_{s} (\sin \varphi_{o} - \sin \varphi_{1}) \tag{17}$$

ahol ω_F=15°/óra

A hiba értéke meglehetősen nagy, ezért célszerű a Föld forgásából eredő hiba folyamatos helyesbítése.

A repülőgép szögelfordulásainál (bólintás, bedőntés), amikor a repülőgép függőleges tengelye mentén elhelyezett külső keret tengelye a függőlegestől eltér, kardánhiba jön létre. Végeredményben e hiba megjelenése arra vezethető vissza, hogy a műszer mérőtengelye nem fog egybeesni azzal a tengellyel (a függőlegessel), amely körül a meghatározás szerint az irányszőg mérése történik. Vizsgáljunk meg egy olyan kinematikai vázlatot (9.ábra), ahol a külső keretnek csak a felső része van ábrázolva, a skála pedig olyan, hogy annak síkja vízszintes és magába foglalja a giroszkóp tengelyeinek metszéspontját (O pont).

Legyen a repülőgép hossztengelye az OA egyenessel megadva, akkor az irányszög ψ szöggel egyenlő, amelyet a pörgettyű főtengelyéhez viszonyítva adunk meg.

Ha a repülőgép γ szöggel bedöntést végez az ábrán jelölt irányba, akkor a skála csíkja ugyancsak eltér a vízszintestől az OA tengely körül ezzel a szöggel. A belső keret tengelyének új helyzete könnyen meghatározható, ha figyelembe vesszük, hogy ez a tengely nem mozdulhat el csak a függőleges, a főtengelyre merőleges sikban. Ezt a helyzetet az OC egyenes adja meg, amely a függőleges (OBC) sik és a megdöntött skála (OAC) sikjának metszésvonala. A B és C pontokat úgy választottuk ki, hogy az OA egyenes merőleges legyen az ABC sikra. Ennek következtében a skála 90°-os osztása az OB egyenesről most az OC egyenesre kerül. Tehát az OA-OC egyenesek közötti szög 90° $-\psi$, ahol ψ - a műszer skálája szerinti új irányszög értéke. A ψ szög meghatározásához

vizsgáljuk meg az OAB, ABC és OAC derékszögű háromszögeket. Ezekből felírható:

$$OA = ABig\psi$$
, $AC = \frac{AB}{\cos\gamma}$, $ig\psi = \frac{OA}{AC}$

Az első két egyenletet a harmadikba behelyettesítve:

$$tg\psi = tg\psi \cos \gamma$$

Tehát a kardánhiba értéke:

$$\Delta \psi = \psi \cdot - \psi = arctg(tr\psi - \cos\gamma) - \psi \tag{18}$$

A $\Delta\psi$ hiba függését az irányszög értékétől különböző bedöntési szögekre általában grafikusan adják meg (10.ábra). Azok az irányszögek, amelyeken $\Delta\psi$ értéke maximális kis bedöntési szögeknél közel 45°,135°,225° és 315° értéküek. A γ növekedésének értékében ezek az értékek 90 és 270°-hoz közelítenek, $\Delta\psi$ maximuma pedig $\gamma \rightarrow 90$ °-nál ± 90 °-hoz közelít.

A bólintási szög változásakor fellépő kardánhiba szintén a fentebb vizsgáltaknak megfelelően alakul, azzal a különbséggel, hogy a grafikus ábrázolásnál a vízszintes tengely mentén 90°-kal eltolódik.

A kardánhiba különősen nagy értékű lehet nagy bedöntési szögekkel (70 –80°) végrehajtott fordulóknál. Ekkor a hiba amplitúdó értéke néhányszor tíz fok is lehet. Ez megnehezíti a pontos fordulók végrehajtását, és ahhoz vezet, hogy a forduló befejezése után a repülőgép a megadottól eltérő irányszögre kerül. A kardánhiba sajátossága, hogy az idő múlásával nem nő, és megszűnik, amint a külső keret tengelye ismét függőleges lesz.

