Békési Bertold mérnök főhadnagy

A NAVIGÁCIÓS FELADATOK MEGOLDÁSI LEHETŐSÉGEI AZ ORTODRÓMIKUS KOORDINÁTA RENDSZERBEN

Abstract

A repules a korai idōszakdiol kezabdien szinte elkeprelhetetien navigició nelkal. A repolótechnika fejlódese ts a megoldando repallesi felodatok maguk utinn vontak a Ieginavigicio fcjildestt is. A navigicios moddszerck egyre pontosabbak, a navigicios feladatokat megvalosito eszkonsk egyre Osseetetchbek letck. A navigicios feladatokat a foldraji a csillagiszati- is ortodromikus koordindta rendszerben egyariat vtgre lehet hajtani. Mivel napjainkban a legrobob repelést az oriodromikus koordináta rendszerben hajpitk vtgre, exift ezen koordinitarendszer bemutatissival foglalkozom. Az ortodromikus koordináta rendsser előnye a nagytivolsigui repeléseknél jelentkerik. mivel igy à legrovidetb ûton érhetô el az adott cel, repelōté, fordulopont, stb. Az alikalmazis elōnye ezen oknil fogva a gardasigossiga, mert nagytivolsigí repellescknd jelenibs aremamag-megtakaritis trhetô el, ami napjainktaan nem elhanyagolható szempont.

Bevezetés

A repülőgépek legfontosabb irányitási és tájékozódási múszere az iránytủ. A mágneses iránytū minden pillanatban lehetóvé teszi a mágneses géptengelyirány meghatározását. A legegyszerúbb, legrégebben alkalmazott iránytũ tipus a folyadékos mágneses iránytü volt. Ennek az iránytü tipusnak sokféle hibája van, ezért helyette a mágneses táviránytŭt alkalmazták. A folyadékos iránytût azonban tartalék iránytüként használták, mivel semmiféle táplálást nem igényel, és a legkorszerübb repulogépeken is megtaláljuk. Szinte a folyadékos mágneses iránytüvel egyidöben alkalmazták a pörgettyụ̂t is iránytartásra, melyet kezdetben kézzel kellett a mágneses iránytü altal mutatott irányra beállitani. Hamarosan azonban már a folyadékos, majd az indukciós iránytủ vezérelte a giroszkópot, és az igy létrejōtt stabilizált giromágneses irány sokkal pontosabb iranytartást tett lehetōvé.

A hatvanas években már olyan pörgettyúket tudtak készíteni, melyek óránként egy-két fokos pontossággal tartották az irányt, ezért ekkor jelentek meg a korszerû irányrendszerek, melyek lehetōvé tették az ortodrómán történó repullést, a hely és irány-meghatározást csillagászati módon, valamint a foldrajzi irány kiválasztását.

Napjaink korszerũ pōrgettyuui az inerciális navigációs rendszerekben egy századfoknyi pontosságúak, azaz száz órán keresztül egy foknyi eltéréssel tartják az irányt.

1. Az ortodrómikus irányszōg és távolság

Ơrtodrómának nevezzük a két ponton áthaladó gōmbi főkör rövidebb fivét. Az ortodróma a két pont kőzōtt a legróvidebb távolság (1.abra), melyet induló szōgével és távolságával határozunk meg. Az ortodróma a meridiánokat különbōző szŏgek alatt metszi. Az ortodrómikus útirányszŏg (OUI) a meridiánok összehajlása (konvergenciája) miatt minden meridiánnal változik. Az ortodróma induló és érkező szöge a meridián konvergencia értékével kūlönbözik egymástól, tehát a meridián konvergencia azzal a szoggel egyenlō, amelyet a kiinduló és végponton áthaladó meridiánokhoz húzott érintōk egymással bezárnak. Ismerve két adott pont foldrajzi koordinátait, meghatározhatjuk a meridián krnvergencia értékét.[2]

1.abra

Ortodróma,loxodróma, meridián konvergencia

A gyakorlatban kielégitō pontosságot nyüjt a következõ képlet, melynek segitségével a meridián konvergencia étékét a közepes szélességre határozzuk meg:

$$
\begin{equation*}
\omega=\Delta \lambda \sin \frac{\varphi_{1}+\varphi_{2}}{2} \tag{1}
\end{equation*}
$$

ahol: ω - meridián konvergencia egész és tized fokokban
$\Delta \lambda$ - hosszúsiagkulünbség egész és tized fokokban
$\sin \frac{\varphi_{1}+\varphi_{2}}{2}$ - a közepes foldrajzi szélesség szinusza
Az ortodróma bármely pontján meghatározható az útirányszǒg ha ismerjük az induló szöget és az adott pont koordinátáit. Minden ortodrómán vagy meghosszabbitásán megtaláljuk azt a pontot, ahol az ortodróma a meridiánnal 90°-os szolget zár be. Ez az ortodróma vertexe és az ortodróma számitásánál van jelentōsége. Megjegyzendō, hogy a repûlési magassággal nõ az ortodróma hossza is, a nōvekedés azonban olyan csekély mértékü, hogy a gyakorlati navigációban elhanyagolhato.

1.1 Ortodrómikus koordináta rendszer

Az ortodrómikus koordináta rendszert négyzetrácsos koordináta rendszernek (grid) is nevezik és a fôldrajzi koordináta rendszerből származtatjak áthelyezett pólusokkal, párhuzamos meridiánokkal (2.ábra)

À foldrajzi északi irány (Ė) és a hallózati északi irányok (H) különbsége a meridián konvergencia

Az ortodrómikus. szélesség és feltételezett egyenlitō sikja (ortodrómikus félkör) és a foldfelület egy adott pontjának az ortodrómikus meridiánnal határolt ivhossza. Az ortodrómikus hosszúság a kezdő ortodrómikus meridián és egy adott pont kōzōtti ortodrómikus szélesség ivhossza. A kezdö ortodrómikus hosszúság kijelôlését a feladat jellege határozza meg. Kezdô délkörként általában a Greenwich-it jelollik.[2]

1.2 Az ortodrómikus helyzetvonal

A repülőgép helyzetvonalának nevezzük annak a vonalnak a vetūletét a foldfelületen, amely a repülögép tartózkodási helyét határozza meg adott időpontban, egy vagy tőbb foldi ponthoz viszonyitva. Egy helyzetvonal ŏnmagában nem határozza meg a repülơgép pontos helyét, ehhez két vagy tơbb helyzetvonal metszéspontja szükséges, azonban az igy kapott helyzet nem pont, hanem terület, melynek nagysága az alkalmazott navigációs rendszer pontosságától függ. A legújabban kifejlesztett foldi é fedélzeti berendezesek müszaki paraméterei olyanok, hogy a keletkezó hiba elhanyagolható. Ortodróma a repulögép helyzetvonala, ha a rádióhullámok által meghatározott irányt követūnk, akkor a rádiôhullámok a nagykơr mentén terjednek.