Ha a repülőgép bedöntése gyorsulásokkal kísért, amint az általában történik is, akkor a kardánhiba mellett megjelenik az úgynevezett elfordulási hiba $(\Delta \psi_*)$ is.

A vízszintes helyesbítő rendszer ebben az esetben is a forgórész tengelyén és a külső keret tengelyén keresztülmenő, általános esetben ferde síkban vált ki precessziós mozgást, ami a főtengely azimutális helyzetét megváltoztatja, és a repülőgép vízszintesbe kerülése után $\Delta \psi$, hiba megjelenéséhez vezet. Ez a hiba nem csak fordulókban, de gyorsulással kisért emelkedésnél és süllyedésnél is megjelenik. Az elfordulási hibák általában kis értéküek, Ha a külső keret tengelyét a függőleges helyzetben stabilizáljuk, akkor mind a kardánhiba, mind az elfordulási hiba megelőzhető.

b., Szerkezeti műszerhibák:

A pörgettyű azimutális eltérését kiváltó konstrukciós okok közül a legfontosabbak a súrlódási nyomatékok, az árambevezetések nyomatékai és a belső keret tengelye körül ható kiegyensúlyozatlansági nyomaték. A külső keret tengelye körül ható zavaró nyomatékok hatása jelentősen kisebb, mivel ezeket a vizszintes helyesbítő rendszer kompenzálja.

A belső keret tengelye körül már kis zavaró nyomatékok is jelentős műszerhibák megjelenéséhez vezetnek. Így például 3°/óra eltéréshez $(\omega \approx 1.45 \cdot 10^{-5} \text{ l/sec})$, ha a kinetikai nyomaték $H = 0.27 kg \cdot m \cdot \text{sec}$, elegendő $M = \omega \cdot H = 0.39 \cdot 10^{-5} Nm$ nagyságú állandó nyomaték. Ha ezt a nyomatékot csak a tömegközéppont l távolságra való eltolódása miatt létrejővő kiegyensúlyozatlansági nyomaték (M = Gl) hozza létre (G - a forgőrész tömege), akkor G = 1 kg esetén a fenti eltérés létrehozásához elegendő: $l = \frac{M}{G} = 0.39 \cdot 10^{-5} m$ értékű eltolódás a belső keret tengelyétől.

3.4 Helymeghatározás az ortodrómikus koordináta rendszerben

3.4.1 Útszámítás légijelek felhasználásával

A légijeles útszámítás a valós repülési sebesség vektor és a vizszintes koordináta rendszer tengelyire eső vektor összetevők meghatározásán alapul. Ezeket az összetevőket integrálva a tartózkodási hely meghatározható.

A számításokhoz az elsődleges navigációs jellemzőket használjuk fel, melyek mérése aerometrikus úton történik. Az elsődleges navigációs jellemzők a következők:

v - repülési sebesség

β - csúszásszŏg

γ - bedőntési szőg

v. - vízszintes repülési sebesség

t - repülési idő

α - a repülőgép állásszőge

bólintási szög,

ψ - valós irányszög

H - repülési magasság

Először a test koordináta rendszert vizsgáljuk és meghatározzuk a v vektor x,y,z tengelyek menti összetevőit. A v vektor a repülőgép a repülőgép levegőhőz viszonyított pályájával egyező irányú, α és β határozza meg (11.ábra).

A 11. ábra alapján a repülési sebesség vektor tengelyek menti összetevőit a következő egyenletek határozzák meg:

$$v_x = v_c \cos \beta = v \cos \alpha \cos \beta$$

 $v_y = -v \sin \alpha$ (19)
 $v_z = v_c \sin \beta = v \cos \alpha \sin \beta$

ahol: ν =ν cosα

α - a repülőgép állásszőge

β - a csúszásszög

A repülési sebesség vízszintes összetevője a repülőgép pályaszögének ismeretében meghatározható (12.ábra).[2.,4]