1.3 Az ortodróma számítása

Az ortodrómát induló szõgével és távolságával határozzul meg. A kiinduló és érkezési pont koordinátáit ismerve meghatározható az induló szŏg, az ortodrómikus távolság, a vertex és bármely más kőzbeeső pont koordinátája. Az ortodróma induló (és érkezó) szögének és az ortodrómikus szakasz táyolságának számitása tơbbféle módszerrel lehetséges. [2.,3]
a., Matematikai úton, szögfüggvények és gömbi trigonometriai képletek segitségével. Napjainkban ezt a feladatot számitógéppel oldják meg. A pontossíg érdekében helyesbitést alkalmaznak a vonatkozó referencia ellipszoidra is.
b., Navigációs számitótárcsán (speciális tárcsa).
c., Térképen mérve (figyelembe véve a vetitési módot).
d., Földgŏmbön lemérve.

Az ortodrómikus irányszŏg és távolság egyik gyakorlatí meghatározását az alábbi képlet mutatja be:
a., Ha csak az ortodrómikus távolságot kell meghatározni:

$$
\begin{equation*}
\cos S^{\circ}=\sin \varphi_{1} \sin \varphi_{2}+\cos \varphi_{1} \cos \varphi_{2} \cos \left(\lambda_{2}-\lambda_{1}\right) \tag{2}
\end{equation*}
$$

ahol: $\quad S^{\circ}$ - távolság fokokban és percekben
φ_{1}, λ_{1} - az induló pont koordinátái
$\varphi_{2}, \lambda_{2}-$ az érkezési pont koordinátái

A távolságot fokokban kapjuk. A fokokat ivpercre átszámitva nyerjük az ortodrómikus távolságot.
b., Ha az ortodrómikus irányszōget és távolságot is meg kell határozni:

$$
\begin{equation*}
\text { L. } \operatorname{ctg} \alpha=\cos \varphi_{1} \operatorname{tg} \omega_{2} \operatorname{cosec}\left(\lambda_{2}-\lambda_{1}\right)-\sin \varphi_{1} \operatorname{ctg}\left(\lambda_{2}-\lambda_{1}\right) \tag{3}
\end{equation*}
$$

$\mathrm{Az} \alpha$ ismeretében számítható a távolság:

$$
\begin{equation*}
\text { II. } \sin S^{\circ}=\cos \varphi_{2} \operatorname{cosec} \alpha \sin \left(\lambda_{2}-\lambda_{1}\right) \tag{4}
\end{equation*}
$$

Ha az ortodrómát a térképen szerkesztik és az adott vetületen az ortodróma egyenessel nem ábrázolható, kiszámitjäk a közbeesō pontok koordinátáit. Ezeket a pontokat felviszik a térképre, majd a pontokat összekōtve megkapják az ortodróma útvonalảt.

2.Ax irányszōgek fajtáá és meghatározási módjai

A repûlés sorín a repülögép irányitásához feltétlenūl szûkség van a repülögép irányszögènek (\downarrow) ismeretére. Irányszögnek nevezzaik a repulögép hossztengelyének a vizszintes sikra esō vetülete és valamilyen, a folfelszisen megadott irany âltal bezart szơget.[1]

Attól függōen, hogy milyen megadott irányt használunk fel az irảnyszōg meghatározísához, kūlönbözō szōgekrṑ beszélūnk. Ha az irảny-meghatározás a foldrajzi hosszúshigi kơrr (meridián) északi irányához képest tôrténik, akkor valơs irányszöget kapunk. Ha a mágneses hosszúsági kơr északi irányát használjuk fel
az irány-meghatározáshoz, akkor mágneses irányszŏget kapunk. Az-iránymeghatározás történhet bármilyen, a Fold felszinén képzeletben elhelyezett egyeneshez viszonyitva is. Ezt a képzeletbeli egyenest ortodrómának, a hozzá képest meghatározott irányszöget ortodróm irányszögnek hívjuk.

Tehát ơsszefoglalva az alábbi irányszơgeket különbōztetjük meg:

- valós (ψ_{r})
- mágneses ($\psi_{\text {。 }}$)
- ortodróm ($\left.\psi_{0}\right)$

A repuulőgép irányszŏgének meghatározására használt eszközt iránytủnek hívjuk. A méréshez felhasznált elv alapján a következō iránytūfajtákat különböztetjük meg:

- mágneses iránytū, amely a folld mágneses terét használja fel a mágneses irányszög meghatározásához
- giroszkópikus iránytū (pörgettyūs féliránytū), amely a pōrgettyũ azon tulajdonságát használja fel, hogy az fötengelyének helyzetét a térben megõrzi
- csillagászati, melynek elve égitestek helyzetének bemérésén alapul
- rádiótechnikai iránytūk, amelyek foldi rádióállomásokat vagy müholdakat bemérve határozzaik meg a repûlési irányt
A fenti iránytüfajtákon kiviul beszélhetünk még komplex irányszögrendszerekrōl, amelyek a fenti elvek kőzūl néhányat egyulttesen használnak fel az irányszögek meghatározásához.

3.abra

Az iránytű érzékelô cleme a "pólus" irányát (β) határozza meg (3.abra). Az iránytũ mũkōdési elve alapjàn a "pólus" lehet a Fold mágneses vagy foldrajzi pólusa, az égitest vagy a rảdióadó foldrajzi helye. Igy az iranyszōg megàllapitásához ismernünk kell a megadott irany es a "pólus" által bezárt A
szőget. Ha a megadott irány megegyezik a meridiảnnal, akkor égitest foldrajzi helye esetén ez a szög az égitest azimutja, rádióállomásnál annak pellingje, mágneses pólusnál a mágneses elhajlás. Ha az A szŏget az ortodrómához képest adjuk meg, akkor a fenti elnevezések az "ortodróm" jelzōvel egészulnek ki. A 3.ábrából látszik, hogy a repulơgép irányszöge meghatározható két szög kulōnbségeként:

$$
\begin{equation*}
\psi=A-\beta \tag{5}
\end{equation*}
$$

Az irány-meghatározó eszkōzökkel szemben támasztott követelmények kōzül a legfontosabbak: pontosság, megbízható mûkơdés, zavaró hatásokkal szembeni érzéketlenség.

3. Ortodróm irányszög meghatározás

3.1 Csillagászati irány-meghatározó eszközök

A vizszintes csillagászati iránytük müködési elve a ψ valós irányszög (4/a.ábra) meghatározásán alapszik az (5) összefüggés alapján, ahol:
A - az égitest azimutja (a C égitest iránya és az északi irány kōzōtti szŏg)
$\beta-a z$ égitest irányszōge (az égitest iránya és a repûlōgép hossztengelyének vizszintes vetulete által bezárt szög)

Az égitest irảnyszögének mérése irányadó segitségével történik (4/b.ábra), amely automatikusan végzi az irányszög mérését.

4.ábra

Az égitest azimutjának meghatározísát számitó egység végzi. Az azimut a repülögép és az égitest koordinátainak (φ hosszíság, λ szélesség, δ deklináció és t_{g} óraszög) függvényeként kerul meghatározásra. Az égitest azimutját meghatározó számitó egység modellezi az éggòmb legfontosabb iveit és irányait. Egy lehetséges megoldás blokkvázlata látható az 5.ábrán.

5.ábra

A csillagászati irảnytū bemérófeje az égitestre van állitva. A $\Delta \beta$ irảnyszōgeltérést kōvetō rendszer egyenliti ki. A megoldóegység a repülögép és az égitest koordinátáit az azimut értékével összekapesoló egyenleteket megoldva számitja az azimut értékét, majd meghatározásra kerül a csillagászati irányszög:

$$
\begin{equation*}
\bar{\psi}=\bar{A}-\bar{\beta}, \bar{A}=A+\Delta A, \bar{\beta}=\beta+\Delta \beta \tag{6}
\end{equation*}
$$

ahol: $\Delta A, \Delta \beta-\mathrm{az}$ azimut és az irányszŏg meghatározásakor fellépó hibák.
A csillagaszati iranytü lehetōvé teszi az ortodrómán tơrténõ repülést is, a vizszintes csillagászati iránytú nem változó jelei mellett. Ebben az esetben az A azimut helyett az égitest adott idópillanatban a kezdeti útvonalpontban lévő A_{0} azimutja kerül meghatározásra; a β szög helyett pedig β_{0}. A β_{0} szög megadja az égitest irányszogét a kezdeti útvonalpontban lévō, az ortodrómához képest ugyanolyan hossztengely helyzettel rendelkező repülögépre, mint amilyen a hossztengely helyzete az adott pontban. Akkor az ortodrómán történő repülésnél, hasonlóan az elōzöekhez:

$$
\begin{equation*}
\psi_{0}=A_{0}-\beta_{0} \tag{7}
\end{equation*}
$$

Az ilyen csillagászati iránytük $\psi_{\text {o }}$ jelzései állandóak maradnak az ortodrómán való repûléskor, és egyenlōek lesznek az ortodróma kezdeti útvonalszögével (OKU).[2.3]
Tehát az ortodrơmán tôrténõ repûlés feltétele:

$$
\begin{equation*}
\psi_{\mathrm{o}}=O K U \tag{8}
\end{equation*}
$$

vagy oldalszél esetén:

$$
\begin{equation*}
\psi_{0}=O K U-\beta . \tag{9}
\end{equation*}
$$

ahol: β, - az elsodródási szōg
Igy ennél a módszernél a repulés során a kezdeti útvonalpontban tơrténõ irányszög meghatározást imitáljuk. Ezért a ψ_{0} oirányszŏg meghatározása az ortodrómaval állando, a kezdeti útvonalszŏggel megegyezó szöget bezáró iránytól kiindulva tōrténik.

A ψ_{0} szơg meghatározásához folyamatosan szükséges A_{0} kiszámitása és β_{0} mérése. A_{0} meghatározásához a számitó egységbe elegendô bevezetni a kezdeti útvonalpont φ_{0}, λ_{0} koordinátáit. A $\beta_{0} s z o g$ közvetlen mérése akkor lehetséges, ha a repülögép hossztengelye az ortodróma sikjäban van, a mérörendszer tengelye pedig a repülōgép szimmetriasikjában hátrafelé

$$
\begin{equation*}
\varepsilon=\frac{S}{R} \tag{10}
\end{equation*}
$$

wogel ki van téritve, ahol:

> S - az ortodrómán megtett út
> R - a Fold sugara
$\mathrm{Az} \varepsilon$ szog megfelel a repülögép által az ortodrómán megtett innek.

3.2 Pర̆rgettyûs elven mâkōdõ irány meghatározó eszkōzర̄k

A pôgettyûs fôliránytū három szabadságfokú pōrgettyū, amely kuulsō keretének tengelye függöleges, a forgörész tengelye pedig helyesbittó nyomatéksegitségével a vizzzintes sikban kerull megtartásra. A berendezés mükōdési elve a pörgettyũ inerciális tulajdonsagain alapul. A pörgettyūs
féliránytük alkalmazása tơrténhet mind ơnálló múszerként, mind komplex múszerrendszerek adójaként. A gyakorlatban a pórgettyūs féliránytüket az ortodróm irányszǒg meghatározására használják.

Tegyük fel, hogy a repûlögépnek A pontból a B pontba kell átrepülnie (6.ábra). E két ponton keresztûl húzzunk kōrivet (a Föld felszinével párhuzamosan), ez a köriv az ortodróm egyenlitō. Az ortodróm egyenlitō kozzontjából annak sikjára merölegesen meghúzott tengely a foldgōmbōt P_{1} és P_{2} pontokban metszi, ezek az ortodróm pólusok.[1]

Legyen a repülőgép tartózkodási helye adott pillanatban az O pont, ez legyen a $\xi_{0}, \eta_{0}, \zeta_{0}$ ortodróm koordináta rendszer középpontja. Az ortodróm koordinátarendszer ζ_{0} tengelye legyen a valődi függölegessel megegyezõ. A η_{0} tengely az O ponton áthaladó vizszintes sik és az ortodróm délkör ($O_{1}, P_{1}, O_{1}, P_{2}$ sik) metszési vonala, a ξ_{0} tengely az előzō tengelyekre meröleges, ès olyan irányú, hogy jobbsodrású koordinátarendszert kapunk. A repūlési sebesség $\xi_{0}, \eta_{0}, \zeta_{0}$ tengelyekre esõ vetulleteit jelठljak $V_{t+}, V_{t,}, V_{t+}$.

6.abra

A repülőgép helyzete az ortodróm koordinátarendszerben, vagyis az A pontból az egyenlitő mentén megtett út (a foldrajzi hosszuiság analógiájára) - S , az adott
ortodrómától való oldaleltérést az ortodróm délkör ivén (a foldrajzi szélesség analógiájára) - δ (az ábrán nincs jelōlve).
Az ortodróm egyenlitōn való repūlésnél az ortodróm délkör ($O_{1}, P_{1}, O_{1}, P_{2}$ sik) elfordulásának szögsebesség vektora a P_{1}, P_{2} egyenessel megegyező irányú, abszolút értéke pedig:

$$
\begin{equation*}
\frac{d S}{d t}=\frac{V_{b_{0}}}{R} \tag{11}
\end{equation*}
$$

A vektornak a ζ_{0} tengelyre esô vetalete zérus, mivel a P_{1}, P_{2} egyenes az ortodróm egyenlítő sikjára merōleges. Az ortodróm délkörnek a repülögép Fôld kőrulli mozgásából eredō relatív szögsebessége nulla. Az ortodróm délkōrr átvitt szögsebességének meghatärozásához elegendō megkeresni a Fōld napi forgásából eredõ ケotengelyre esõ szögsebesség összetevőit, amelynek értéke a 6.abbrara felirva:

$$
\begin{equation*}
\omega_{\delta_{0}}=\omega_{p} \sin \varphi \tag{12}
\end{equation*}
$$

A valós irány meghatározását végzō azimutálisan szabad pörgettyũ eltérését:

$$
\begin{equation*}
\omega_{z}=-\left[\omega_{F} \sin \varphi+\frac{V_{g}}{R} \operatorname{tg} \varphi\right] \tag{13}
\end{equation*}
$$

és az ortodróm irányszơg meghatározását végzô azimutálisan szabad pörgettyú eltérését:

$$
\begin{equation*}
\omega_{z}=-\omega_{p} \sin \varphi \tag{14}
\end{equation*}
$$

Összehasonlitva látható, hogy a pörgettyüs feliránytü pontosabban jelzi az ortodróm irányt mint a foldrajzi irányt.