A 12.ábra alapján a vízszintes repülési sebesség összetevő a következő alakban írható fel:

$$v_{\nu} = v \cos \theta = \frac{v_{\nu} \cos \theta}{\cos \alpha \cos \beta} \tag{20}$$

12.ábra

Mivel a navigációs feladatot a földfelszínhez viszonyítva valósítják meg, így át kell térni a vízszintes földrajzi koordináta rendszerbe. A földrajzi koordináta rendszer tengelyei a következők:

ξ - északi irányba mutat

η - függőleges irányú, merőleges a ξ, ξ tengelyek síkjaira

ζ - keleti irányba mutat

A ξ,η,ζ tengelyek mentén meghatározzuk a sebesség összetevőit a (20) összefüggés felhasználásával.

$$v_{t} = v_{v} \cos \psi = v \cos \theta \cos \psi$$

$$v_{v} = v \sin \theta$$

$$v_{t} = v_{v} \sin \psi = v \cos \theta \sin \psi$$
(21)

A földfelszínhez viszonyított valós repülési sebességnél figyelembe kell venni a szélsebesség vektort is. A repülőgép Föld feletti repülési sebesség vektora a repülési sebesség vektor és a szélsebesség vektor összegeként írható fel:

$$\overline{w} = \overline{v} + \overline{u}$$
 (22)

A három vektor vízszintes összetevői által meghatározott háromszöget navigációs háromszögnek nevezzük (13. ábra).

Ahol: β, - elsodrási szög

ψ - útvonalszög

ε - szélszög

ψ - valós irányszög

13.ábra

A szélsebesség vektort ábrázoljuk és a 14.ábra alapján felírjuk a koordináta rendszer tengelyeire eső összetevőit.

$$u_{\varepsilon} = u_{\varepsilon} \cos \delta = u \cos \chi \cos \delta$$

 $u_{\varepsilon} = u \sin \chi$ (23)
 $u_{\varepsilon} = u_{\varepsilon} \sin \delta = u \cos \chi \sin \delta$

Ahol: $u_{\nu} = u \cos \chi$

A (21) és a (23) egyenleteket behelyettesítve a (22) egyenletbe, megkapjuk a Föld feletti repülési sebesség vektor összetevőit.

$$w_{\ell} = v_{\ell} + u_{\ell} = v_{r} \cos \psi + u_{r} \cos \delta$$

$$w_{\eta} = v_{\eta} + u_{\eta} = v \sin \Theta + u \sin \chi$$

$$w_{f} = v_{f} + u_{f} = v_{r} \sin \psi + u_{r} \sin \delta$$
(24)

A repülőgép tartózkodási helyét a w integrálásával határozzuk meg.

$$S_{\xi} = S_{0\xi} + \int_{0}^{\xi} w_{\xi} dt$$

$$S_{\eta} = S_{0\eta} + \int_{0}^{\xi} w_{\eta} dt$$

$$S_{\xi} = S_{0\xi} + \int_{0}^{\xi} w_{\xi} dt$$
(25)

Ahol: S. - kezdeti érték

 S, - barometrikus, rádió vagy egyéb magasságmérő segítségével határozható meg

Teljesen autonóm a módszer a sebesség vektor mérése és integrálása alapján. A szélsebesség értéke jöhet kivülről, de lehet pl. lokátorral is mérni.

3.4.2 Inerciális elvű helymeghatározás

A repülőgép mozgását gravitációs eredetű erők és úgynevezett aktív erők határozzák meg, mely erők által létrehozott gyorsulásokat a navigációs koordináta rendszer tengelyei mentén elhelyezett axelerométerekkel mérik. A helymeghatározás a repülőgép abszolút gyorsulásainak stabilizált alapra szerelt gyorsulásmérőkkel való mérésén, majd ezt követően a gyorsulások integrálásán alapszik a repülőgép abszolút repülési sebessége összetevőinek meghatározásához.

Legyen az a_x, a_y, a_z a navigációs tengelyek mentén mért abszolút gyorsulás összetevői.