Ha a pörgettyūs féliránytū skảlåját, vagy a pörgettyũ fơtengelyét folyamatosan $\omega_{F} \sin \varphi$ szögsebességgel forgatjuk, a kezdeti időpillanatban pedig az adott ortodróma irányába allitjuk be, akkor az azimutálisan szabad pörgettyū alkalmassá válik az ortodróm irányszög jelzésére.

3.3 A pörgettyũs féliránytũ szerkezete, mũkōdése, hibái

Egy a gyakorlatban alkalmazott pörgettyūs féliránytü elektrokinematikai vázlata látható a 7 .ábrán.

7.ábra

Pơrgettyūs féliránytủ elektrokinematikai vázlata
A berendezés fô részei a pőrgettyŭs adó (1), a vezérlôpult (2) és a jelzōmüszer (3). A berendezés elektromos kapcsolási rajza a 8 .ábrán látható. A rendszer táplálása 36 V feszültségü, 400 Hz frekvenciájú háromfázisú váltakozó árammal és 27 V feszuiltségŭ egyenárammal tơrténik. [1]

A rendszer legnagyobb fogyasztója a pörgettyúmotor (5), amely háromfázisú aszinkron motor, rōvidrezárt forgórésszel. Az állórész tekercsei csillag kapcsolásúak. A vizszintes helyesbitō rendszer érzékelō eleme folyadékingás kapesoló (4), végrehajtó szerve vizszintes helyesbitő motor (6), amely lefékezett ûzemmódban müködō, kétfäzisú irányváltó aszinkron motor. A helyesbitō motor gerjesztő tekercse az A és C fázisok kōzōtti vonalfeszulltségre, a vezérló tekercse pedig az A és B fázisok közötti vonalfeszultségre van kötve. Fordulôk közben a vizszintes helyesbitoo rendszer pörgettyūs elven mükōdō helyesbitéskikapcsoló (11) segitségével kapcsolódik ki.

A pörgettyũ főtengelyének megtartása azimut (oldalszŏg) szerint a szükséges irányban azimutális helyesbitő motor (3) segitségével tôrténik, ami többpólusú aszinkron motor.

8.ábra

A pörgettyūs féliránytü elektromos kapcsolási rajza

A motor gerjesztõ tekercse az A és B fäzisok kōzé van kōtve. A motor vezérlō tekercsére A feszültség egy hídkapcsolás átlojjából kerül. A hid ágai a szélességi potencióméter (15) és a helyesbitō potencióméter (14). A híd másik átlójából, A B és C fázisokròl történik a hidkapcsolás táplalása. A hid kiegyenlitettségét szabályozó potencióméter (16) biztositja. Az azimutális helyesbitర motor vezériô tekercsére kerûló feszoultség aranyyos a hely foldrajzi szélességével (a szélességi potencióméter csíszkija adott szélességnek megfelelōen kerül beállitésra). A hidkapcsolás elemei a vezérôpulton vannak ethelyezve.

A pórgettyūs féliràmyū skálájának beaillitása az adott kezdeti irányszögre kétfázisú, serleges forgórészú motor (2) segitségével történik. A motor gerjesztó tekercse vonalfeszültségre van kötve, a vezérlö tekercsei pedig párhuzamosan kapcsolódnak egymáshoz és kondenzátoron (7) keresztull az irányadó csúszkájával vannak összekötve. Az irányadónak négy lamellája (9) van, amelyek kơzé ellenállások vannak kapcsolva.A skála kezdeti beállitása két üzemmódon történhet:

- nagy sebességgel, amikor az irányadó csúszkáját az a és d lamellákra âllitjuk
- kis sebességgel, a csúszka a b és c lamellạkra állitásíval: ekkor a vezérló tekercsek áramkörébe bekapcsolódnak a kiegészitō ellenállások és azokon kisebb áram folyik keresztul.

Az irányadó elemei szintén a pulton vannak elhelyezve. A repuloógép irányszögével arányos elektromos jel potenciométerröl (1) kerull a jelzömüszerek (12) hányadosméröire. A potencióméter a pörgettyũ külsō keretére, csúszkája pedig a müszerházra van erősitve.

3.3.1 A pörgettyūs felliránytū hibái

a., Módszeres hibák:

Mivel a pörgettyüs féliránytú forgórésze onállóan nem tud beâllni a megadott irányba, igy annak helyes beaillitásához szükséges a Föld forgásának és a repülögép elmozdulásának pontos meghatározása. Ellenkezõ esetben külőnbōzō jellegü módszeres hibảk léphetnek fel.[1.,3]

Vizsgáljuk meg a diszkrét szélességi helyesbitésbōl erecō hibát! Tegyük fel, hogy a Föld forgásából adódó hibát φ_{0} szélességen helyesbitettük, a repülés pedig φ_{1} szélességen történik, akkor a pôrgettyū precessziója

$$
\begin{equation*}
\omega_{50}=\omega_{F} \sin \varphi_{0} \tag{15}
\end{equation*}
$$

sebességgel megy végbe, mig a Föld forgásának függõleges összetevõje

$$
\begin{equation*}
\omega_{n}=\omega_{r} \sin \varphi_{1} \tag{16}
\end{equation*}
$$

lesz A két szogsebesség kutōnbsége hatirozas meg a $\varphi_{\text {, szflességen a hiba }}$ nôvekedési sebességét:

$$
\begin{equation*}
\omega_{x_{0}}-\omega_{n}=\omega_{p}\left(\sin \varphi_{0}-\sin \varphi_{1}\right) \tag{17}
\end{equation*}
$$

ahol $\omega_{F}=15 \%$ óra
A hiba értėke meglehetósen nagy, ezêt célszenũ a Fold forgásábol eredõ hiba folyamatos helyesbitése.

A repülőgép szögelfordulásainál (bólintás, bedöntés), amikor a repülögép függöleges tengelye mentén elhelyezett külsõ keret tengelye a függōlegestől eltér, kardánhiba jön létre. Végeredményben e hiba megjelenése arra vezethetō vissza, hogy a müszer mérōtengelye nem fog egybeesni azzal a tengellyel (a függōlegessel), amely körūl a meghatározás szerint az irányszōg mérése történik. Vizsgáljunk meg egy olyan kinematikai váziatot (9.ábra), ahol a külső keretnek csak a felsö része van ábrázolva, a skála pedig olyan, hogy annak sikja vizszintes és magaba foglalja a gíroszkóp tengelyeinek metszéspontját (O pont).

9.ábra

Legyen a repûlőgép hossztengelye az OA egyenessel megadva, akkor az irányszög ψ.szöggel egyenlỏ, amelyet a pörgettyũ fötengelyéhez viszonyitva adunk meg.