Ekkor:

$$v_{x} = v_{x0} + \int_{0}^{t} (a_{x} + g_{x})dt$$

$$v_{y} = v_{y0} + \int_{0}^{t} (a_{y} + g_{y})dt$$

$$v_{z} = v_{z0} + \int_{0}^{t} (a_{z} + g_{z})dt$$
(26)

Ahol a g, g, g, a tengelyek mentén ható gravitációs gyorsulások

A sebesség összetevőket ismét intográlva és a kezdeti koordináta értékeket (induló pont koordinátái) figyelembe véve megkapjuk a repülőgép tartózkodási helyének koordinátáit.

$$x = x_0 + \int_0^t v_x dt$$

$$y = y_0 + \int_0^t v_y dt$$

$$z = z_0 + \int_0^t v_z dt$$
(27)

Az ismertetett koordináta meghatározási módszerek után alkalmazva az 1.3 bekezdés a., pontjában ismertetett ortodróm útszámításra vonatkozó (2) egyenletet, számítható az ortodrómán megtett út fokokban és percekben.

3.4.3 Az ortodrómától való oldaleltérés meghatározása

Az ortodrómán való repülésnél a repülés pontos végrehajtása érdekében pontosan kell követni az ortodróma útvonalát. Ennek érdekében a repülés folyamán meghatározásra kerül az ortodrómától való oldaleltérés és az eltérésnek megfelelő vezérlés kerül megvalósításra.[2.,3.,4]

A súlypont adott pályán történő stabilizálásához a súlypontnak az adott pályától oldalra való eltérésével arányos jelet kell a robotpilótába betáplálni. Ez a jel a robotpilótának arra a csatornájára kerül, amely az irány vezérlését biztosítja. Mivel az irány vezérlését a csűrők segítségével hatásosabban lehet megoldani, így a súlypont adott pályától történő eltérésének jelét általában a csűrőcsatornába táplálják be.

Ekkor a csűrővezérlés törvénye:

$$\delta_{ci} = K_{\gamma} \Delta \gamma + K_{\omega_{i}} + K_{\psi} \Delta \psi + K_{z} Z \tag{28}$$

A repülőgép súlypontjának az adott ponttól való eltérése esetén a robotpilóta a Z távolsággal arányosan kitéríti a csűrőket, melynek eredményeként dőlési nyomaték jön létre és a repülőgép bedől a megadott pálya irányába. A repülőgép bedőlésének mértékében a robotpilótába a K_*Z oldaleltérés jelével ellentétes irányú, a bedöntéssel arányos $K_*\Delta\gamma$ jel kerül, ami a csűrők kitérésének csőkkenéséhez vezet. A repülőgép dőlése addig fog tartani, amíg a megadott pályától való oldaleltérés jelét nem egyenlíti ki a bedöntés jele és a csűrők nem térnek vissza a kiindulási helyzetbe (15.ábra 1.szakasz).

A repülőgép bedőlésekor megjelenik a repülőgép mozgási pályájára megadott pálya irányába elhajlító felhajtóerő összetevő. A repülőgép fordulójának és az adott pályához való közeledésnek folyamán a súlypont eltérés jele csökken, a legyezőszög jele pedig növekszik. Ez a csűrők ellentétes irányú kitéréséhez és a repülőgép bedőntésének csökkenéséhez vezet. Idővel a bedőntés szöge nullával lesz egyenlő (2. szakasz). Továbbá a legyezőszög jele nagyobb

lesz a súlypont eltérés-jelénél és a repülőgép ellentétes irányba dől (3.szakasz). A röppálya görbültségét monoton változtatva a repülőgép az adott pályához közeledik. Amikor a Z nullával lesz egyenlő, a legyezőszög és a bedöntés szöge helyesen megválasztott áttételi viszonyszámok mellett visszatér a kiindulási értékhez.

A továbbiakban vizsgáljuk meg a robotpilótának az oldalkoordináta stabilizálását megvalósító csatornáját. A repülőgép repülési pályán történő stabilizálásának nevezzük a repülőgép törregközéppontjának a földi koordináta rendszerhez viszonyított stabilizálását, jelen esetben Z oldalkoordináta szerint. Ha a repülőgép adott pályán van, akkor Z = 0, tehát az adott pályától való oldaleltérést a Z paraméter határozza meg (16.ábra).

Az ábra alapján felírható a repülőgép súlypontjának a Z koordináta szerinti oldaleltérése:

$$\dot{Z} = -V_F \sin \psi = -V_F \sin(\psi + \beta_{\star}) \tag{29}$$

A repülőgép mozgásának stabilizálási rendszerét a hossz- és oldalirányú mozgást leíró egyenletrendszerek, valamint a Z oldalirányú mozgás kinematikai

egyenletrendszerének segítségével lehetséges megtervezni. A gyakorlatban a ψ legyező- és β_w csúszásszögek értéke kicsi, a repülőgép oldalirányú vizsgálatakor a V_F repülési sebességet állandónak tekintjük. Ezért a (29) egyenletet lineáris formában írhatjuk le:

Az így kapott egyenlet Laplace - transzformáltját felírva kapjuk a következő kifejezést:

$$Z(S) = \frac{1}{\tau_{\bullet}S} [\psi(S) + \beta_{\bullet}(S)] \tag{31}$$

ahol: $-\tau_a = \frac{1}{V_F}$ - aerodinamikai időegység

Azok a paraméterek, melyek a tömegközéppont mozgását biztosítják és az időben viszonylag gyorsan változnak, vezérlő jeleknek nevezzük. A vezérlés biztosítására célszerű azokat a jeleket felhasználni, amelyek a repülőgép tömegközéppont körüli forgását jól jellemzik. Ennek alapján a repülőgép stabilizálását a Z paraméter, valamint a ψ és γ szögek szerint a csűrők és oldalkormány segítségével lehet megvalósítani.

A vezérlési törvények gyakorlati formája azt jelenti,hogy elhanyagoljuk a repülőgép tömegközéppont körüli forgásának tranziens folyamatait, azokat lényegesen rövidebb időbeni lefolyásúnak tekintjük, mint magának a tömegközéppontnak a változását jellemző átmeneti folyamatokat.

A repülőgép oldal- és hosszirányú mozgását leíró dinamikai egyenletek a bedőntés szerinti vezérlés egyenletével kiegészítve az alábbiak:

$$\left(S - \frac{\partial F_r}{m \partial V_r}\right) \beta(S) - \alpha_o \omega_x(S) - \omega_y(S) - \left(\frac{g \cos \theta_o}{V}\right) \gamma(S) = \frac{\partial F_r}{m \partial V_z} \beta_w(S)
- \omega_x(S) + ig\theta_o \omega_y(S) + S\gamma(S) = 0$$

$$\frac{\omega_y(S)}{\cos \theta_o} + S\psi(S) = 0$$

$$\frac{\omega_y(S)}{\cos \theta_o} + V_F \psi(S) + SZ(S) = V_F \beta_w(S) + w(S)$$

$$\gamma(S) - Y_{SZ}(S) K_y Z(S) = 0$$
(32)

Egyszerűsítsűk a (32) egyenletrendszert az $\omega_{\star} \approx 0$, $\alpha_{\circ} \approx 0$, $\beta_{\star} \approx 0$, $\beta_{\circ} \approx 0$, $\delta_{\circ} \approx 0$,

$$-\omega_{p}(S) - \gamma(S) \frac{g}{V} = 0$$

$$V_{p} \psi(S) + SZ(S) = 0$$

$$\gamma(S) + Y_{gg}(S)K_{\psi}Z(S) = 0$$
(33)

A (33) egyenletrendszerből felírhatók az átviteli függvények és ezek figyelembe vételével meghatározható a dőlési robotpilótára épülő oldalkoordináta stabilizáló rendszer (17.ábra).