Ha a repûlögép γ szōggel bedōntést végez az ábrán jelōlt irànyba, akkor a skála csíkja ugyancsak eltér a vizszintestől az OA tengely körül ezzel a szöggel. A belsõ keret tengelyének új helyzete könnyen meghatározható, ha figyelembe vesszük, hogy ez a tengely nem mozdulhat el csak a függóleges, a fötengelyre merőleges sikban. Ezt a helyzetet az OC egyenes adja meg, amely a függőleges (OBC) sik és a megdöntơtt skála (OAC) sikjának metszésvonala. A B és C pontokat ủgy választottuk ki, hogy az OA egyenes merőleges legyen az ABC sikra. Ennek következtében a skála 90°-os osztása az OB egyenesröl most az OC egyenesre kerül. Tehát az OA-OC egyenesek közötti szōg $90^{\circ}-\psi$, ahol ψ^{\cdot} - a müszer skálája szerinti új irányszolg értéke. A ₹ं szōg meghatározásához
vizsgáljuk meg az $\mathrm{OAB}, \mathrm{ABC}$ és OAC derėkszögū háromszögeket. Ezekbōl felirható:

$$
O A=A B \operatorname{tg} \psi, A C=\frac{A B}{\cos \gamma}, \operatorname{tg} \psi=\frac{O A}{A C}
$$

Az elsõ két egyenletet a harmadikba behelyettesitve:

$$
\operatorname{tg} \psi=\operatorname{tg} \psi \cos \gamma
$$

Tehát a kardánhiba értéke:

$$
\begin{equation*}
\Delta \psi=\psi \cdot-\psi=\operatorname{arctg}(t \tau \psi-\cos \gamma)-\psi \tag{18}
\end{equation*}
$$

A $\Delta \psi$ hiba függését az irányszŏg értékétől külōnbōző bedőntési szōgekre altalàban grafikusan adjak meg (10.ábra). Azok az irányszōgek, amelyeken $\Delta \psi$ értéke maximális kis bedőntési szögeknél közel $45^{\circ}, 135^{\circ}, 225^{\circ}$ és 315° értéküek. A γ nơvekedésének értékében ezek az értékek 90 és 270°-hoz közelitenek, $\Delta \psi$ maximuma pedig $\gamma \rightarrow 90^{\circ}$-nál $\pm 90^{\circ}$-hoz kōzelit.

A bólintási szơg változásakor fellépő kardánhiba szintén a fentebb vizsgáltaknak megfelelōen alakul, azzal a különbséggel, hogy a grafikus ábrázolásnál a vizszintes tengely mentén 90°-kal eltolódik.

A kardánhiba különōsen nagy értékū lehet nagy bedöntési szögekkel ($70-80^{\circ}$) végrehajtott fordulóknál. Ekkor a hiba amplitúdó értéke néhányszor tiz fok is lehet. Ez megneheziti a pontos fordulók végrehajtását, és ahhoz vezet, hogy a forduló befejezése után a repûlơgép a megadottól eltérô irányszōgre kerül. A kardánhiba sajátossága, hogy az idô múlásával nem nõ, és megszûnik, amint a külsö keret tengelye ismét függôleges lesz.
Ha a repülögép bedöntése gyorsulásokkal kisért, amint az általában történik is, akkor a kardánhiba mellett megjelenik az úgynevezett elfordulási hiba $\left(\Delta \psi_{,}\right)$is.

A vizszintes helyesbitő rendszer ebben az esetben is a forgórész tengelyén és a külsō keret tengelyén kereszuùlmenő, általános esetben ferde síkban vált ki precessziós mozgást, ami a fōtengely azimutális helyzetét megvaltoztatja, és a repülŏgép vizszintesbe kerülése után $\Delta \psi$, hiba megjelenéséhez vezet. Ez a hiba nem csak fordulókban, de gyorsulással kisért emelkedésnél és süllyedésnél is megjelenik. Az elfordulási hibák általában kis értéküek, Ha a külsõ keret tengelyêt a függöleges helyzetben stabilizáljuk, akkor mind a kardánhiba, mind az elfordulási hiba megelōzhetō.

b, Szerkezeti múszerhibák:

A pörgettyũ azimutális eltérését kivaltó konstrukciós okok kōzūl a legfontosabbak a súrlódási nyomatékok, az árambevezetések nyomatékai és a belso keret tengelye körill ható kiegyensúlyozatlansági nyomaték. A külső keret tengelye kơrül ható zavaró nyomatékok hatása jelentōsen kisebb, mivel ezeket a vizszintes helyesbitô rendszer kompenzàlja.

A belso keret tengelye koruil már kis zavaro nyomateckok is jelentōs múszertiibảk megjelenéséhez vezetnek. Igy például 3% óra eltéréshez ($\omega \approx 1,45 \cdot 10^{-3} 1 / \mathrm{sec}$), ha a kinetikai nyomaték $H=0,27 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{sec}$, elegendó $M=\omega \cdot H=0,39 \cdot 10^{-3} \mathrm{Nm}$ nagysígú állandó nyomatèk. Ha ext a nyomatékot csak a tómegkőzéppont 1 távolsigra való eltolódása miatt létrejovõ kiegyensúlyozatlansigi nyomaték ($M=G l$) hozza létre (G - a forgörész tômcge), akkor $G=1 \mathrm{~kg}$ esetén a fenti eltérés létrehozásúhoz elegendó: $l=\frac{M}{G}=0,39 \cdot 10^{-9} \mathrm{~m}$ érékũ eltolơdás a belső keret tengelyétôl.
3.4 Helymeghatározás az ortodrómikus koordináta rendszerben

3.4.1 Útszámítás légijelek felhasználásával

A légijeles útszámitás a valós repulési sebesség vektor és a vizszintes koordináta rendszer tengelyire esö vektor Összetevök meghatározásán alapul.Ezeket az ósszetevőket integrálva a tartózkodảsi hely meghatározható.

A számitásokhoz az elsódleges navigációs jellemzőket használjuk fel, melyek mérése aerometrikus úton történik. Az elsôdleges navigációs jellemzők a kōvetkezōk:
\mathbf{v} - repulési sebesség
β - csúszásszŏg
$\boldsymbol{\gamma}$ - bedOntési szogg
v_{*} - vizszintes repulési sebesség
t - repūlési idô
α - a repülögép állásszōge
ϑ - bólintási szög
ψ_{v} - valos irányszög
H - repûlési magasság
Elóször a test koordináta rendszert vizsgáljuk és meghatározzuk a v vektor x, y, z tengelyek menti osszetevōit.A v vektor a repülögép a repülõgép levegöhöz viszonyított palyájaival egyezô irányú, α és β határozza meg (11.âbra).

A 11.abra alspján a repulési sebesség vektor tengelyek menti összetevóit a kŏvetkezô egyenletek határozzak meg:

$$
\begin{align*}
& v_{x} \nRightarrow_{v} \cos \beta=v \cos \alpha \cos \beta \\
& v_{y}=-v \sin \alpha \tag{19}\\
& v_{x}=v_{v} \sin \beta=v \cos \alpha \sin \beta
\end{align*}
$$

ahol: $\quad v_{r}=v \cos \alpha$
α - a repūlögép állàsszöge
β - a csúszásszög

A repulési sebessèg vizszintes ơsszetevōje a repûlōgép pályaszögének ismeretében meghatározható (12.ábra).[2.,4]
A 12.ábra alapján a vizszintes repûlési sebesség összetevõ a következō alakban irható fel:

$$
\begin{equation*}
v_{v}=v \cos \theta=\frac{v_{x} \cos \theta}{\cos \alpha \cos \beta} \tag{20}
\end{equation*}
$$

12.ábra

Mivel a navigációs feladatot a foldfelszinhez viszonyitva valósitják meg, igy àt kell térni a vizszintes foldrajzi koordináta rendszerbe. A foldrajzi koordináta rendszer tengelyei a kōvetkezők:
ξ - északi irányba mutat
ท - függőleges irányú, merōleges a $\xi . \zeta$ tengelyek síkjaira
ζ - keleti irányba mutat

A ξ, η, ζ tengelyek mentén meghatározzuk a sebesség összetevöit a (20) összefüggés felhasznảlásával.

$$
\begin{align*}
& v_{t}=v_{v} \cos \psi=v \cos \theta \cos \psi \\
& v_{\mathrm{o}}=v \sin \theta \tag{21}\\
& v_{s}=v_{v} \sin \psi=v \cos \theta \sin \psi
\end{align*}
$$

A foldfelszínhez viszonyitott valós repûlési sebességnél figyelembe kell venni a szélsebesség vektort is. A repülögép Föld feletti repalési sebesség vektora a repülési sebesség vektor és a szélsebesség vektor összegeként irható fel:

$$
\begin{equation*}
\bar{w}=\bar{v}+\bar{u} \tag{22}
\end{equation*}
$$

A három vektor vizszintes ósszetevōi altal meghatározott háromszöget navigációs háromszōgnek nevezzük (13.abra).

Ahol: β, - elsodrási szŏg
$\psi_{\text {s }}$ - útvonalszōg
ε - szélszōg
ψ_{v} - valós irányszög

13.ábra

A szélsebesség vektort ábrázoljuk és a 14.abra alapján felirjuk a koordináta rendszer tengelyeire eső összetevöit.

14.abra

$$
\begin{align*}
& u_{\mathrm{t}}=u_{v} \cos \delta=u \cos \chi \cos \delta \\
& u_{v}=u \sin \chi \tag{23}\\
& u_{i}=u_{v} \sin \delta=u \cos \chi \sin \delta
\end{align*}
$$

Ahol: $u_{c}=u \cos \chi$
A (21) és a (23) egyenleteket behelyettesitve a (22) egyenletbe, megkapjuk a Fold feletti repülési sebesség vektor összetevöit.

$$
\begin{align*}
& w_{t}=v_{t}+u_{t}=v_{v} \cos \psi+u_{v} \cos \delta \\
& w_{v}=v_{v}+u_{v}=v \sin \Theta+u \sin \chi \tag{24}\\
& w_{s}=w_{s}+u_{s}=v_{v} \sin \psi+u_{v} \sin \delta
\end{align*}
$$

A repulolgép tartózkodási helyét a w integralásával határozzuk meg.

$$
\begin{align*}
& S_{t}=S_{0 t}+\int_{0}^{1} w_{t} d t \\
& S_{q}=S_{0,}+\int_{0}^{1} w_{t} d t \tag{25}\\
& S_{s}=S_{0 t}+\int_{0}^{1} w_{t} d t
\end{align*}
$$

Ahol: S_{0} - kezdeti érték
$S_{\text {, - barometrikus, - rádió vagy egyéb magasságméró segitségével }}^{\text {, }}$ határozható meg
Teljesen autonóm a módszer a sebesség vektor mérése és integrálása alapján. A szélsebesség értéke jơhet kivülrōl, de lehet pl. lokátorral is mémi.

3.4.2 Inerciális elvũ helymeghatározás

A repülőgép mozgását gravitációs eredetúu erők és úgynevezett aktív erök határozzàk meg, mely erök âltal létrehozott gyorsulásokat a navigációs koordináta rendszer tengelyei mentén elhelyezett axelerométerekkel mérik. A helymeghatározás a repüloggép abszolút gyorsulásainak stabilizalt alapra szerelt gyorsulásmérơkkel való mérésén, majd ezt kōvetōen a gyorsulások integralásán alapszik a repûlögép abszolút repûlési sebessége összetevöinek meghatározásához.

Legyen az a_{x}, a_{y}, a_{r} a navigációs tengelyek mentén mért abszolút gyorsulás ossszetevōi.
Ekkor:

$$
\begin{align*}
& v_{x}=v_{x 0}+\int_{0}^{0}\left(a_{x}+g_{x}\right) d t \\
& v_{y}=v_{y 0}+\int_{0}^{1}\left(a_{y}+g_{y}\right) d t \tag{26}\\
& v_{z}=v_{x 0}+\int_{0}^{1}\left(a_{z}+g_{z}\right) d t
\end{align*}
$$

Ahol a g_{s}, g_{y}, g_{z} a tengelyek mentén ható gravitációs gyorsulások
A sebesség ossszetevőket ismét intogràlva és a kezdeti koordináta értékeket (induló pont koordinátái) figyelembe véve megkapjuk a repülögép tartózkodási helyének koordinátait.

$$
\begin{align*}
& x=x_{0}+\int_{0}^{v_{x}} v_{x} d t \\
& y=y_{0}+\int_{0}^{1} v_{y} d t \tag{27}\\
& z=z_{0}+\int_{0}^{1} v_{z} d t
\end{align*}
$$

Az ismertetett koordináta meghatározási módszerek után alkalmazva az 1.3 bekezdés a．，pontjában ismertetett ortodróm útszàmitásra vonatkozó（2） egyenletet，számitható az ortodrómán megtett út fokokban és percekben．

3．4．3 Az ortodrómától való oldaleltérés meghatározása

Az ortodrómán való repûlésnél a repuulés pontos végrehajtása érdekében pontosan kell követni az ortodróma útvonalát．Ennek érdekében a repülés folyamán meghatározásra kerül az ortodrómától való oldaleltérés és az eltérésnek megfelelō vezérlés kerül megvalósitásra．［2．，3．，4］

A súlypont adott pályán történỏ stabilizálásához a súlypontnak az adott pályától oldalra való eltérésével arányos jelet kell a robotpilótába betáplảlni．Ez a jel a robotpilótának arra a csatomájára kerull，amely az irány vezérlését biztositja． Mivel az irány vezérlését a csürők segitségével hatásosabban lehet megoldani， igy a súlypont adott pályától tōrténõ eltérésének jelét általảban a csũrớcsatornába táplálják be．
Ekkor a csürōvezérlés törvénye：

$$
\begin{equation*}
\delta_{a}=K_{\imath} \Delta \gamma+K_{⿱ 亠 ⿻}, ~+K_{\psi} \Delta \psi+K_{z} Z \tag{28}
\end{equation*}
$$