Az htviteli függvények:

$$Y_{i}(S) = \frac{\psi(S)}{\gamma(S)} = \frac{g}{\psi(S)}$$

$$Y_{i}(S) = \frac{Z(S)}{\psi(S)} = \frac{V_{F}}{S} = \frac{1}{\tau_{e}S}$$

$$Y_{i}(S) = \frac{\gamma(S)}{Z(S)} = -Y_{ex}(S)K_{\psi}$$
(34)

17.ábra Az oldalkoordináta stabilizáló rendszer hatásvázlata

Az adott útvonal stabilizálásának vizsgálatához végezzük el a szabályozási kör követési tulajdonságának felírását, Először felírjuk a szabályozó átviteli függvényét:

$$Y_{sz}(S) = K_z \left(1 + K_D S + \frac{K_1}{S} \right) = \frac{K_z K_D}{S} \left(\frac{S}{K_D} + S^2 + \frac{K_1}{K_D} \right) = \frac{K_z K_D}{S} \left(S^2 + 2\xi_z \omega_z S + \omega_z^2 \right)$$

ahol: $\omega_z = \sqrt{\frac{K_1}{K_D}}$, $\xi_z = \frac{1}{2\sqrt{K_D}}$

Írjuk fel a szabályozási kör egyszerűsített hatásvázlatában az Y(S) átviteli függvényt:

$$Y(S) = \frac{gK_{+} \frac{K_{\gamma}A\omega_{x}^{\alpha}}{(1 + ST_{\gamma}^{\alpha})S + K_{\gamma}A\omega_{x}^{\alpha}}}{SV + gK_{+} \frac{K_{\gamma}A\omega_{x}^{\alpha}}{(1 + ST_{\gamma}^{\alpha})S + K_{\gamma}A\omega_{x}^{\alpha}}} = \frac{gK_{+}K_{\gamma}A\omega_{x}^{\alpha}}{SV[(1 + ST_{\gamma}^{\alpha})S + K_{\gamma}A\omega_{x}^{\alpha}] + gK_{+}K_{\gamma}A\omega_{x}^{\alpha}} = \frac{a(S)}{b(S)}$$

ahol:
$$A\omega_x^{\alpha} = \frac{A\omega_x}{1 + K\omega_x A\omega_x}$$
, $T_{\gamma}^{\alpha} = \frac{T_{\gamma}}{1 + K\omega_x A\omega_x}$

A követési tulajdonságot a szabályozási kör átviteli függvénye alapján vizsgáljuk.

$$W(S) = \frac{Z(S)}{Z_{a}(S)} = \frac{\frac{1}{\tau_{a}S} Y_{sz}(S) Y(S)}{1 + \frac{1}{\tau_{a}S} Y_{sz}(S) Y(S)} = \frac{Y_{sz}(S) Y(S)}{\tau_{a}S + Y_{sz}(S) Y(S)} = \frac{K_{z} K_{D}(S^{2} + 2\xi_{z}\omega_{z}S + \omega_{z}^{2}) a(S)}{S^{2}\tau_{a}b(S) + K_{z} K_{D}(S^{2} + 2\xi_{z}\omega_{z}S + \omega_{z}^{2}) b(S)}$$

$$Z_{a}(S) = \frac{1}{S} \text{ bemenőjelre:}$$

$$Z(\infty) = \lim_{S \to \infty} SW(S) Z_{a}(S) = \lim_{S \to \infty} W(S) = 1$$

$$\Delta Z(\infty) = Z_{a}(\infty) - Z(\infty) = 0$$

Tehát az oldalkoordináta stabilizáló rendszer PID-szabályozó esetén maradó hiba nélkül ledolgozza a bemenő jelet. A követési tulajdonság a többi szabályozó taggal hasonló módon írható fel. Vizsgáljuk meg a rendszer zavarelhárító képességét PID-szabályozó esetén, ha csűrő irányú zavaró hatás éri a repülőgépet. A rendszer átviteli függvénye ebben az esetben a következő alakban írható fel:

$$W_{z}(S) = \frac{Z(S)K_{\gamma}K_{\phi}}{\delta_{\alpha}^{z}(S)} = \frac{\frac{1}{\tau_{\sigma}S}Y(S)}{1 + \frac{1}{\tau_{\sigma}S}Y_{xx}(S)Y(S)} = \frac{Y(S)}{\tau_{\sigma}S + Y_{xx}(S)Y(S)} =$$

$$= \frac{a(S)}{\tau_{\sigma}Sb(S) + Y_{xx}(S)a(S)} = \frac{Sa(S)}{S^{2}\tau_{\sigma}b(S) + K_{z}K_{D}(S^{2} + 2\xi_{z}\omega_{z}S + \omega_{z}^{2})a(S)} =$$

$$= \frac{SgK_{\phi}K_{\gamma}A\omega_{x}^{\alpha}}{S^{2}\tau_{\sigma}b(S) + K_{z}K_{D}(S^{2} + 2\xi_{z}\omega_{z}S + \omega_{z}^{2})gK_{\phi}K_{\gamma}A\omega_{x}^{\alpha}}$$

$$\delta_{\alpha}^{z}(S) = \frac{1}{S} \text{ bemenőjelre:}$$

$$Z(\infty) = \lim W_{z}(S)K_{\phi}^{-1}K_{\gamma}^{-1} = \frac{0}{K_{z}K_{D}\omega_{z}^{2}gK_{\phi}^{2}K_{\gamma}^{2}A\omega_{x}^{\alpha}} = 0$$

$$\Delta Z(\infty) = Z_{\sigma}(\infty) - Z(\infty) = 0$$

Tehát a rendszer maradó hiba nélkül ledolgozza a zavaró jelet. A vizsgálatot végezzük el az oldalszél által keltett zavaró hatásra is. Ekkor a rendszer átviteli függvénye a következő alakban írható fel:

$$W_{z}(S) = \frac{Z(S)}{\beta_{w}(S)} = \frac{\frac{1}{\tau_{s}S}}{1 + \frac{1}{\tau_{s}S}Y_{sz}(S)Y(S)} = \frac{-1}{\tau_{s}S + Y_{sz}(S)\frac{a(S)}{b(S)}} = \frac{-Sb(S)}{S^{2}\tau_{s}b(S) + K_{z}K_{D}(S^{2} + 2\xi_{z}\omega_{z}S + \omega_{z}^{2})a(S)}$$
$$\beta_{\pi}(S) = \frac{1}{S} \text{ bemenőjelre:}$$

$$Z(\infty) = \lim_{N \to \infty} SW_{z}(S)\beta_{w}(S) = \frac{0}{K_{z}K_{D}\omega_{z}^{2}gK_{w}K_{r}A\omega_{x}^{\alpha}} = 0$$

$$\Delta Z(\infty) = Z_{\bullet}(\infty) - Z(\infty) = 0$$

Az oldalkoordináta stabilizáló rendszer a zavaró hatást maradó hiba nélkül ledolgozza és megtartja a repülőgép eredeti irányát. A vizsgálat a többi szabályozó taggal hasonlóképpen végezhető el.

Felhasznált irodalom

- Kovács József Az irányeghatározás eszközei, főiskolai jegyzet, MH SZRTF, Szolnok, 1994
- [2] Léginavigáció, LRI Repülésoktatási központ, 1992
- Peljpor D. Sz., Oszokin J. A., Giroszkopicseszkije pribori szisztyem orientacii i sztabilizacii, Masinosztroenyije, Moszkva, 1977
- [4] dr. Takáts László Kézikönyv repülőknek, Budapest, 1992

1992-ben végeztem a Szolnoki Repülőtiszti Főiskolán. 1995-ben végeztem a BME műszer és irányítástechnika szakán. 1996 januárje óta vagyok a Szolnoki Repülőtiszti Főiskola oktatója. Nénány cikk szerzője vagyok.