A repulŏgép súlypontjának az adott ponttól való eltérése esetén a robotpilóta a Z távolsággal arányosan kitériti a csűrőket，melynek eredményeként dōlési nyomaték jön létre és a repûlōgép bedōl a megadott pálya irányába．A repulögép bedólésének mértékében a robotpilótába a $K_{2} Z$ oldaleltérés jelével ellentétes irányú，a bedöntéssel arányos $K, \Delta \boldsymbol{\gamma}$ jel kerül，ami a csürök kitérésének csőkkenéséhez vezet．A repūlögép dölése addig fog tartani，amig a megadott pályától való oldaleltérés jelét nem egyenliti ki a bedöntés jele és a csūrōk nem térnek vissza a kiindulási helyzetbe（15．abra I．szakasz）．

A repulōgép bedōlésekor megjelenik a repûlőgép mozgási pályájára megadott pálya irányába elhajlitó felhajtóerő összetevō．A repulỏgép fordulójának és az adott pályához való kőzeledésnek folyamán a súlypont eltérés jele csökken，a legyezōszōg jele pedig nōvekszik．Ez a csürōk ellentétes iranyú kitéréséhez és a repülőgép bedöntésének csökkenéséhez vezet．Idövel a bedöntés szöge nullával lesz egyenlō（2．szakasz）．Továbbá a legyezōszög jele nagyobb
lesz a súlypont eltérés jelénél és a repûlŏgép ellentétes irányba dôl (3. szakasz). A róppálya gorbaltstgét monoton valtoztatva a repülőgép az adott pályához közeledik. Amikor a Z nullával lesz egyenlő, a legyezōszög és a bedöntés szöge helyesen megvalasztott áttételi viszonyszámok mellett visszatér a kiindulási étékhez.

15.ábra

A továbbiakban vizsgáljuk meg a robotpilótának az oldalkoordináta stabilizálását megvalósitó csatornáját. A repülŏgép repûlési pályán történô stabilizálásának nevezzulk a repâlŏgép tőrregközéppontjának a foldi koordináta rendszerhez viszonyitott stabilizalasát, jelen esetben Z oldalkoordináta szerint. Ha a repülōgép adott pályán van, akkor $\mathrm{Z}=0$, tehát az adott pályától való oldaleltérést a Z paraméter határozza meg (16.ábra).
Az ábra alapján felirható a repûlơgép súlypontjảnak a Z koordináta szerinti oldaleltérése:

$$
\begin{equation*}
\dot{Z}=-V_{F} \sin \psi=-V_{F} \sin \left(\psi+\beta_{*}\right) \tag{29}
\end{equation*}
$$

A repûlŏgép mozgásának stabilizálási rendszerét a hossz- és oldalirányú mozgást leíró egyenletrendszerek, valamint a Z oldalirányú mozgás kinematikai
egyenletrendszerének segitségével lehetséges megtervezni. A gyakorlatban a ψ legyezō- és β_{*} csúszásszögek értéke kicsi, a repülôgép oldalirányú vizsgảlatakor a V_{F} repûlési sebességet âllandónak tekintjük. Ezért a (29) egyenletet lineáris formában írhatjuk le:

$$
\begin{equation*}
\dot{z}=-V_{r}\left(\psi+\beta_{v}\right) \tag{30}
\end{equation*}
$$

Az igy kapott egyenlet Laplace - transzformáliját felirva kapjuk a kōvetkezō kifejezést:

$$
\begin{equation*}
Z(S)=\frac{1}{\tau_{s} S}\left[\psi(S)+\beta_{v}(S)\right] \tag{31}
\end{equation*}
$$

ahol: $T_{a}=\frac{1}{V_{F}}$ - aerodinamikai idōegység.
Azok a paraméterek, melyek a tömegkozéppont mozgását biztositiàk és az idöben viszonylag gyorsan valtoznak, vezérlō jeleknek nevezzülk. A vezérlés biztositisisara celszerú azokst a jeleket felhasználni, amelyek a repalögép tômegkozzéppont kơrulli forgasát jobl jellemzik. Ennek alapján a repülögép stabilizalasat a Z paraméter, valamint a ψ és γ szŏgek szerint a csûrōk és oldalkormány segitségével lehet megvalósitani.

A vezériési tơrvényck gyakorlati formája azt jelenti,hogy elhanyagoljuk a repülögép tơmegkōzéppont köruli forgásának tranziens folyamatait, azokat lényegesen rövidebb idöbeni lefolyásúnak tekintjỏk, mint maganak a tömegkòzéppontnak a változását jellemzō átmeneti folyamatokat.
A repalögép oldal-és hosszirányú mozgását leíró dinamikai egyenletek a bedöntés szerinti vezérlés egyenletével kiegészitve az alábbiak:

$$
\begin{align*}
&\left(S \frac{\partial F_{r}}{m \partial V_{z}}\right) \beta(S)-\alpha_{0} \omega_{z}(S)-\omega_{y}(S)-\left(\frac{g \cos \vartheta_{0}}{V}\right) \gamma(S)=\frac{\partial F_{z}}{m \partial V_{z}} \beta_{z}(S) \\
& \omega_{z}(S)+\operatorname{tg} \vartheta_{0} \omega_{y}(S)+S \gamma(S)=0 \\
& \frac{\omega_{y}(S)}{\cos \vartheta_{0}}+S \psi(S)=0 \tag{32}\\
& \psi_{r} B(S)+V_{F} \psi(S)+\$ Z(S)=V_{r} \beta_{z}(S)+w(S) \\
& \gamma(S)-Y_{s z}(S) K_{\psi} Z(S)=0
\end{align*}
$$

Egyszerüsitsük a (32) egyenletrendszert
$\omega_{x}=0, \alpha_{0} \approx 0, \beta=0, \beta_{v}=0, \operatorname{tg} \vartheta_{0}=0, \cos \vartheta_{0} \approx 1, w \approx 0, \gamma=$ const.
feltételek figyelembe vetelèvel:

$$
\begin{align*}
& -\omega_{y}(S)-\gamma(S) \frac{g}{V}=0 \\
& V_{F} \psi(S)+S Z(S)=0 \tag{33}\\
& \gamma(S)+Y_{z z}(S) K_{z} Z(S) \Rightarrow 0
\end{align*}
$$

A (33) egyenletrendszerbobl felirhatok az átviteli függvények és ezek figyelembe vételével meghatároxható a dälési robotpilótíra epullõ oldalkoordináta stabilizaló rendszer (17.ábra).
Az entríeli faggvenyek:

$$
\begin{align*}
& Y_{1}(S)=\frac{\eta(S)}{Y(S)}=\frac{g}{\psi S} \\
& Y_{2}(S)=\frac{Z(S)}{\psi(S)}=\frac{y_{F}}{S}=\frac{1}{\tau_{0} S} \tag{34}\\
& Y_{3}(s)=\frac{Y(S)}{Z(S)}=-Y_{z z}(S) K_{4}
\end{align*}
$$

Az oldalkoordináta stabilizáló rendszer hatásvázlata

Az adott útvonal stabilizálásának vizsgálatához végezzūk el a szabályozási kōr követési tulajdonságának felirását, Előszőr felirjuk a szabályozó àtviteli függvényét:
$Y_{z z}(S)=K_{z}\left(1+K_{D} S+\frac{K_{1}}{S}\right)=\frac{K_{z} K_{p}}{S}\left(\frac{S}{K_{D}}+S^{2}+\frac{K_{1}}{K_{D}}\right)=\frac{K_{z} K_{p}}{S}\left(S^{2}+2 \xi_{z} \omega_{z} S+\omega_{z}^{2}\right)$
ahol: $\quad \omega_{z}=\sqrt{\frac{K_{1}}{K_{D}}}, \xi_{z}=\frac{1}{2 \sqrt{K_{1} K_{D}}}$
frjuk fel a szabályozási kör egyszerüsitett hatásvázlatában az $\mathrm{Y}(\mathrm{S})$ átviteli függvényt:

$$
\begin{gathered}
Y(S)=\frac{g K_{\psi} \frac{K_{\gamma} A \omega_{x}^{a}}{\left(1+S T_{\gamma}^{a}\right) S+K_{\gamma} A \omega_{x}^{a}}}{S V+g K_{\psi} \frac{K_{\gamma} A \omega_{x}^{a}}{\left(1+S T_{\gamma}^{a}\right) S+K_{\gamma} A \omega_{x}^{a}}}= \\
=\frac{g K_{\psi} K_{\gamma} A \omega_{x}^{a}}{S V\left[\left(1+S T_{\gamma}^{a}\right) S+K_{r} A \omega_{x}^{a}\right]+g K_{\psi} K_{r} A \omega_{x}^{a}}=\frac{a(S)}{b(S)}
\end{gathered}
$$

ahol: $A \omega_{x}^{a}=\frac{A \omega_{x}}{1+K \omega_{x} A \omega_{x}}, T_{\gamma}^{a}=\frac{T}{1+K \omega_{x} A \omega_{x}}$

A követési tulajdonságot a szabályozási kōr átviteli függvénye alapján vizsgáljuk.

$$
\begin{aligned}
& W(S)=\frac{Z(S)}{Z_{a}(S)}=\frac{\frac{1}{\tau_{\theta} S} Y_{z z}(S) Y(S)}{1+\frac{1}{\tau_{s} S} Y_{z z}(S) Y(S)}=\frac{Y_{s z}(S) Y(S)}{\tau_{s} S+Y_{s z}(S) Y(S)}= \\
& =\frac{K_{z} K_{D}\left(S^{2}+2 \xi_{z} \omega_{z} S+\omega_{z}^{2}\right) a(S)}{S^{2} \tau_{0} b(S)+K_{z} K_{D}\left(S^{2}+2 \xi_{z} \omega_{z} S+\omega_{z}^{2}\right) b(S)} \\
& Z_{a}(S)=\frac{1}{S} \text { bemenõjelre: } \\
& Z(\infty)=\lim S W(S) Z_{s}(S)=\lim W(S)=1 \\
& \Delta Z(\infty)=Z_{a}(\infty)-Z(\infty)=0
\end{aligned}
$$

Tehăt az oldalkoordináta stabilizalló rendszer PID-szabályozó esetén maradó hiba nélkall ledolgozza a bemenō jelet. A követési tulajdonsagg a tơbbi szabâlyozo taggal hasonlol módon íható fel. Vizsgaljuk meg a rendszer zavarelháritó képességét PID-szabalyozb eseten, ha csuirō irảnyú zavaró hatás tri a repalógépet. A rendszer átviteli függvénye ebben az esetben a kōvetkezó alakban irhato fel:

$$
\begin{aligned}
& W_{z}(S)=\frac{Z(S) K_{\gamma} K_{\psi}}{\delta_{s}^{z}(S)}=\frac{\frac{1}{\tau_{s} S} Y(S)}{1+\frac{1}{\tau_{s} S} Y_{z z}(S) Y(S)}=\frac{Y(S)}{\tau_{s} S+Y_{s z}(S) Y(S)}= \\
& =\frac{a(S)}{T_{z} S b(S)+Y_{z z}(S) a(S)}=\frac{S a(S)}{S^{2} \tau_{z} b(S)+K_{z} K_{D}\left(S^{2}+2 \xi_{z} \omega_{z} S+\omega_{z}^{2}\right) a(S)}= \\
& =\frac{S g K_{t} K_{\gamma} A \omega_{x}^{a}}{S^{2} \tau_{d} b(S)+K_{z} K_{D}\left(S^{2}+2 \xi_{z} \omega_{z} S+\omega_{z}^{2}\right) g K_{t} K_{r} A \omega_{x}^{a}} \\
& \delta_{o}^{z}(S)=\frac{1}{S} \text { bemenöjelre: } \\
& Z(\infty)=\lim W_{z}(S) K_{\psi}^{-1} K_{\gamma}^{-1}=\frac{0}{K_{z} K_{D} \omega_{z}^{2} g K_{+}^{2} K_{7}^{2} A \omega_{x}^{\alpha}}=0 \\
& \Delta Z(\infty)=Z_{+}(\infty)-Z(\infty)=0
\end{aligned}
$$

Tehát a rendszer maradó hiba nélkûl ledolgozza a zavaró jelet. A vizsgálatot végezzük el az oldalszél által keltett zavaró hatásra is. Ekkor a rendszer átviteli függvénye a kơvetkezó alakban irható fel:

$$
\begin{aligned}
& W_{z}(S)=\frac{Z(S)}{\beta_{m}(S)}=\frac{\frac{1}{\tau_{s} S}}{1+\frac{1}{\tau_{2} S} Y_{z z}(S) Y(S)}=\frac{-1}{\tau_{s} S+Y_{z}(S) \frac{a(S)}{b(S)}}= \\
& =\frac{-S b(S)}{S^{2} \tau_{z} b(S)+K_{z} K_{D}\left(S^{2}+2 \xi_{z} \omega_{z} S+\omega_{z}^{2}\right) a(S)} \\
& \beta_{w}(S)=\frac{1}{S} \text { bemenōjelre: }
\end{aligned}
$$

$$
\begin{aligned}
& Z(\infty)=\lim S W_{z}(S) \beta_{r r}(S)=\frac{0}{K_{z} K_{D} \omega_{z}^{2} g K_{v} K_{r} A \omega_{x}^{\alpha}}=0 \\
& \Delta Z(\infty)=Z_{*}(\infty)-Z(\infty)=0
\end{aligned}
$$

Az oldalkoordináta stabilizáló rendszer a zavaró hatást maradó hiba nélkul ledolgozza és megtartja a repulógép eredeti irányát. A vizsgálat a többi szabályozó taggal hasonlóképpen végezhetơ el.

Felhasznált irodalom

[1] - Kovács József Az irányeghatározàs eszkōzei, föiskolai jegyzet, MH SZRTF, Szolnok, 1994
[2]- Léginavigáció, LRI Repülésoktatási központ, 1992
[3] - Peljpor D. Sz., Oszokin J. A., Giroszkopicseszkije pribori szisztyem orientacii i sztabilizacii, Masinosztroenyije, Moszkva, 1977
[4] - dr. Takáts László Kézikōnyv repulőknek, Budapest, 1992

1992-ben végeztem a Szolnoki Repūlōtiszti Föiskolán. 1995-ben végeztem a BME müszer és irányitástechnika szakản. 1996 januárje óta vagyok a Szolnoki Repûlōtiszti Föiskola oktatója. Nénány cikk szerzōje vagyok.

